

General Catalog

Linear Motion Systems

How to contact your authorised distributor

Distribution Centres

Rotherham CDC

- 0845 602 9946
- **I** 01709 789 988
- E sales@acorn-ind.co.uk
- W www.acorn-ind.co.uk

Midlands RDC

- **1** 0121 521 5999
- **I** 0121 521 5888
- E midlands@acorn-ind.co.uk
- W www.acorn-ind.co.uk/midlands

North East RDC

- **1** 0191 417 8899
- **I** 0191 419 0001
- northeast@acorn-ind.co.uk
- W www.acorn-ind.co.uk/northeast

South West RDC

- 01179 820 414
- **I** 01179 823 222
- E southwest@acorn-ind.co.uk
- W www.acorn-ind.co.uk/southwest

Regional Branches

North West Branch

- 0845 602 3568
- **I** 01229 833 510
- E northwest@acorn-ind.co.uk
- Www.acorn-ind.co.uk/northwest

Scotland Branch

- **1** 01506 476 199
- **I** 01506 462 655
- **E** scotland@acorn-ind.co.uk
- W www.acorn-ind.co.uk/scotland

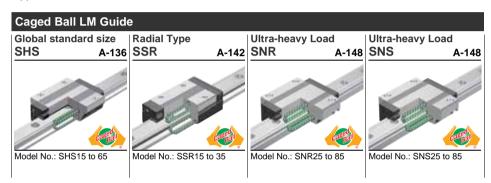
Divisions

Export Division

- +44 1709 789 933
- **=** +44 1709 789 966
- export@acorn-ind.co.uk
- W www.acorn-ind.co.uk/export

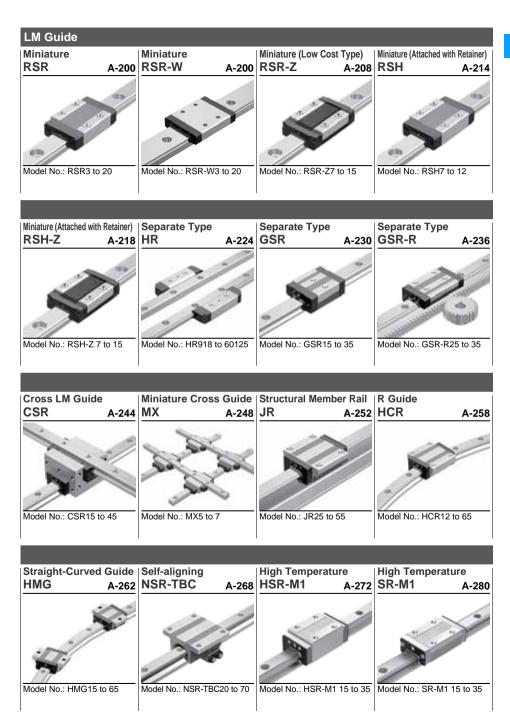
Linear Division

- 1 01709 789 949
- E linear@acorn-ind.co.uk
- W www.acorn-ind.co.uk/linear

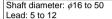


PRODUCTS INFORMATION

THK develops and provides a large number of linear motion systems products, including LM Guides, Ball Screws and Actuators. All of these are used in various types of industrial equipment such as machine tools, semiconductor manufacturing machines and industrial robots.


To respond to diversifying requirements, THK has been enhancing its high-performance and high-quality products that can be used in widely varying operating environments.

Select the most suitable product from our broad array of product lineups that respond to various applications.


Linear Bushing LMK-M LMK-L LMK-ML A-524 LMH A-524 A-524 A-524 Shaft diameter: $\phi 6$ to 30 Shaft diameter: $\phi 6$ to 60 Shaft diameter: $\phi 6$ to 30 Shaft diameter: ϕ 6 to 30 LMH-L A-524 SC SL A-524 SH A-524 A-524 Shaft diameter: ϕ 6 to 30 Shaft diameter: $\phi 6$ to 50 Shaft diameter: ϕ 6 to 30 Shaft diameter: $\phi 3$ to 20 **LM Stroke** LM Shaft End Support Standard LM Shafts SH-L SK SF ST A-524 A-524 A-524 A-554 Shaft diameter: ø3 to 20 Shaft diameter: ϕ 10 to 40 Shaft diameter: $\phi 3$ to 100 Shaft diameter: ϕ 6 to 100 **Miniature Stroke Die-setting Ball Cage** ST-B STI **MST** KS

Standard-Stock Precision Ball Screw BIF A-754

BNFN A-754

Shaft diameter: ϕ 16 to 50 Lead: 5 to 12

Shaft diameter: $\phi 4$ to 14 Lead: 1 to 5

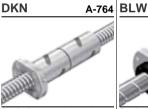
Lead: 1 to 4

Precision Ball Screw

Shaft diameter: ϕ 16 to 50 Lead: 5 to 12

Shaft diameter: ϕ 4 to 25 Lead: 1 to 20

Lead: 5 to 12


Lead: 4 to 16

A-764 BNF

Shaft diameter: ϕ 16 to 100

Lead: 4 to 20

Shaft diameter: ϕ 40 to 63 Lead: 20

Shaft diameter: ϕ 15 to 50

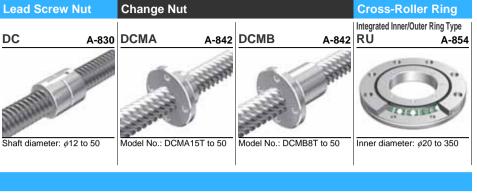
Lead: 10 to 50

A-764

Lead: 4 to 20

Lead: 4 to 20

Lead: 1 to 5



Shaft diameter: ϕ 15 to 50 Lead: 10 to 50

Shaft diameter: $\phi 8$ to 50 Lead: 12 to 100

Precision Ball Screw **Precision Rotary Ball Screw Precision Ball Screw/Spline BNT** A-764 DIR **BLR BNS-A** A-772 A-772 A-780 Shaft diameter: ϕ 14 to 45 Shaft diameter: ϕ 16 to 40 Shaft diameter: ϕ 16 to 50 Shaft diameter: Ø8 to 40 Lead: 16 to 50 Lead: 12 to 40 Lead: 4 to 12 Lead: 5 to 12 Rolled Ball Screw Constant Pressure Preload **BNS** A-780 NS-A NS **JPF** A-780 A-780 Shaft diameter: φ16 to 50 Shaft diameter: $\phi 8$ to 40 Shaft diameter: ϕ 16 to 50 Shaft diameter: ϕ 14 to 40 Lead: 16 to 50 Lead: 12 to 40 Lead: 16 to 50 Lead: 4 to 10 BTK A-790 MTF A-790 BLK A-790 WTF A-790 Shaft diameter: ϕ 10 to 50 Shaft diameter: ϕ 6 to 12 Shaft diameter: ϕ 15 to 50 Shaft diameter: ϕ 15 to 50 Lead: 4 to 16 Lead: 10 to 50 Lead: 20 to 100 Lead: 1 to 2 Rolled Rotary Ball Screw Lead Screw Nut **CNF BNT BLR DCM** A-790 A-790 A-796 Shaft diameter: ϕ 15 to 30 Shaft diameter: ϕ 14 to 45 Shaft diameter: ϕ 16 to 50 Shaft diameter: ϕ 12 to 50 Lead: 30 to 60 Lead: 4 to 12 Lead: 16 to 50

A-922 RBI

A-942 NHS-T

SB

RBL

RBH

A-922

Roller Follower Separable Type RNAST A-896 Inner diameter: ϕ 7 to 60

Non-separable Type NART A-896

Inner diameter: ϕ 12 to 65

Spherical Plain Bearing

Double-split Outer Ring | Single-split Outer Ring A-910 SA1 A-910 Inner diameter: ϕ 12 to 70

Link Ball

Shank thread diameter: M4 to M10

Shank thread diameter: M6 to M16

Shank thread diameter: M5 to M22

A-922

A-942

Shank thread diameter: M5 to M22

Rod End

Female Threading Type | Die Cast, Low Price Type | No Lubrication Type **TBS** A-922 PHS A-942

Spherical inner ring: $\phi 5$ to 30

Spherical inner ring: $\phi 5$ to 22

Standard Type

Spherical inner ring: ϕ 3 to 22

Die Cast Type

Male Threading			Threading Type
POS	A-942	NOS-T	A-942

Shank thread diameter:

M6 to M12

Spherical inner ring: ϕ 5 to 30 Spherical inner ring: ϕ 3 to 22 Spherical inner ring: ϕ 5 to 30 Spherical inner ring: ϕ 5 to 22

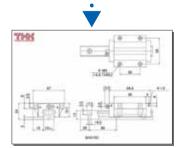
THK Technical Support Site

The THK Technical Support Site lets you access product information and technical support online. You will also find a search feature for locating desired products and a calculation feature for calculating service life. 2D CAD and 3D CAD data are also downloadable.

Product Information

View information on our products.

Search by model number, description, or any other criteria.



Detailed Dimensional Drawings

Check detailed product dimensions according to model number.

Detailed Specifications

Check detailed product specifications according to model number.

Available in 3 languages: Japanese, English, and German

Technical Information

View technical information, from application examples to research papers.

Technical Calculation

Rated life (service life time) can be calculated simply by entering model number, application criteria, etc.

3D CAD Data Downloads

Find 3D CAD data matching your specifications, from rail lengths to installation of option items.

FAQ

View inquiries relating to products. You can search by an entire inquiry or answer.

2D CAD Data Downloads

Approximately 4,000 downloadables of 2D CAD data (DXF files) are available.

Catalog Information

Order any of a variety of catalogs. You can also view in PDF format.

- No user registration required to access Product Information or 2D CAD Data Downloads.
- ◆To access other services, (free) user registration is required.
- Use of all services is free.

Guide to the General Catalog

The THK General Catalog is in two volumes, A Technical Descriptions of the Products, and B Product Specifications.

A Product Technical Descriptions

A Technical Descriptions of the Products mainly contains product

- Features and Structure
- Point of Selection
- Point of Design
- Mounting Procedure and Maintenance
- Options
- Precautions on Use
- Point of Selection include test data and service life calculation formulas for use when considering technical features in detail. Further, information relating generally to lubrication and grease-type products in special environments can be found conveniently together in Accessories for Lubrication

B Product Specifications

B Product Specifications contains dimensional drawings and tables according to product and model number.

All information containing product dimensional elements is given.

With two volumes, you can compare a page of product technical information with the product's dimensional drawings and tables to aid when considering specifications.

We at THK are sure you will be pleased in finding products among our abundant selection in the General Catalog that fit your needs.

General Table of Contents

冗出民 General Catalog

THK General Catalog

General Table of Contents

General Description	A-1	Flowchart for Selecting an LM Guide	
Point of Selection		Selecting a Type	A-48
		Types of LM Guides Softing Conditions	A-48
Selection Flow Chart	—	Setting Conditions • Conditions of the LM Guide	A-58
Types and Features of LM Systems		Coloulating the Applied Load	A-58
Service Life of an LM System		Calculating the Applied Load • Load rating of the LM Guide in all directions	A-74
		Calculating an Applied Load	A-74
Nominal Life Resis Load Reting	A-7	Calculating an Applied Load Calculating the Equivalent Load	
Basic Load Rating Basic Dynamic Load Rating C	A-7	Calculating the Equivalent Load	A-94
Basic Dynamic Load Rating C	A-7	Calculating the Static Safety Factor	
Basic Static Load Rating Co	A-8	Calculating the Average Load • Example of Calculating the Average Load (1)	A-96
Static Permissible Moment Mo	A-8		
Static Safety Factor fs		- with Horizontal Mount and Acceleration	
Life Calculation Formula		/Deceleration Considered	A-98
Rigidity	A-13	Example of Calculating the Average Load (2) When the Baile are Mayorkia	
Selecting a Clearance/Preload for an LM System		- When the Rails are Movable	A-99
Clearance and Preload		Calculating the Nominal Life	A-100
Preload and Rigidity		Nominal Life Equation for an LM Guide Using Balls	A-100
Friction coefficient		Rated Life Equation for an LM Guide Using Rollers	A-100
Accuracy		Example of Calculating the Nominal Life (1)	
Lubrication		- with Horizontal Mount	
Safety Design	A-18	and High-speed Acceleration	A-103
Determining a Material		Example of Calculating the Nominal Life (2)	
Stainless steel LM Systems	A-19	- with Vertical Mount	
Surface Treatment	A-20	Predicting the Rigidity	A-111
AP-HC	A-20	Selecting a Radial Clearance (Preload)	A-111
AP-C	A-20	Service Life with a Preload Considered	
AP-CF		• Rigidity	
Contamination Protection	A-23	Radial Clearance Standard for Each Model	
		Determining the Accuracy	A-116
LM Guide	\-25	Accuracy Standards	A-116
		Guidelines for Accuracy Grades by Machine Type	A-117
Features and Types	A-28	Accuracy Standard for Each Model	A-118
Features of the LM Guide			
Large permissible load and high rigidity .		Feature of Each Model	A-129
High Precision of Motion	A-31	Structure and Features	
Accuracy Averaging Effect		of the Caged Ball LM Guide	A-130
by Absorbing Mounting Surface Error		Advantages of the Ball Cage Technology	A-131
Easy Maintenance			
• Improved productivity of the machine		Caged Ball LM Guides	A-136
Substantial Energy Savings		Model SHS	A-136
Low Total Cost	A-38	Model SSR	A-142
 Ideal Four Raceway, Circular-Arc Groove, 		Model SNR/SNS	A-148
Two-Point Contact Structure	A-39	Model SHW	A-156
 Superb Error-Absorbing Capability 		Model SRS	A-160
with the DF Design	-	Model SCR	A-166
Classification Table of the LM Guides	A-44		
		LM Guide	A-170
Point of Selection	A-46	Model HSR	A-170

• Model SR A-178	Laminated Contact Scraper LaCSA.	-353
• Model NR/NRS A-186	Light-Resistance Contact Seal LiCS A.	-355
• Model HRW A-194	Dedicated bellows A	-356
Models RSR/RSR-WA-200	Dedicated LM CoverA.	-356
• Model RSR-Z A-208	• Cap C	-357
• Model RSH A-214	Plate Cover SV Steel Tape SP	-358
• Model RSH-Z A-218		
• Model HR A-224	LubricationA-	-361
• Model GSR A-230	QZ LubricatorA.	-361
Model GSR-R A-236	Lubrication Adapter	-364
Model CSR A-244	• Removing/mounting JigA.	-365
Model MX A-248	• End Piece EPA.	-366
Model JR A-252		
Model HCR A-258	List of Parts SymbolsA-	-368
Model HMG A-262		
• Model NSR-TBC A-268	Table of Supported Options by Models A.	-370
Model HSR-M1A-272		
• Model SR-M1 A-280	Dimensions of Each Model with an Option Attached	
• Model RSR-M1 A-286	Seal resistance valueA.	-372
• Model HSR-M2 A-292	Resistance of LaCSA.	-37
	Maximum Seal Resistance of LiCS A.	-376
Structure and Features	Greasing HoleA.	-377
of the Caged Roller LM Guide A-296	-	· .
Advantages of the Caged Roller Technology A-297	Precautions on UseA	-381
	Precautions on Using the LM GuideA.	-38 ⁻
Caged Roller LM GuideA-300	Precautions on Using Options for the LM Guide A.	-382
• Model SRG A-300	• QZ Lubricator	-382
• Model SRN A-306	• Laminated Contact Scraper LaCS, Side Scraper A.	-382
• Model SRW A-312	• Light sliding resistance contact seal LiCS A.	-382
7.012		000
Point of Design A-318	I M Cuido Actuatos	o E
Designing the Guide SystemA-318	LM Guide Actuator A-38	55
• Examples of Arrangements of the Guide System A-318	Model KRA	-386
Method for Securing an LM Guide	Structure and featuresA	-386
to Meet the Conditions A-322	Types and FeaturesA	
Designing a Mounting Surface A-324	Load Ratings in All Directions	000
Designing a Mounting Surface A-324	and Static Permissible MomentA.	-391
Shoulder Height of the Mounting Base	Maximum Travel Speed and the Maximum Length A.	-396
and the Corner Radius A-326	LubricationA	
• Permissible Error of the Mounting Surface A-333	Service LifeA	-390
Marking on the Master LM Guide	Static Safety FactorA	
and Combined Use A-338	Example of Calculating the Nominal Life A	
A 330	Accuracy Standards	-/11
Mounting Procedure and Maintenance A-340	7.000a.a0) Gia.i.aa.a0	-412
Mounting the LM Guide	Model SKRA	116
Mounting Procedure	Structure and featuresA	-410 -111
Methods for Measuring Accuracy after Installation A-350	Caged Ball/Roller TechnologyA	
• Recommended Tightening Torque for LM Rails A-350	Types and FeaturesA.	418 404
	Load Ratings in All Directions	-42
Ontions	and Permissible Moment	400
Options		
Contamination Protection 4 050	Lubrication *	401
Contamination Protection	Lubrication	-425

Accuracy Standards A-428	Determining the Accuracy A-48
Ontions	• Accuracy grade
Options A-430 Cover A-431	A-48
Bellows	High Torque Type Ball Spline
Sensor	Model LBS, LBST, LBF, LBR and LBH A-48
Motor Bracket	• Structure and features A-48
WOLOL DIACKEL	• Applications
Precautions on Use A-436	• Types and Features
	• Service Life
Precautions on Using Models KR/SKR A-436	• Clearance in the Rotation Direction A-48
	• Acquirect Standards
LM Actuator A-437	Accuracy Standards
	Housing Inner-diameter Tolerance A-48 Seline shott
Model GL	• Spline shaft A-48
Structure and features A-438	AccessoriesA-48
• Feature of the LM Actuator Model GL A-438	
Structure and features A-438	Medium Torque Type Ball Spline
• Types of the LM Actuator Model GL A-440	Models LT and LF A-49
Types and Features A-440	Structure and features A-49
	Types and Features A-49
Point of Selection A-442	Service Life A-49
• Load Rating A-442	Clearance in the Rotation Direction A-49
Maximum Travel Speed A-443	Accuracy Standards A-49
Accuracy Standards A-443	Housing Inner-diameter Tolerance A-49
	Spline shaft A-49
Options A-444	Accessories A-49
• Cover A-444	
• Bellows A-445	Rotary Ball Spline With Geared type
• Endplate A-445	Models LBG and LBGT A-49
• Sensor A-445	Structure and features A-49
Plate Nut for Mounting the Base A-445	Types and Features A-49
	• Service Life A-49
Precautions on Use A-446	• Clearance in the Rotation Direction A-49
	Accuracy Standards A-49
Ball Spline A-447	Housing Inner-diameter Tolerance A-49
Dail Spilite A-441	Spline shaft A-49
Features and Types A-450	
Features of the Ball Spline A-450	Rotary Ball Spline With Support Bearing type
Structure and features A-450	Model LTR,and LTR-A A-50
Classification of Ball Splines A-452	Structure and features A-50
792	Types and Features A-50
Point of Selection A-454	Service Life A-50
Flowchart for Selecting a Ball Spline A-454	• Clearance in the Rotation Direction A-50
• Steps for Selecting a Ball Spline A-454	Accuracy Standards A-50
Selecting a Type A-456	• Housing Inner-diameter Tolerance A-50
• Studying the Spline Shaft Strength A-458	• Spline shaft A-50
• Predicting the Service Life A-465	. A-50
Selecting a Preload	Point of Design A-50
• Clearance in the Rotation Direction A-479	Checking List for Spline Shaft End Shape A-50
• Preload and Rigidity A-479	Housing Inner-diameter Tolerance A-50
• Conditions and Guidelines	Positions of the Spline-nut Keyway
for Solocting of a Proload	and Mounting Holos

Mounting Procedure and Maintenance A-506	Point of Selection	Δ-536
Assembling the Ball Spline	Flowchart for Selecting a Linear Bushing	A-536
• Mounting the Spline	Steps for Selecting a Linear Bushing	A-536
• Installing the Spline Nut	Rated Load and Nominal Life	A-537
• Installation of the Spline Shaft	Table of Equivalent Factors	Δ-540
7, 000	Accuracy Standards	
Options		, (0-1
Lubrication	Point of Design	Δ-543
Material, surface treatment A-509	Assembling the Linear Bushing	
Contamination Protection	, 1000g and	···· A-342
• Specifications of the Bellows A-510	Options	۸ 540
-k	Lubrication	Λ 540
Precautions on UseA-511		····· A-548
• Handling A-511	Material, surface treatment	Δ-5/10
• Lubrication A-511	Contamination Protection	Λ 550
• Precautions on Use A-511	Felt Seal Model FLM	A 550
• Storage A-512		A-550
• Other	Precautions on Use	····· A-55′
Spline Nut A-513	LM Stroke	A-553
Features A-514	LM Stroke Models ST, ST-B, STI	A
Features of the Spline Nut	Structure and features	A-554
• Structure and features	Types and Features	A-554
• Features of the Special Rolled Shafts A-515	Rated Load and Nominal Life	A-550
• High Strength Zinc Alloy A-515	Accuracy Standards	A-556
• Clearance in the Rotation Direction A-516	Fit	A-558
Clearance in the Rotation Direction A-516	FitST shaft	A-559
Daint of Coloation	Installation of the CT Chaft	···· A-559
Point of Selection	Installation of the ST Shaft	····· A-559
Selecting a Spline Nut	Miniature Stroke Model MST	
Doint of Dooise	Ctrusture and factures	···· A-560
Point of Design	Structure and features	···· A-560
Fit	Fit	
Mounting Procedure and Maintenance A-521	Travel Distance of the Ball Cage	····· A-56′
Installation A-521	Die-setting Ball Cage Models KS and E	3 S A EGG
Lubrication	Structure and features	
Lubrication	Rated Load and Service Life	A-562
	Fit	
Linear Bushing A-523	Installation of the Ball Cage	A-563
Features and Types A-524	installation of the ball Cage	A-563
Features of the Linear Bushing	Precautions on Use	۸ ۵۰
• Structure and features	recautions on osc	A-364
Dedicated Shafts for Model LMA-526		
• Standard LM Shafts	Precision Linear Pack	A-565
• Specially Machined Types	Features	Λ F.C.O
• Table of Rows of Balls and Masses	Features of the Precision Linear Pack.	
for Clearance-adjustable Types	Structure and features	A EC
and Open Types of the Linear Bushing A-527	Rated Load and Nominal Life	A-500
Types of the Linear Bushing	Accuracy Standards	A-501
• Types and Features	Radial Clearance	7 EC
Classification Table	Nadiai Olearanee	A-508
2.325A-5.34		

Precautions on Use A-570	LM Roller	A-603
Cross Roller Guide/Ball Guide A-571	Features and Types	A-604
Oroso Roller Salacy Ball Salacy A 97 1	Features of the LM Roller	A-604
Features and Types A-572	Structure and features	······ A-604
Features of the Cross Roller Guide/Ball Guide A-572	Types of the LM Roller	A-606
Structure and features A-572	Types and Features	······ A-606
Types of the Cross Roller Guide/Ball Guide A-574		
Types and Features A-574	Point of Selection	A-608
	Nominal Life	A-608
Point of Selection A-575	Accuracy Standards	······ A-611
Rated Load and Nominal Life A-575		
Accuracy Standards A-578	Point of Design	······ A-612
	Raceway	······ A-612
Point of Design A-579	Installing the LM Roller	······ A-613
Installation procedure A-579	Guidance for Adjusting the Clearance	€ A-614
Example of Clearance Adjustment A-580	Examples of Arranging LM Roller Un	its A-615
Preload A-580	Examples of Installing the LM Roller	······ A-616
Accuracy of the Mounting Surface A-580		
	Options	······ A-617
Options A-581	Spring Pad Model PA	······ A-617
Dedicated Mounting Bolt A-581	Fixture Models SM/SMB and SE/SEE	3 A-618
Precautions on Use A-582	Precautions on Use	A-619
Cross Roller Table A-585	Flat Roller	A-621
Features and Types A-586	Features and Types	A-622
Features of the Cross Roller Table A-586	Features of the Flat Roller	A-622
Structure and features A-586	Structure and features	······ A-622
	Types of the Flat Roller	A-624
Point of Selection A-588	Types and Features	······ A-624
Rated Load and Nominal Life A-588		
Accuracy Standards A-590	Point of Selection	A-625
	Rated Load and Nominal Life	A-625
Precautions on Use A-591	Accuracy Standards	A-628
Linear Ball Slide A 503	Point of Design	A-629
Linear Ball Slide A-593	Raceway	A-629
Features and Types A-594	Installing the Flat Roller	A-630
Features of the Linear Ball Slide A-594		
Structure and features A-594	Precautions on Use	A-632
Types of the Linear Ball Slide A-596		
Types and Features A-596	Slide Pack	A-635
Point of Selection A-599	Features and Types	Δ-636
71 000	i catures and rypes	
Rated Load and Nominal Life A-599	Features of Slide Pack	A-636
Rated Load and Nominal Life A-599 Accuracy Standards A-601	Features of Slide Pack	A-636
Rated Load and Nominal Life	Features of Slide Pack • Structure and features	A-636 A-636
Rated Load and Nominal Life	Features of Slide Pack	A-636 A-636 A-638

Contamination Protection	Standard Combinations of Shaft Diameter
Jointed Slide Rails A-640	and Lead for the Rolled Ball Screw A-693
	Permissible Axial LoadA-694
Mounting Procedure and Maintenance A-641	Permissible Rotational SpeedA-696
Installation A-641	Selecting a Nut A-699
LubricationA-642	• Types of Nuts
	Selecting a Model Number A-702
Precautions on UseA-643	Calculating the Axial LoadA-702
	• Static Safety Factor A-703
Slide Rail A-645	Studying the Service LifeA-704
Silue Rail A-045	Studying the RigidityA-707
Features and Types	Axial Rigidity of the Feed Screw System A-707
Features of the Slide RailA-646	Studying the positioning accuracyA-711
Structure and features A-646	 Causes of Error in Positioning Accuracy A-711
Types of the Slide Rail A-647	Studying the Lead Angle Accuracy A-711
Types and Features A-647	Studying the Axial Clearance A-711
Single Slides for Light Load A-647	Studying the Axial Clearance
Single Slides for Medium Load A-650	of the Feed Screw System A-713
Double Slides for Light Load A-650	 Studying the Thermal Displacement
Double Slides for Medium Load A-651	through Heat Generation A-715
Double Slides for Heavy Load A-653	• Studying the orientation change during traveling A-716
Linear Type Slides	Studying the rotational torque A-717
Aluminum Alloy Slide Rail A-655	 Friction Torque Due to an External Load A-717
Classification Table for Slide Rails A-656	 Torque Due to a Preload on the Ball Screw A-718
	Torque required for accelerationA-718
Mounting Procedure and Maintenance A-658	Studying the Driving MotorA-719
Mounting the Slide Rail A-658	When Using a Servomotor A-719
	 When Using a Stepping Motor (Pulse Motor) A-721
Precautions on UseA-659	Examples of Selecting a Ball Screw A-722
	 High-speed Transfer Equipment (Horizontal Use) A-722
Ball Screw A-661	Vertical Conveyance System A-736
Features and Types A-664	Accuracy of Each Model
Features of the Ball Screw A-664	Precision, Caged Ball Screw
• Driving Torque One Third of the Sliding Screw A-664	Models SBN, SBK and HBN A-748
• Ensuring High Accuracy	• Structure and features
Capable of Micro Feeding	Ball Cage Effect
High Rigidity without Backlash	Types and Features A-752 Service Life
• Capable of Fast Feed	• Service Life
Types of Ball ScrewsA-672	• Axial clearance
Daint of Colortion	Accuracy Standards A-678
Point of Selection	Standard Stark President Ball Consu
Flowchart for Selecting a Ball Screw A-674	Standard-Stock Precision Ball Screw
Accuracy of the Ball Screw	Unfinished Shaft Ends
Lead angle accuracy	Models BIF, BNFN, MDK, MBF and BNF A-754
• Accuracy of the Mounting Surface	• Structure and features
• Axial clearance	Types and Features
• Preload	• Service Life
Selecting a Screw Shaft	Nut Types and Axial Clearance A-758
• Maximum Length of the Screw Shaft A-690	0
Standard Combinations of Shaft Diameter	Standard-Stock Precision Ball Screw
and Lead for the Precision Ball Screw A-692	Finished Shaft Ends Model BNKA-760

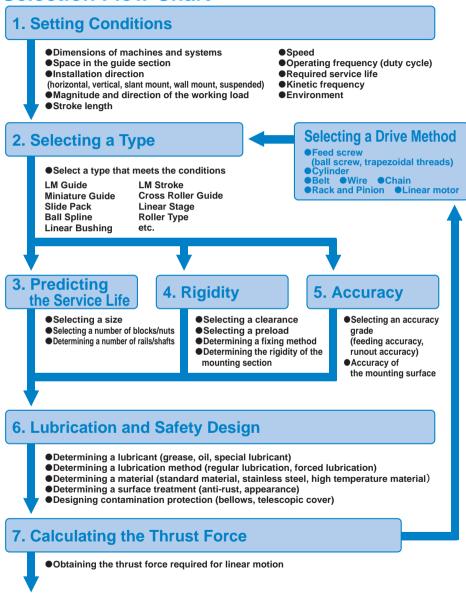
• Footures	Ball Carey Darinharala	
• Features	Ball Screw Peripherals	
Types and Features A-761 Table of Ball Screw Types	• Structure and features	A-802
with Finished Shaft Ends		
and the Corresponding Support Units	Type Types of Support Units and Applicable	A-804
and Nut Brackets A-762	Screw Shaft Outer Diameters	۸ ۵۵۶
A-702	Model Numbers of Bearings	A-805
Precision Ball Screw	and Characteristic Values	۸ ۹۸۶
Models BIF, DIK, BNFN, DKN,BLW,	Example of Installation	A-000
BNF, DK, MDK, BLK/WGF and BNT A-764	Mounting Procedure	A-808
• Structure and features A-765	Types of Recommended Shapes	A-000
• Types and Features A-769	of the Shaft Ends	Δ-810
• Service Life A-704	Nut Bracket Model MC	A-812
Axial clearance A-685	Structure and features	A-812
Accuracy Standards A-678	• Type	A-812
	Lock Nut Model RN	A-813
Precision Rotary Ball Screw Models DIR and BLR A-772	Structure and features	A-813
Structure and features A-773	• Type	A-813
• Type A-775		
Service Life A-704	Options	A-815
Axial clearance A-685	Lubrication	A-816
Accuracy Standards A-776	Corrosion Prevention (Surface Treatment, etc.)	A-816
Example of Assembly A-778	Contamination Protection	A-816
	QZ Lubricator	A-817
Precision Ball Screw / Spline	Wiper Ring W	A-819
Models BNS-A, BNS, NS-A and NS A-780	Specifications of the Bellows	A-822
Structure and features A-781		
• Type A-782	Mounting Procedure and Maintenance	A-824
• Service Life A-704	Method for Mounting the Ball Screw Shaft	A-824
• Axial clearance A-685	Maintenance Method	A-826
• Accuracy Standards A-783	Amount of Lubricant	A-826
• Action Patterns A-784	Dragoutions on Hos	
• Example of Assembly	Precautions on Use	A-827
• Precautions on Use		
A-789	Lead Screw Nut A-	829
Rolled Ball Screw Models JPF, BTK,	Features	A-830
MTF, BLK/WTF, CNF and BNT A-790	Features of the Lead Screw Nut	A-830
Structure and features A-791	Structure and features	A-830
Types and Features A-792	• Features of the Special Rolled Shafts	A-831
Service Life A-704	High Strength Zinc Alloy	A-831
Axial clearance A-685		
Accuracy Standards A-678	Point of Selection	A-833
	Selecting a Lead Screw Nut	
Rolled Rotary Ball Screw Model BLR A-796	Efficiency and Thrust	A-836
• Structure and features A-797	Accuracy Standards	A-837
• Type A-797		
• Service Life A-704	Point of Design	
Axial clearance A-685	Fit	A-838
Accuracy Standards A-798		
Example of Assembly A-799	Mounting Procedure and Maintenance	A-839

LubricationA-840		A-879
Change Nut A-841	Features and Types	A-880
	Features of the Cam Follower	A-880
Features A-842	Structure and features	··· A-880
Features of the Change NutA-842	 Cam Follower with a Hexagon Socket 	··· A-881
Structure and features A-842	 Cam Follower Containing Thrust Balls 	··· A-881
 Features of the Special Rolled Shafts A-843 	Types of the Cam Follower	···· A-882
High Strength Zinc Alloy A-843	Types and Features	···· A-882
	 Types and Model Numbers of Cam Followers 	··· A-883
Point of Selection A-845	Classification Table	A-884
Selecting a Change Nut A-845		
Efficiency, Thrust and Torque A-849	Point of Selection	
Accuracy Standards A-849	Nominal Life	A-885
	Accuracy Standards	A-886
Point of DesignA-850	Track load capacity	A-887
Fit A-850	Radial Clearance	A-887
Mounting Procedure and Maintenance A-851	Point of Design	A-888
Installation A-851	Fit	
Lubrication	Installation	A-888
Cross-Roller Ring A-853	Mounting Procedure and Maintenance	A-889
Cross-Roller King A-000	Installation	A-889
Features and Types A-854	Contamination Protection and Lubrication.	A-891
Features of the Cross-Roller Ring A-854		
Structure and features A-854	Accessories	A-892
Types of the Cross-Roller Ring A-857	Accessories for the Cam Follower	A-892
Types and Features A-857		
	Precautions on Use	A-893
Point of Selection A-859		
Selecting a Cross-Roller RingA-859	Roller Follower A	A-895
Nominal Life A-860		
Static Safety FactorA-862	Features and Types	A-896
Static Permissible Moment	Features of the Roller Follower	A-896
Static Permissible Axial LoadA-864	Structure and features	··· A-896
Accuracy StandardsA-865	Types of the Roller Follower	A-898
 Accuracy Standard of the USP-Grade Series A-869 	Types and Features	··· A-898
Radial ClearanceA-870	Types of the Roller Follower	A-900
Moment Rigidity A-871		
	Point of Selection	
Point of DesignA-873	Types and Model Numbers of the Roller Follows	er. A-901
Fit A-873	Nominal Life	A-902
Designing the Housing and the Presser Flange A-874	Accuracy Standards	A-903
	Track load capacity	
Mounting Procedure A-876	Radial Clearance	A-904
Procedure for AssemblyA-876		
	Point of Design	
Precautions on UseA-877	Fit	A-905
	Mounting Section	A-905
	Mounting Procedure and Maintenance	

Installation A-906 Contamination Protection and Lubrication A-906	Precautions on Use A-939
Precautions on Use A-907	Rod End A-941
7 307	Features and Types A-942
Spherical Plain Bearing A-909	Features of the Rod End A-942
	• Features A-942
Features and Types A-910	Special Bearing Alloy A-942
Features of the Spherical Plain Bearing A-910	Performance Test with the Rod End A-944
Structure and features A-910	Types of the Rod End A-945
Types of the Spherical Plain Bearing A-910	Types and Features A-945
• Types and Features A-910	
	Point of Selection A-948
Point of Selection A-911	Selecting a Rod End A-948
Selecting a Spherical Plain Bearing A-911	
Accuracy Standards A-914	Point of Design A-949
Radial Clearance A-914	Permissible tilt angles A-949
Point of Design A-916	1 4 11 4
Fit A-916	Installation
Permissible tilt angles A-917	Installation A-950
Mounting Procedure and Maintenance A-918	Precautions on Use A-951
Installation A-918	
Lubrication A-918	Accessories for Lubrication A-953
Contamination Protection A-919	
	Lubrication A-954
Precautions on Use A-920	Types of Lubricants A-954
	Grease Lubrication
Link Ball A-921	• Oil Lubrication
	Lubrication under Special Environments A-956
Features and Types A-922	Lubrication Methods A-957
Features of the Link Ball A-922	• Manual Lubrication A-957
Structure and features A-922	• Forced Lubrication Method
• Alloy A-925	Lubrication Accessory Series for LM Systems A-958
How Load Directions Are Called	• THK Original Grease A-958
• Pushing Load and Pulling Load A-927	• AFA Grease
Performance Tests with the Link Ball A-928 • Tensile Strength Test with Model AL10D A-928	• AFB-LF Grease
Durability Tests with Link Ball Model AL A-930	• AFC Grease A-961 • AFE-CA Grease A-963
Durability Tests with Link Ball Model BL A-930 Durability Tests with Link Ball Model BL A-932	• AFF Grease
	• AFG Grease A-965
Types of the Link Ball	A-968
Types and Features A-934	Grease Gun Unit MG70 A-970 Special Plumbing Fixtures A-970
Point of Selection A-936	• Grease nipple A-970
Soloeting a Link Ball	4-970
Selecting a Link Ball A-936	
Point of Design A-937	Appendix A-971
Permissible tilt angles	Appendix TablesA-972
A-931	
Installation	

Example of Installation A-938

General Description


冗出民 General Catalog

A Technical Descriptions of the Products

Point of Selection	A-2
Selection Flow Chart	A-2
Types and Features of LM Systems.	A-3
Load Rating	A-7
Service Life of an LM System	A-7
Nominal Life	A-7
Basic Load Rating	A-7
Basic Dynamic Load Rating C	A-7
Basic Static Load Rating Co	A-8
Static Permissible Moment Mo	A-8
Static Safety Factor fs	A-9
Life Calculation Formula	A-10
Rigidity	A-13
Selecting a Clearance/Preload for an LM System	A-13
Clearance and Preload	A-13
Preload and Rigidity	A-14
Friction coefficient	A-15
Accuracy	A-16
Lubrication	A-16
Safety Design	A-18
Determining a Material	A-19
Stainless steel LM Systems	A-19
Surface Treatment	A-20
AP-HC	A-20
AP-C	A-20
AP-CF	A-20
Contamination Protection	A-23

General Description

Selection Flow Chart

Selection Completed

Types and Features of LM Systems

Types and Features of LM Systems

Туре	LM Guide	Ball Spline	Linear Bushing
Appearance			
Features	Ideal Four Raceway, Circular-Arc Groove, Two-Point Contact Structure Superb error-absorbing capability with the DF design Accuracy Averaging Effect by Absorbing Mounting Surface Error Large Permissible Load and High Rigidity Low Friction Coefficient	Large torque load capacity Optimal for torque-transmitting mechanisms and locations where torque and radial load are simultaneously applied No angular backlash Ball Retaining Type	Interchangeable type LM system capable of performing infinite linear motion at low price
Stroke	Infinite stroke	Infinite stroke	Infinite stroke
Major Applications	Surface grinder Electric discharge machine High-speed transfer equipment NC lathe Injection molding machine Woodworking machine Semiconductor manufacturing equipment Inspection equipment Food-related machine Medical equipment	 Z axis of assembly robot Automatic loader Transfer machine Automatic conveyance system Wire winder Spindle drive shaft of grinding machine Steering of construction vehicle Blood test equipment ATC Golf training machine 	Measuring instruments Digital 3D measuring instrument Printing machine OA equipment Automatic vending machine Medical equipment Food packaging machine
Page introducing the product	A-25 onward	A-447 onward	A-523 onward

Туре	LM Stroke	Precision Linear Pack	Cross Roller Guide
Appearance			
Features	Capable of performing rotary motion, straight motion and complex motion Capable of performing rolling motion with an extremely small friction coefficient Low cost	Ultra-thin lightweight type Reduced design and assembly costs	Long service life, high rigidity Easy clearance adjustment type
Stroke	Finite stroke	Infinite stroke	Finite stroke
Major Applications	Press die setting Ink roll unit of printing machine Optical measuring instrument Spindle Solenoid valve guide Press post guide Load cell Photocopiers Inspection machines	Magnetic disc device Electronic equipment Semiconductor manufacturing equipment Medical equipment Measuring equipment Plotting machine Photocopier	Measuring instruments Insertion machine Printed circuit board drilling machine Inspection equipment Small stage Handling mechanism Automatic lathe Tool grinder Internal grinding machine Small surface grinding machine
Page introducing the product	A-553 onward	A-565 onward	A-571 onward

Types and Features of LM Systems

Туре	Cross Roller Table	Linear Ball Slide	LM Roller
Appearance			
Features	Easily installable unit type Allows selection of diverse uses	Easily installable unit type Lightweight and Compact Capable of performing rolling motion with an extremely small friction coefficient Capable of operating without lubrication Low cost	Compact, large load capacity type Self skewing-adjusting type
Stroke	Finite stroke	Finite stroke	Infinite stroke
Major Applications	Measuring equipment stage Optical stage Tool grinder Printed circuit board drilling machine Medical equipment Automatic lathe Tool grinder Internal grinding machine Small surface grinding machine	Small electronic part assembly machine Handler Automatic recorder Measuring equipment stage Optical stage Medical equipment	Precision press ram guide Press metal mold exchanger Heavy load conveyor systems Vendor machine
Page introducing the product	A-585 onward	A-593 onward	A-603 onward

Туре	Flat Roller	Slide Pack	Slide Rail
Appearance			
Features	Large Load Capacity Combined accuracy of 90° V-shape surface and flat surface available as standard	Interchangeable type Low-cost, simple type	Thin, compact design Low-cost, simple type High strength, high durability Type Ty
Stroke	Finite stroke	Infinite stroke	Finite stroke
Major Applications	Planer Horizontal milling machine Roll grinding machine Surface grinder Cylindrical grinder Optical measuring instrument	Amusement machine High-grade furniture Light and heavy doors Tool cabinet Kitchen fitments Automatic feeder Computer peripherals Photocopier Medical equipment Office equipment	Amusement machine High-grade furniture Light and heavy doors Office equipment Store fixture Stocker
Page introducing the product	A-621 onward	A-635 onward	A-645 onward

Load Rating

Load Rating

Service Life of an LM System

When an LM system rolls under a load, its raceway and rolling elements (balls or rollers) constantly receive repetitive stress. If a limit is reached, the raceway fractures from fatigue and part of the surface exfoliates like scales. This phenomenon is called flaking.

The service life of an LM system refers to the total travel distance until the first event of flaking occurs due to rolling fatigue of the material on the raceway or the rolling element.

Nominal Life

The service life of an LM system is subject to slight variations even under the same operating conditions. Therefore, it is necessary to use the nominal life defined below as a reference value for obtaining the service life of the LM system.

The nominal life means the total travel distance that 90% of a group of identical LM system units can achieve without flaking.

Basic Load Rating

An LM system has two types of basic load ratings: basic dynamic load rating (C), which is used to calculate the service life, and basic static load rating (C_0) , which defines the static permissible limit.

В

Basic Dynamic Load Rating C

The basic dynamic load rating (C) indicates the load with constant direction and magnitude, under which the rated life (L) is $L=50\,\mathrm{km}$ for an LM system using balls, or $L=100\,\mathrm{km}$ for an LM system using rollers, when a group of identical LM system units independently operate under the same conditions

The basic dynamic load rating (C) is used to calculate the service life when an LM system operates under a load.

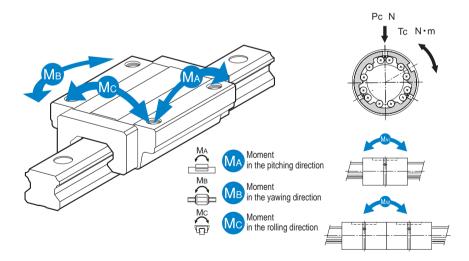
Specific values of each LM system model are indicated in the specification table for the corresponding model number.

Basic Static Load Rating Co

If an LM system receives an excessively large load or a large impact when it is stationary or operative, permanent deformation occurs between the raceway and the rolling element. If the permanent deformation exceeds a certain limit, it will prevent the LM system from performing smooth motion.

The basic static load rating is a static load with a constant direction and magnitude whereby the sum of the permanent deformation of the rolling element and that of the raceway on the contact area under the maximum stress is 0.0001 times the rolling element diameter. With an LM system, the basic static load rating is defined for the radial load.

Therefore, the basic static load rating is considered the limit of the static permissible load.


Specific values of each LM system model are indicated in the specification table for the corresponding model number.

Static Permissible Moment Mo

When an LM system receives a moment, the rolling elements on both ends receive the maximum stress due to uneven distribution of the stress on the rolling elements within the LM system.

The permissible static moment (M₀) means the moment with constant direction and magnitude, under which the sum of the permanent deformation of the rolling element and the permanent deformation of the raceway accounts for 0.0001 times of the rolling element's diameter in the contact area where the maximum stress is applied.

With an LM system, the static permissible moment is defined in three directions: MA, MB and MC. Thus, the static permissible moment is considered the limit of the static moment applied.

 P_{c} : Radial load M_{A1} : Moment in the pitching direction : Moment in the torque direction M_{A2} : Moment in the pitching direction Tc

The specific static permissible moment value of each LM system model is provided in the section on the permissible moments of each model.

Load Rating

Static Safety Factor fs

The Linear Motion system may receive an unexpected external force while it is stationary or operative due to the generation of an inertia caused by vibrations and impact or start and stop. It is necessary to consider a static safety factor against such a working load.

[Static Safety Factor fs]

The static safety factor (f_s) is determined by the ratio of the load capacity (basic static load rating C_0) of an LM system to the load applied on the LM system.

$$f_s = \frac{f_c \cdot C_0}{P}$$
 or $f_s = \frac{f_c \cdot M_0}{M}$ (1)

fs : Static safety factor

fc : Contact factor (see Table2 on A-11)

Co : Basic static load rating

M_o : Static permissible moment (M_A, M_B and M_C)

P : Calculated load M : Calculated moment

[Measure of Static Safety Factor]

Refer to the static safety factor in Table1 as a measure of the lower limit under the service conditions.

Table1 Measure of Static Safety Factor

Kinetic conditions	Kinetic conditions Load conditions	
Constantly stationary	Impact is small, and deflection of the shaft is also small	1.0 to 1.3
Constantly stationary	Impact is present, and a twisting load is applied	2.0 to 3.0
Normal motion	A normal load is applied, and the deflection of the shaft is small	1.0 to 1.5
Normal modori	Impact is present, and a twisting load is applied	2.5 to 7.0

Life Calculation Formula

The nominal life (L) of an LM system is obtained from the following equation using the basic dynamic load rating (C) and the applied load (P).

[LM System Using Balls]

$$L = \left(\frac{C}{P}\right)^3 \times 50 \quad \dots \quad (2)$$

[LM System Using Rollers]

$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} \times 100 \dots (3)$$

: Nominal life (km) С : Basic dynamic load rating (N) : Applied load (N)

In most cases, it is difficult to calculate a load applied on an LM system.

In actual use, most LM systems receive vibrations and impact during operation, and fluctuation of the loads applied on them is assumed. In addition, the hardness of the raceway and the temperature of the LM system unit greatly affect the service life.

With these conditions considered, the practical service life calculation formulas (2) and (3) should be as follows.

[LM System Using Balls]

$$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{C}}{f_{W}} \times \frac{C}{P}\right)^{3} \times 50 \quad \dots \quad (4)$$

[LM System Using Rollers]

$$L = \left(\frac{f_{\text{H}} \cdot f_{\text{T}} \cdot f_{\text{c}}}{f_{\text{W}}} \times \frac{C}{P}\right)^{\frac{10}{3}} \times 100 \dots (5)$$

С : Basic dynamic load rating (N) : Applied load (N)

: Hardness factor (see Fig.1 on A-11)

: Temperature factor

: Nominal life

(see Fig.2 on A-11)

(km)

fc : Contact factor (see Table2 on A-11) : Load factor (see Table3 on A-12) fw

Point of Selection

Life Calculation Formula

● f_H: Hardness Factor

To maximize the load capacity of the LM system, the hardness of the raceways needs to be between 58 and 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor (f_H).

● f_T:Temperature Factor

If the temperature of the environment surrounding the operating LM System exceeds $100\,^{\circ}\mathrm{C}$, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.2. In addition, the LM system must be of high temperature type.

Note) If the temperature of the service environment exceeds 80 °C , it is necessary to change the materials of the seal and end plate to high-temperature materials.

Note) If the temperature of the environment exceeds 120°C, it is necessary to provide dimensional stabilization.

• fc: Contact Factor

If multiple LM Guide blocks are closely arranged with each other, it is difficult to achieve uniform load distribution due to a moment load and the accuracy of the mounting surface. In such applications, multiply basic load ratings "C" and "C₀" by the corresponding contact factors in Table2.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table2.

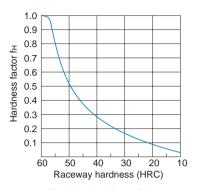


Fig.1 Hardness Factor (f_H)

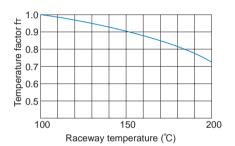


Fig.2 Temperature Factor (f_T)

Table2 Contact Factor (fc)

Number of blocks used in close contact	Contact factor fo
2	0.81
3	0.72
4	0.66
5	0.61
6 or greater	0.6
Normal use	1

• fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, where the effects of speed and vibration are estimated to be significant, divide the basic dynamic load rating (C) by a load factor selected from Table3, which contains empirically obtained data.

Table3 Load Factor (fw)

Vibrations/ impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

Point of Selection

Rigidity

Rigidity

When using an LM system, it is necessary to select a type and a clearance (preload) that meet the service conditions in order to achieve the required rigidity of the machine/equipment.

Selecting a Clearance/Preload for an LM System

Since clearances and preloads of LM systems are standardized for different models, you can select a clearance and a preload according to the service conditions.

For separate-type models, THK cannot adjust their clearances at shipment. Therefore, the user must adjust the clearance when installing the product.

Determine a clearance/preload while referring to the following section.

Clearance and Preload

[Clearance (internal clearance)]

Clearance of an LM system is a play between the block (nut), the rail (shaft) and the ball (or roller). The sum of vertical clearances is called radial clearance, and the sum of circumferential clearances is called angular backlash (clearance in the rotational direction).

(1) Radial clearance

With the LM Guide, a radial clearance refers to the value of a movement of the block center when the LM block is gently moved vertically with constant force applied in the center of the fixed LM rail in the longitudinal direction.

Angular backlash (clearance in the rotational direction)

With the Ball Spline, angular backlash (clearance in the rotational direction) refers to the value of a rotational motion of the nut when the nut is gently rotated forward and backward with constant force with the spline shaft fixed.

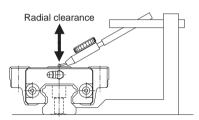


Fig.3 Radial clearance of the LM Guide

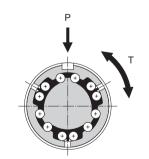


Fig.4 Angular backlash of the Ball Spline

[Preload]

Preload is a load that is preliminarily applied to the rolling elements in order to eliminate a clearance of an LM system and increase its rigidity. A negative clearance indication (negative value) of an LM system means that a preload is provided.

Table4 Examples of Radial Clearances for LM Guide Model HSR
Unit: um

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
HSR 15	-4 to +2	-12 to -4	_
HSR 20	-5 to +2	-14 to -5	-23 to -14
HSR 25	-6 to +3	-16 to -6	-26 to -16
HSR 30	-7 to +4	-19 to -7	-31 to -19
HSR 35	-8 to +4	-22 to -8	-35 to -22

For specific clearances and preloads, see the section concerning the corresponding model.

Preload and Rigidity

Providing a preload to an LM system will increase the rigidity according to the amount of the preload. Fig.5 shows deflection of clearances (normal clearance, clearance C1 and clearance C0) (with LM Guide model HSR).

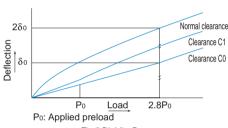
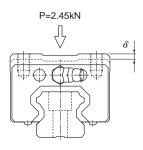



Fig.5 Rigidity Data

Thus, a preload has an effect of up to approximately 2.8 times greater than the applied preload itself. The deflection with a preload under a given load is smaller, and the rigidity is much greater, than that without a preload.

Fig.6 shows how the radial deflection of an LM Guide changes with a preload. As indicated in Fig.6, when an LM Guide block receives a radial load of 2.45 kN, the radial deflection is 9μ m if the radial clearance is zero (normal clearance) or 2μ m if it the radial clearance is - 30μ m (clearance C0), thus increasing the rigidity by 4.5 times.

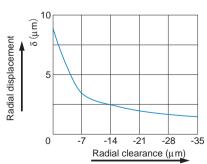


Fig.6 Radial Clearance and Deflection

For selecting a specific clearance, see the section concerning selection of a radial clearance for the corresponding LM system model.

Friction coefficient

Friction coefficient

Since an LM system makes rolling motion via its rolling elements such as balls and rollers between the raceways, its frictional resistance is 1/20 to 1/40 smaller than a sliding guide. Its static friction is especially small and almost the same as dynamic friction, preventing the system from experiencing "stick-slip." Therefore, the system is capable of being fed by the submicron distance.

The frictional resistance of an LM system varies according to the type of the LM system, preload, viscosity resistance of the lubricant and the load applied on the LM system.

In particular, when a moment is given or a preload is applied to increase rigidity, the frictional resistance increases.

Normal friction coefficient by LM systems are indicated in Table5.

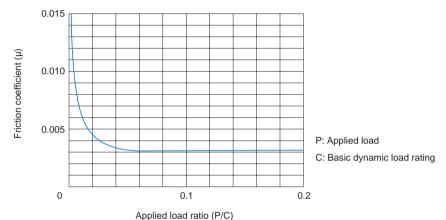


Fig.7 Relationship between Applied Load Ratio and Frictional Resistance

Table5 Frictional Resistances (µ) of LM Systems

Types of LM systems	Representative types	Frictional resistance (μ)
LM Guide	SSR, SHS, SNR/SNS, SRS, RSR, HSR, NR/NRS	0.002 to 0.003
Livi Guide	SRG, SRN	0.001 to 0.002
Ball Spline	LBS, LBF, LT, LF	0.002 to 0.003
Linear Bushing	LM, LMK, LMF, SC	0.001 to 0.003
LM Stroke	MST, ST	0.0006 to 0.0012
LM Roller	LR, LRA	0.005 to 0.01
Flat Roller	FT, FTW	0.001 to 0.0025
Cross-roller Guide/Cross-roller Table	VR, VRU, VRT	0.001 to 0.0025
Linear Ball Slide	LS	0.0006 to 0.0012
Cam Follower/Roller Follower	CF, NAST	0.0015 to 0.0025

Accuracy

The motion accuracy of an LM system is defined in running accuracy for models that are fixed on the flat surface and in runout accuracy for models whose shafts are supported, and accuracy grades are established for each of them.

For details, see the page concerning the corresponding model.

Lubrication

When using an LM system, it is necessary to provide effective lubrication. Using the product without lubrication may increase wear of the rolling elements or shorten the service life.

A lubricant has the following effects.

- 1. Minimizes friction in moving elements to prevent seizure and reduce wear.
- Forms an oil film on the raceway to decrease stress acting on the surface and extend rolling fatigue life.
- 3. Covers the metal surface to prevent rust formation.

To fully bring out an LM system's functions, it is necessary to provide lubrication according to the conditions.

Even with an LM system with seals, the internal lubricant gradually seeps out during operation. Therefore, the system needs to be lubricated at an appropriate interval according to the conditions.

[Types of Lubricants]

LM systems mainly use grease or sliding surface oil for their lubricants.

The requirements that lubricants need to satisfy generally consist of the following.

- (1) High oil film strength
- (2) Low friction
- (3) High wear resistance
- (4) High thermal stability
- (5) Non-corrosive
- (6) Highly anti-corrosive
- (7) Minimal dust/water content
- (8) Consistency of grease must not be altered to a significant extent even after it is repeatedly stirred.

Lubricants that meet these requirements include the following products.

Table6 Lubricants for General Use

Lubricant	Туре	Brand name
Oil	Sliding surface oil or turbine oil ISOVG32 to 68	Super Multi 32 to 68 (Idemitsu) Vactra No.2S (ExxonMobile) DT Oil (ExxonMobile) Tonner Oil (Showa Shell Sekiyu) or equivalent

Point of Selection

Lubrication

Table7 Lubricants Used under Special Environments

Service environment	Lubricant characteristics	Brand name	
High-speed moving parts	Grease with low torque and low heat generation	AFG Grease(THK) see A-968 AFA Grease(THK) see A-959 NBU15(NOK Kluba) Multemp (Kyodo Yushi) or equivalent	
Vacuum	Fluorine based vacuum grease or oil (vapor pressure varies by brand)	Fomblin Grease (Solvay Solexis) Fomblin Oil (Solvay Solexis) Barrierta IEL/V (NOK Kluba) Isoflex(NOK Kluba) Krytox (Dupont)	
Clean room	Grease with very low dust generation	AFE-CA Grease(THK) see A-963 (The above vacuum grease products also applicable) AFF Grease(THK) see A-965	
	Grease that easily forms an oil film and has high fretting resistance	AFC Grease(THK) see A-961	
Environments subject to a spattering coolant such as machine tools	Highly anti-corrosive, refined mineral oil or synthetic oil that forms a strong oil film and is not easily emulsified or washed away by coolant Water-resistant grease	Super Multi 68 (Idomitsu)	

Note1) When using a vacuum grease, be sure that some brands have starting resistances several times greater than ordinary lithium-based greases.

Note2) In an environment subject to a spattering water-soluble coolant, some brands of intermediate viscosity significantly decrease their lubricity or do not properly form an oil film. Check the compatibility between the lubricant and the cool-

Note3) Do not mix greases with different physical properties. Note4) For THK original grease products, see A-958.

Safety Design

LM systems are used in various environments. If using an LM system in a special environment such as vacuum, anti corrosion, high temperature and low temperature, it is necessary to select a material and surface treatment that suit the service environment.

To support use in various special environments, THK offers the following materials and surface treatments for LM systems.

	Description	Model No.	Features/Capabilities
	Martensite stainless steel	HSR SSR RSR SHW RSH SR HR SRS	Anti-rust property ★★★★
Material	Martensite stainless steel	SR-M1 HSR-M1 RSR-M1	High temperature support ★★★★ * up to 150°C
	Austenite stainless steel	HSR-M2	Anti-rust property ★★★★
	АР-НС	THK AP-HC TREATMENT	Low dust generation **** Anti-rust property *** Surface hardness ***
Surface Treatment	AP-C	THK AP-C TREATMENT	Anti-rust property ★★★
	AP-CF	THK AP-CF TREATMENT	Anti-rust property ★★★★

^{*} If you desire a surface treatment other than the above, contact THK.

Safety Design

Determining a Material

In normal service conditions, LM systems use a type of steel that suits LM systems. If using an LM system in a special environment, it is necessary to select a material that suits the service environment.

For locations that require high corrosion resistance, a stainless steel material is used.

Material Specifications

Stainless Steel LM Systems

●Material···martensite stainless steel/austenite stainless steel

For use in environments where corrosion resistance is required, some LM system models can use martensite stainless steel.

If the model number of an LM system contains symbol M, it means that the model is made of stainless steel. See the section concerning the corresponding model.

Model number coding HSR25 M +1200L With QZ Model number Radial LM rail length Symbol for No. of rails used Lubricator clearance (in mm) on the same plane svmbol No. of LM blocks Stainless steel Stainless steel used on the same rail LM block LM rail Type of LM block Dust prevention accessory symbol Accuracy symbol

Surface Treatment

The surfaces of the rails and shafts of LM systems can be treated for anti-corrosive or aesthetic pur-

THK offers THK-AP treatment, which is the optimum surface treatment for LM systems.

The THK-AP treatment consists of the following 3 types.

AP-HC

- ●Surface treatment…industrial-use hard chrome plating
- ●Film hardness…750 Hv or higher

Equivalent to industrial-use hard chrome plating, AP-HC achieves almost the same level of corrosion resistance as martensite stainless steel. In addition, it is highly wear resistant since the film hardness is extremely high, 750 Hv or higher.

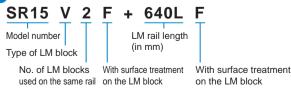
AP-C

●Surface treatment…industrial-use black chrome coating

A type of industrial-use black chrome coating designed to increase corrosion resistance. It achieves lower cost and higher corrosion resistance than martensite stainless steel.

AP-CF

●Surface treatment…industrial-use black chrome coating /special fluorocarbon resin coating



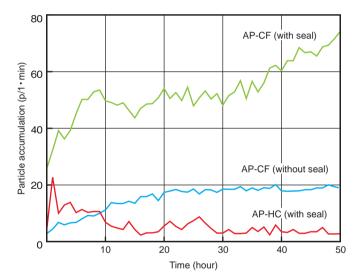
A compound surface treatment that combines black chrome coating and special fluorine resin coating and is suitable for applications requiring high corrosion resistance.

In addition to the above treatments, other surface treatments are sometimes performed on areas other than the raceways, such as alkaline coloring treatment (black oxidizing) and color anodize treatment. However, some of them are not suitable for LM systems. For details, contact THK.

If using an LM system whose raceways are surface treated, set a higher safety factor.

Model number coding

Note) Note that the inside of the mounting hole is not provided with surface treatment.


Point of Selection

Safety Design

[Data on Comparison of Dust Generation with AP Treatment]

[Test conditions]

Item	Description
	SSR20WF+280LF (AP-CF, without seal)
LM Guide model number	SSR20UUF+280LF (AP-CF, with seal)
	SSR20WUUF+280LF (AP-HC, with seal)
Grease used	THK AFE-CA Grease
Grease quantity	1cc (per LM block)
Speed	30m/min(MAX)
Stroke	200mm
Flow rate during measurement	1ℓ/min
Clean room volume	1.7 liter (acrylic casing)
Measuring instrument	Dust counter
Measured particle diameter	0.3μm or more

THK AP-HC treatment provides high surface hardness and has high wear resistance. The high level of wear in the early stage in the graph above is considered to be due to the initial wear of the end seal.

Note) THK AP-HC treatment (equivalent to hard chrome plating) THK AP-CF treatment (equivalent to black chrome plating + fluorine resin coating)

[Data on Comparison of Rust Prevention]

<Salt-water spray resistance cycle test>

Item	Description
Spray liquid	1% NaCl solution
cycles	Spraying for 6 hours, drying for 6 hours
Temperature conditions	35℃ during spraying
remperature conditions	60°C during drying

Sp	ecimen	Austenite	Martensite	THK	THK	THK
	aterial Time	stainless steel	stainless steel	AP-HC	AP-C	THK AP-CF
	fore test					
6	hours					
24	1 hours					
96 hours						
	Anti-rust property	0	0	0	0	0
sult	Wear Resistance	0	0	0	Δ	0
Test Result	Surface hardness	Δ	0	0	\triangle	\triangle
Tes	Adherence	_	_	0	Δ	0
	Appearance	Metallic luster	Metallic luster	Metallic luster	Black luster	Black luster

Point of Selection

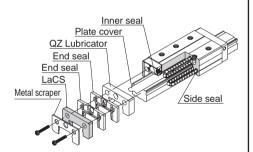
Safety Design

Contamination Protection

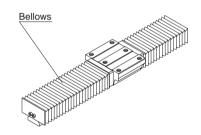
Contamination protection is the most important factor in using an LM system. Entrance of dust or other foreign material into the LM system will cause abnormal wear or shorten the service life. Therefore, when entrance of dust or other foreign material is predicted, it is necessary to select a sealing device or contamination protection device that meets the service environment conditions.

(1) Dedicated seals for LM systems

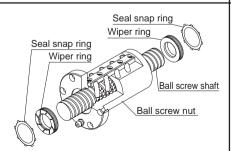
For LM systems, seals made of special synthetic rubber with high wear resistance (e.g., Laminated Contact Scraper LaCS) and a wiper ring are available as contamination protection seals. For locations with adverse service environments, dedicated bellows and dedicated covers are available for some models.

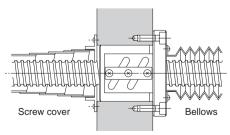

For details and symbols of these seals, see the section concerning options (contamination protection) for the corresponding model.

To provide contamination protection also for Ball Screws in service environments subject to cutting chips and cutting fluids, it is advisable to use a telescopic cover that covers the whole system and a large-size bellows.


(2) Dedicated bellows

For LM Guides, standardized bellows are available.


THK manufactures dedicated bellows also for other LM systems such as Ball Screws and Ball Splines. Contact THK for details.


Contamination Protection Seal for the LM Guide

Dedicated Bellows for the LM Guide

Wiper Ring for the Ball Screw

Contamination Protection Cover for the Ball Screw

LM Guide®

冗岩层 General Catalog

LM Guide

行法 General Catalog

A Technical Descriptions of the Products

Features and TypesA-28	Caged Ball LM Guides	A-13
Features of the LM Guide A-28	Model SHS	· A-13
Large permissible load and high rigidity A-29	Model SSR	A-14
High Precision of Motion	Model SNR/SNS	A-14
Accuracy Averaging Effect by Absorbing Mounting Surface Error A-34	Model SHW	A-15
Easy Maintenance A-36	Model SRS	A-16
• Improved productivity of the machine A-36	Model SCR	A-16
Substantial Energy Savings A-37		
Low Total Cost	LM Guide	A-17
Ideal Four Raceway, Circular-Arc Groove,	Model HSR	A-17
Two-Point Contact Structure	Model SR	A-17
 Superb Error-Absorbing Capability with the DF Design. A-43 	Model NR/NRS	· A-18
Classification Table of the LM Guides A-44	Model HRW	- A-19
	Models RSR/RSR-W	A-20
Point of Selection A-46	Model RSR-Z	A-20
Flowchart for Selecting an LM Guide A-46	Model RSH	A-21
Selecting a Type	Model RSH-Z	A-21
Types of LM Guides A-48	Model HR	A-22
Setting Conditions A-58	Model GSR	A-23
Conditions of the LM Guide	Model GSR-R	A-23
Calculating the Applied Load	Model CSR	A-24
 Load rating of the LM Guide in all directions A-74 	Model MX	A-24
Calculating an Applied Load	Model JR	A-25
Calculating the Equivalent Load A-94	Model HCR	A-25
Calculating the Static Safety Factor A-95	Model HMG	A-26
Calculating the Average Load A-96	Model NSR-TBC	A-26
Example of Calculating the Average Load (1)	Model HSR-M1	A-27
- with Horizontal Mount and Acceleration/Deceleration Considered. A-98	Model SR-M1	A-28
Example of Calculating the Average Load (2)	Model RSR-M1	A-28
- When the Rails are Movable A-99	Model HSR-M2	A-29
Calculating the Nominal Life A-100		
Nominal Life Equation for an LM Guide Using Balls . A-100	Structure and Features of the Caged Roller LM Guide	A-29
Rated Life Equation for an LM Guide Using Rollers . A-100	Advantages of the Caged Roller Technology .	A-29
• Example of Calculating the Nominal Life (1)		
- with Horizontal Mount and High-speed Acceleration A-103	Caged Roller LM Guide	A-30
Example of Calculating the Nominal Life (2)	Model SRG	A-30
- with Vertical MountA-108	Model SRN	- A-30
Predicting the Rigidity A-111	Model SRW	A-31
Selecting a Radial Clearance (Preload) A-111		
Service Life with a Preload Considered A-112	Point of Design	A-31
• Rigidity A-112	Designing the Guide System	- A-31
Radial Clearance Standard for Each Model . A-113	 Examples of Arrangements of the Guide System. 	· A-31
Determining the AccuracyA-116	Method for Securing an LM Guide to Meet the Conditions	A-32
Accuracy Standards A-116	Designing a Mounting Surface	A-32
Guidelines for Accuracy Grades by Machine Type . A-117	Designing a Mounting Surface	- A-32
Accuracy Standard for Each Model A-118	Shoulder Height of the Mounting Base and the Corner Radius .	- A-32
	Permissible Error of the Mounting Surface	· A-33
Feature of Each Model A-129	Marking on the Master LM Guide and Combined Use	A-33
Structure and Features of the Caged Ball LM Guide A-130		
Advantages of the Dell Cose Technology		

B Product Specifications (Separate)

Mounting Procedure and Maintenance	A-340
Mounting the LM Guide	A-340
Mounting Procedure	A-340
Methods for Measuring Accuracy after Installation	A-350
Recommended Tightening Torque for LM Rails.	A-350
Options	A-351
Contamination Protection	A-352
Seal and Metal Scraper	A-352
Laminated Contact Scraper LaCS	A-353
Light-Resistance Contact Seal LiCS	A-355
Dedicated bellows	A-356
Dedicated LM Cover	A-356
• Cap C	Δ-357
Plate Cover SV Steel Tape SP	A-358
Lubrication	A-361
QZ Lubricator	A-361
Lubrication Adapter	A-364
Removing/mounting Jig	A-365
End Piece EP	A-366
List of Parts Symbols	A-368
Table of Supported Options by Models	A-370
Dimensions of Each Model with an Option Attached	
Seal resistance value	A-372
Resistance of LaCS	A-375
Maximum Seal Resistance of LiCS	A-376
Greasing Hole	A-377
Precautions on Use	A-381
Precautions on Using the LM Guide	A-381
Precautions on Using Options for the LM Guide	A-382
QZ Lubricator	A-382
Laminated Contact Scraper LaCS, Side Scraper	A-382
• Light sliding resistance contact seal LiCS	A-383

Dimensional Drawing, Dimensional Table	
Caged Ball LM Guide	
Model SHS	B-5
Model SSR	B-15
Model SNR/SN	B-25
Model SHW	B-43
Model SRS	B-49
Model SCR	B-55
LM Guide	
Model HSR	B-61
Model SR	B-85
Model NR/NRS	B-93
Model HRW	B-107
Models RSR/RSR-W	B-113
Model RSR-Z	B-121
Model RSH	B-127
Model RSH-Z	B-131
Model HR	B-137
Model GSR	B-145
Model GSR-R	B-149
Model CSR	B-153
Model MX	B-159
Model JR	B-163
Model HCR	B-167
Model HMG	B-171
Model NSR-TBC	B-177
Model HSR-M1	B-181
Model SR-M1	B-191
Model RSR-M1	B-197
Model HSR-M2	B-203
Caged Roller LM Guide	
Model SRG	B-207
Model SRN	B-213
Model SRW	B-219
Options	B-223
• The LM Block Dimension (Dimension L) with LaCS and Seals Attached.	B-224
Incremental dimension with grease nipple (when LaCS is attached)	
LM Block Dimension (Dimension L) with LiCS Attached	B-233
• Incremental dimension with grease nipple (when LiCS is attached)	B-234
Bellows	B-235
• LM cover	B-248
• Cap C	B-250
• LM Block Dimension (Dimension L) with QZ Attached	B-251
• Lubrication Adapter	B-254
• End Piece EP	
Greasing Hole Reak and Binion	B-256
Rack and Pinion	B-259

^{*} Please see the separate "B Product Specifications".

Features and Types

LM Guide

Features of the LM Guide

Functions Required for Linear Guide Surface

Large permissible load

Highly rigid in all directions

High positioning repeatability

Running accuracy can be obtained easily

High accuracy can be maintained over a long period

Smooth motion with no clearance
Superbly high speed
Easy maintenance
Can be used in various environments

Features of the LM Guide

Large permissible load and high rigidity

Accuracy averaging effect by absorbing mounting surface error

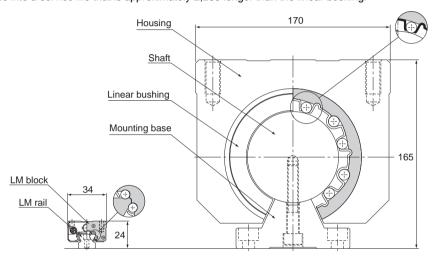
Ideal four raceway, circular-arc groove, two point contact structure

Superb error-absorbing capability with the DF design

Low friction coefficient

Wide array of options (QZ lubricator, Laminated contact scraper LaCS, etc.)

As a result, the following features are achieved.


Easy maintenance
Improved productivity of the machine
Substantial energy savings
Low total cost
Higher accuracy of the machine
Higher efficiency in machine design

Large Permissible Load and High Rigidity

[Large Permissible Load]

The LM Guide has raceway grooves with a radius almost equal to the ball radius, which is significantly different from the linear bushing. As shown in Fig.1, which compares size between the LM Guide and the linear bushing with similar basic dynamic load ratings, the LM Guide is much smaller than the linear bushing, indicating that the LM Guide allows a significantly compact design.

The reason for this space saving is the greater difference in permissible load between the R-groove contact structure and the surface contact structure. The R-groove contact structure (radius: 52% of the ball radius) can bear a load per ball 13 times greater than the surface contact structure. Since service life is proportional to the cube of the permissible load, this increased ball-bearing load translates into a service life that is approximately 2,200 longer than the linear bushing.

LM Guide model SSR15XW Basic dynamic load rating: 14.7 kN

Linear Bushing model LM80 OP Basic dynamic load rating: 7.35 kN

Fig.1 Comparison between the LM Guide and the Linear Bushing

Table1 Load Capacity per Ball (P and P₁) Permissible contact surface pressure: 4,200 MPa

	R-groove (P)	Flat surface (P ₁)	P/P₁
φ 3.175 (1/8´´)	0.90 kN	0.07 kN	13
φ 4.763 (3/16´´)	2.03 kN	0.16 kN	13
φ 6.350 (1/4´´)	3.61 kN	0.28 kN	13
φ 7.938 (5/16´´)	5.64 kN	0.44 kN	13
φ 11.906 (15/32´´)	12.68 kN	0.98 kN	13

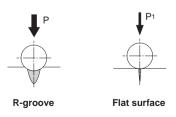


Fig.2 Load Capacity per Ball

www.technobearing.ru

[High Rigidity]

The LM Guide is capable of bearing vertical and horizontal loads. Additionally, due to the circular-arc groove design, it is capable of carrying a preload as necessary to increase its rigidity.

When compared with a feed screw shaft system and a spindle in rigidity, the guide surface using an LM Guide has higher rigidity.

Example of comparing static rigidity between the LM Guide, a feed screw shaft system and a spindle

(vertical machining center with the main shaft motor of 7.5 kW)

Table2 Comparison of Static Rigidity

Unit: N/μm

[Components	3]
-------------	----

LM Guide: SNR45LC/C0

(C0 clearance: preload = 8.05kN)

Ball Screw: BNFN4010-5/G0

(G0 clearance: preload = 2.64kN)

Spindle: general-purpose cutting spindle

Components	X-axis direction	Y-axis direction	Z-axis direction
LM Guide	1	2110	8700 (radial) 6730 (reverse radial)
Ball screw	330	_	-
Spindle	250	250	280

Note) The rigidity of the feed screw shaft system includes rigidity of the shaft end support bearing.

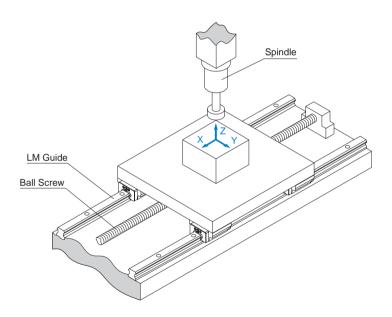
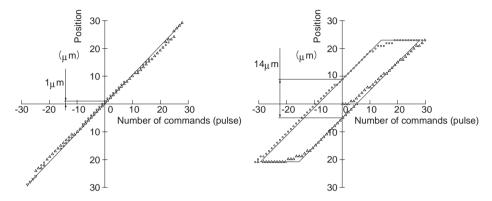



Fig.3

High Precision of Motion

[Small lost motion]

The LM Guide is provided with an ideal rolling mechanism. Therefore, the difference between dynamic and static friction is minimal and lost motion hardly occurs.

LM Guide model HSR45

Square slide + Turcite

(Measurements are taken with the single-axis table loaded with a 500-kg weight)

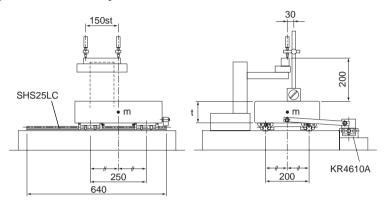
Fig.4 Comparison of Lost Motion between the LM Guide and a Slide Guide

Table3 Lost Motion Comparison

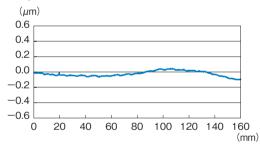
Unit: μ m

		Test method				
Туре	Clearance	A	Based on minimum			
		10mm/min	500mm/min	4000mm/min	unit feeding	
LM Guide	C1 clearance (see table below)	2.3	5.3	3.9	0	
(HSR45)	C0 clearance (see table below)	3.6	4.4	3.1	1	
Square slide turcite	0.02mm	10.7	15	14.1	14	
turcite	0.005mm	8.7	13.1	12.1	13	

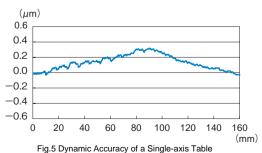
Radial clearance of the LM Guide


Unit: μ m

Symbol	C1	C0
Radial clearance	-25 to -10	-40 to -25


[High running accuracy]

Use of the LM Guide allows you to achieve high running accuracy.


[Measurement method]

Pitching accuracy

Yawing accuracy

Features of the LM Guide

[High accuracy maintained over a long period]

As the LM Guide employs an ideal rolling mechanism, wear is negligible and high precision is maintained for long periods of time. As shown in Fig.6, when the LM Guide operates under both a preload and a normal load, more than 90% of the preload remains even after running 2,000 km.

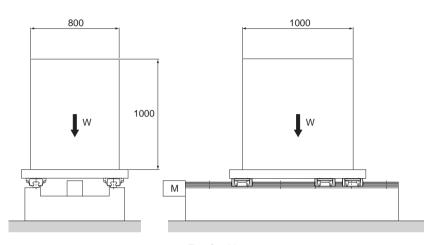


Fig.6 Condition

[Conditions]

Mass

Model No. : HSR65LA3SSC0 + 2565LP-II

Radial clearance

: C0 (preload: 15.7 kN)

Stroke : 1,050mm

Speed : 15 m/min (stops 5 sec at both ends) Acceleration/decelelation time in rapid motion

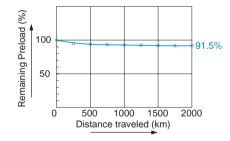
: 300 ms (acceleration: $\alpha = 0.833$ m/s²)

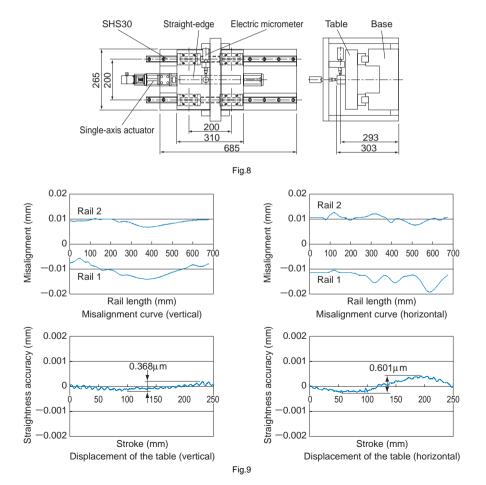
: 6000ka

Drive : Ball Screws

Lubrication: Lithium soap-based grease No. 2

(greased every 100 km)




Fig.7 Distance Traveled and Remaining Preload

Accuracy Averaging Effect by Absorbing Mounting Surface Error

The LM Guide contains highly spherical balls and has a constrained structure with no clearance. In addition, it uses LM rails in parallel on multiple axes to form a guide system with multiple-axis configuration. Thus, the LM Guide is capable of absorbing misalignment in straightness, flatness or parallelism that would occur in the machining of the base to which the LM Guide is to be mounted or in the installation of the LM Guide by averaging these errors.

The magnitude of the averaging effect varies according to the length or size of the misalignment, the preload applied on the LM Guide and the number of axes in the multiple-axis configuration. When misalignment is given to one of the LM rails of the table as shown in Fig.8, the magnitude of misalignment and the actual dynamic accuracy of the table (straightness in the horizontal direction) are as shown in Fig.9.

By applying such characteristics obtained with the averaging effect, you can easily establish a guide system with high precision of motion.

Features and Types

Features of the LM Guide

Even on a roughly milled mounting surface, the LM Guide drastically increases running accuracy of the top face of the table.

[Example of Installation]

When comparing the mounting surface accuracy (a) and the table running accuracy (b), the results are:

Vertical 92.5
$$\mu$$
m \rightarrow 15 μ m = 1/6
Horizontal 28 μ m \rightarrow 4 μ m = 1/7

Table4 Actual Measurement of Mounting-Surface Accuracy
Unit: μm

Direction	Mounting surface		Straightness	Average (a)
	ıtal	Α	80	
Vertical	Horizonta	В	105	92.5
	ice	С	40	
Bottom surface	Side surface	D	16	28

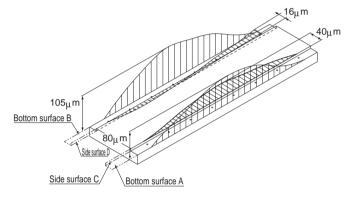


Fig.10 Surface Accuracy of the LM Guide Mounting Base (Milled Surface Only)

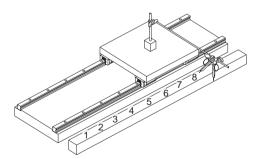


Fig.11 Running Accuracy After the LM Guide Is Mounted

Table5 Actual Measurement of Running Accuracy on the Table (Based on Measurement in Fig.10 and Fig.11)

Unit: µm

Direction		Measurement point							
Direction	1	2	3	4	5	6	7	8	Straightness (b)
Vertical	0	+2	+8	+13	+15	+9	+5	0	15
Horizontal	0	+1	+2	+3	+2	+2	-1	0	4

Easy Maintenance

Unlike with sliding guides, the LM Guide does not incur abnormal wear. As a result, sliding surfaces do not need to be reconditioned, and precision needs not be altered. Regarding lubrication, sliding guides require forced circulation of a large amount of lubricant so as to maintain an oil film on the sliding surfaces, whereas the LM Guide only needs periodical replenishing of a small amount of grease or lubricant. Maintenance is that simple. This also helps keep the work environment clean.

Improved Productivity of the Machine

Since the LM Guide is superb in high speed, productivity of the machine is improved.

Table6 Examples of Using the LM Guide in High-speed Applications

Machine using the LM Guide	Place where the LM Guide is used	Speed (m/s)	Model No.
Durability test machine	X axis	5.0	SSR25XW
Diek up rehet	X axis	2.0	SSR25XW
Pick-up robot	Z axis	3.0	SSR15XW
Injection molding machine	Automatic unloading unit	2.2	HSR30LR
Glass cutter	Cutter sliding unit	3.7	HSR25B
Inspection equipment	Work transfer unit	5.0	HRW27CA
Conveyance robot	Work transport unit	4.2	HSR25R
XY table	X-Y axis	2.3	RSR15WV

8 (800) 700-72-07 (бесплатно) www.technobearing.ru

Features and Types

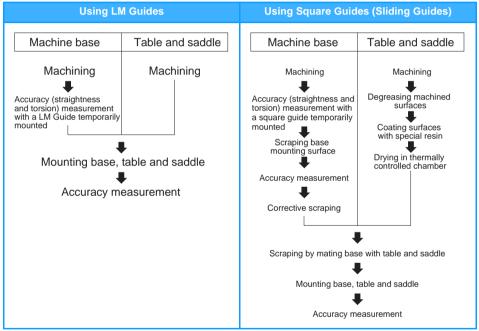
Features of the LM Guide

Substantial Energy Savings

As shown in Table7, the LM Guide has a substantial energy saving effect.

Table7 Comparative Data on Sliding and Rolling Characteristics

Machine Specifications				
Type of machine	Single-axis surface grinding machine (sliding guide)	Three-axis surface grinding machine (rolling guide)		
Overall length × overall width	13m×3.2m	12.6m×2.6m		
Total mass	17000kg	16000kg		
Table mass	5000kg	5000kg		
Grinding area	0.7m×5m	0.7m×5m		
Table guide	Rolling through V-V guide	Rolling through LM Guide installation		
No. of grinding stone axes	Single axis (5.5 kW)	Three axes (5.5 kW + 3.7 kW x 2) Grinding capacity: 3 times greater		


Table Drive Specifications				
Motor used	38.05kW	3.7kW	10.3	
Drive hydraulic pressure	Bore diameter ø160 × 1.2MPa	Bore diameter <i>ϕ</i> 65×0.7MPa	_	
Thrust	23600N	2270N	10.4	
Electric Power consumption	38kWH	3.7kWH	10.3	
Drive hydraulic pressure oil consumption	400l/year	250l/year	1.6	
Lubricant consumption	60 ℓ/year (oil)	3.6 ℓ/year (grease)	16.7	

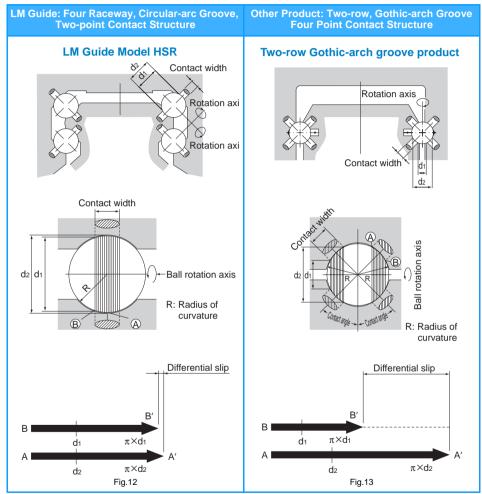
Low Total Cost

Compared with a sliding guide, the LM Guide is easier to assemble and does not require highly skilled technicians to perform the adjustment work. Thus, the assembly man-hours for the LM Guide are reduced, and machines and systems incorporating the LM Guide can be produced at lower cost. The figure below shows an example of difference in the procedure of assembling a machining center between using siding guides and using LM Guides.

Normally, with a sliding guide, the surface on which the guide is installed must be given a very smooth finish by grinding. However, the LM Guide can offer high precision even if the surface is milled or planed. Using the LM Guide thus cuts down on machining man-hours and lowers machining costs as a whole.

[Assembly Procedure for a Machining Center]

When extremely high precision is not required (e.g., running accuracy), the LM Guide can be attached to the steel plate even if the black scale on it is not removed.


Features and Types

Features of the LM Guide

Ideal Four Raceway, Circular-Arc Groove, Two-Point Contact Structure

The LM Guide has a self-adjusting capability that competitors' products do not have. This feature is achieved with an ideal four raceway, circular-arc groove, two-point contact structure.

[Comparison of Characteristics between the LM Guide and Similar Products]

As indicated in Fig.12 and Fig.13, when the ball rotates one revolution, the ball slips by the difference between the circumference of the diameter of inner surface (πd_1) and that of the outer contact diameter (πd_2) . (This slip is called differential slip.) If the difference is large, the ball rotates while slipping, the friction coefficient increases more than 10 times and the friction resistance steeply increases.

Two-Row, Gothic-Arch Groove, Four Point Contact Structure

Smooth Motion

The difference between d₁ and d₂ in the contact area is large as shown in Fig.12 and Fig.13 on A-39. Therefore, if any of the following occurs, the ball will generate differential slip, causing friction almost as large as sliding resistance and shortening the service as a result of abnormal friction.

- (1) A preload is applied.
- (2) A lateral load is applied.
- (3) The mounting parallelism between the two axes is poor.

Accuracy and Rigidity of the Mounting Surface

In the ideal two-point contact structure, four rows of circular arc grooves are given appropriate contact angles. With this structure, a light distortion of the mounting surface would be absorbed within the LM block due to elastic deformation of the balls and moving of the contact points to allow unforced, smooth motion. This eliminates the need for a robust mounting base with high rigidity and accuracy for machinery such as a conveyance system.

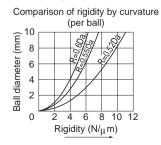
With the Gothic-arch groove product, each ball contacts the groove at four points, preventing itself from being elastically deformed and the contact points from moving (i.e., no self-adjusting capability). Therefore, even a slight distortion of the mounting surface or an accuracy error of the rail bed cannot be absorbed and smooth motion cannot be achieved. Accordingly, it is necessary to machine a highly rigid mounting base with high precision and mount a high precision rail.

Rigidity

With the two-point contact, even if a relatively large preload is applied, the rolling resistance does not abnormally increase and high rigidity is obtained.

Since differential slip occurs due to the four-point contact, a sufficient preload cannot be applied and high rigidity cannot be obtained.

Load Rating


Since the curvature radius of the ball raceway is 51 to 52% of the ball diameter, a large rated load can be obtained.

Since the curvature radius of the gothic arch groove has to be 55 to 60% of the ball diameter, the rated load is reduced to approx. 50% of that of the circular arc groove.

Difference in Rigidity

As shown in Fig.14, the rigidity widely varies according to the difference in curvature radius or difference in preload.

Curvature radius and rigidity

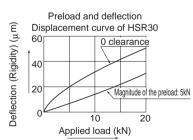


Fig.14

Difference in Service Life

Since the load rating of the gothic arch groove is reduced to approx. 50% of that of the circular arc groove, the service life also decreases to 87.5%.

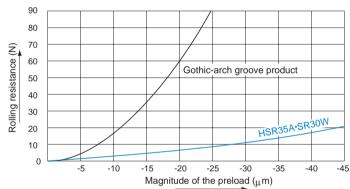
[Accuracy Error of the Mounting Surface and Test Data on Rolling Resistance]

The difference between the contact structures translates into a rolling resistance.

In the gothic arch groove contact structure, each ball contacts at four points and differential slip or spinning occurs if a preload is applied to increase rigidity or an error in the mounting precision is large. This sharply increases the rolling resistance and causes abnormal wear in an early stage.

The following are test data obtained by comparing an LM Guide having the four raceway, circular-arc groove two-point contact structure and a product having the two-row, Gothic-arch, four-point contact structure.

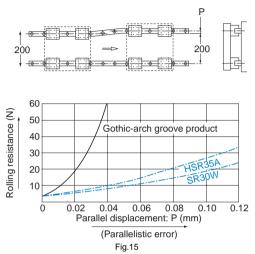
[Sample]


- (1) LM Guide SR30W (self-adjusting type) 2 sets HSR35A (four-way equal-load type) 2 sets
- (2) Two-row Gothic-arch groove product
 Type with dimensions similar to HSR30 2 sets

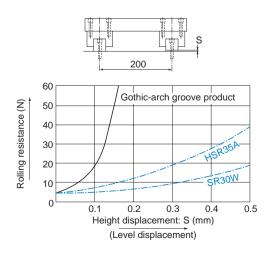
[Conditions]

Radial clearance: ±0µm Without seal Without lubrication Load: table mass of 30 kg

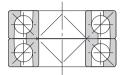
Data 1: Preload and rolling resistance


When a preload is applied, the rolling resistance of the Gothic-arch groove product steeply increases and differential slip occurs. Even under a preload, the rolling resistance of the LM Guide does not increase.

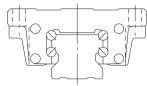
Data 2: Error in parallelism between two axes and rolling resistance


As shown in the Fig.15, part of the rails mounted in parallel is parallelly displaced and the rolling resistance at that point is measured.

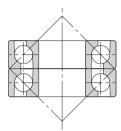
With the Gothic-arch groove product, the rolling resistance is 34 N when the parallelistic error is 0.03 mm and 62 N when the error is 0.04 mm. These resistances are equivalent to the slip friction coefficients, indicating that the balls are in sliding contact with the groove.

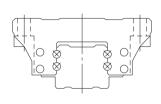

Data 3: Difference between the levels of the right and left rails and rolling resistance

The bottom of either rail is displaced by distance S so that there is a level difference between the two axes, and then rolling resistance is measured. If there is a level difference between the right and left rails, a moment acts on the LM block, and in the case of the Gothic-arch groove, spinning occurs. Even if the level difference between the two rails is as great as 0.3/200 mm, the LM Guide absorbs the error. This indicates that the LM Guide can operate normally even when such errors are present.



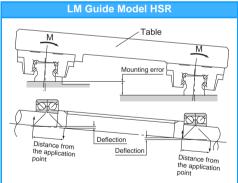
Superb Error-Absorbing Capability with the DF Design

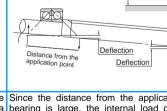

Since the LM Guide has a contact structure similar to the front-to-front mount of angular ball bearings, it has superb self-adjusting capability.


Angular Ball Bearings Mounted Front-to-front (DF type)

DF Type Four-row Angular Contact (LM Guide)

Angular Ball Bearings Mounted Back-to-back (DB type)

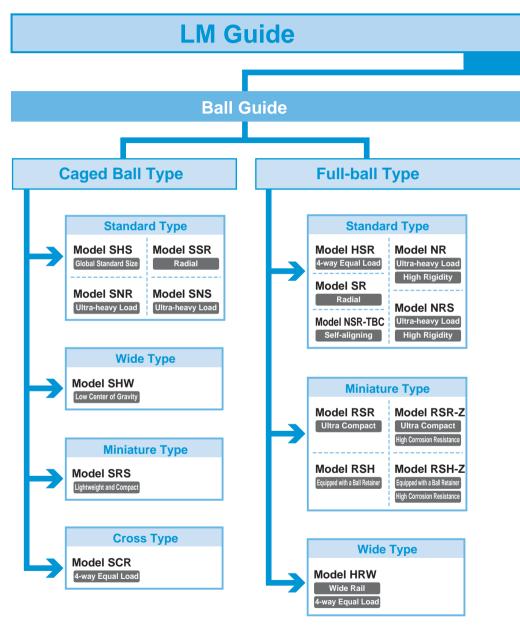

Four-row Gothic-arch Contact


Similar Product of a Competitor

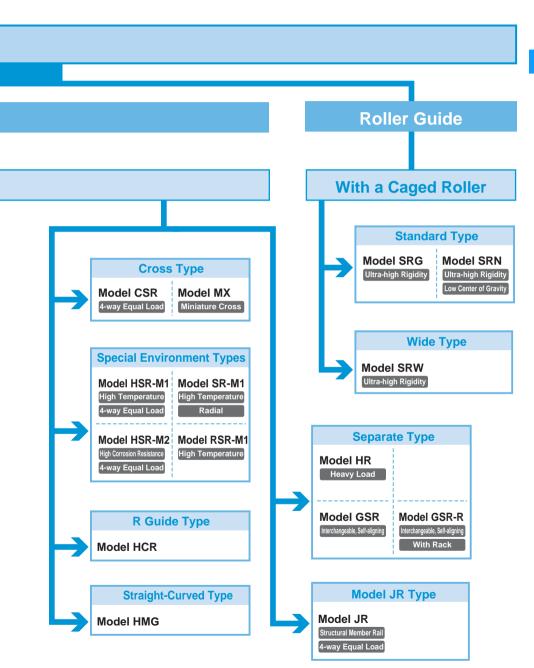
Mounting error

Block

An LM ball guide mounted on a plane receives a moment (M) due to an error in flatness or in level or a deflection of the table. Therefore, it is essential for the guide to have self-adjusting capability.

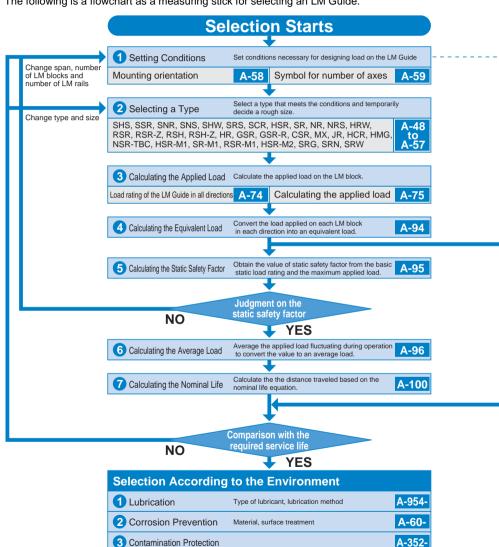

Since the distance from the application point of the bearing is small, the internal load generated from a mounting error is small and the self-adjusting capability is large.

Since the distance from the application point of the bearing is large, the internal load generated from a mounting error is large and the self-adjusting capability is small.


With an LM ball guide having angular ball bearings mounted back-to-back, if there is an error in flatness or a deflection in the table, the internal load applied to the block is approx. 6 times greater than that of the front-to-front mount structure and the service life is much shorter. In addition, the fluctuation in sliding resistance is greater.

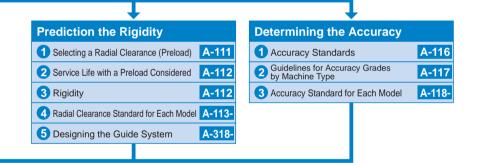
Distance from the application point

Classification Table of the LM Guides


Classification Table of the LM Guides

Flowchart for Selecting an LM Guide

[Steps for Selecting an LM Guide]


The following is a flowchart as a measuring stick for selecting an LM Guide.

Selection Completed

Flowchart for Selecting an LM Guide

- Space in the guide section
- Dimensions (span, number of LM blocks, number of LM rails, thrust)
- Installation direction (horizontal, vertical, slant mount, wall mount, suspended)
- · Magnitude, direction and position of the working load
- Operating frequency (duty cycle)
- ·Speed (acceleration)
- ·Stroke length
- · Required service life
- · Precision of motion
- Environment
- In a special environment (vacuum, clean room, high temperature, environment exposed to contaminated environment, etc.), it is necessary to take into account material, surface treatment, lubrication and contamination protection.

Selecting a Type

Types of LM Guides

THK offers a wide array of types and dimensions with LM Guides as standard so that you can select the optimal product for any application. With the unit structure of each model, you can easily obtain high running accuracy with no clearance simply by mounting the product on a plane surface with bolts. We have a proven track record and know-how in extensive applications with LM Guides.

				Specifi-	Load	Basic load rating (kN)	
	Classification	7	Гуре	cation	capacity	Basic	Basic
				Table*	diagram	dynamic load rating	static load rating
		Π ()	SSR-XW	▶B-16		14.7 to 64.6	16.5 to 71.6
	Caged Ball LM Guide	UĘ	SSR-XV	▶B-18		9.1 to 21.7	9.7 to 22.5
			SSR-XTB	▶B-20		14.7 to 31.5	16.5 to 36.4
			Model SR-W	▶B-86		9.51 to 411	19.3 to 537
] (A	SR-M1W	▶B-192	1	9.51 to 41.7	19.3 to 77.2
		لتجتالا	SR-V	▶B-86	→#*	5.39 to 23.8	11.1 to 44.1
	Full-ball		SR-M1V	▶B-192	†	5.39 to 23.8	11.1 to 44.1
	LM Guides	N	SR-TB	▶B-88		9.51 to 89.1	19.3 to 157
			SR-M1TB	▶B-194		9.51 to 41.7	19.3 to 77.2
			SR-SB	▶B-88		5.39 to 23.8	11.1 to 44.1
Radial type			SR- M1SB	▶B-194		5.39 to 23.8	11.1 to 44.1
Radia			SNR-C	▶B-30		48 to 260	79 to 409
			SNR-LC	▶B-30		57 to 550	101 to 887
			SNR-R	▶B-26	_	48 to 260	79 to 409
	Caged Ball LM Guide -		SNR-LR	▶B-26	•	57 to 550	101 to 887
	ultra-heavy load, high rigidity types	V _i	SNR-CH	▶B-38	→ [_] ← ↑	90 to 177	144 to 292
		W-D	SNR-LCH	▶B-38	-	108 to 214	188 to 383
			SNR-RH	▶B-34		90 to 177	144 to 292
			SNR-LRH	▶B-34		108 to 214	188 to 383
	Full-ball	7	NR-A	▶B-98	1	33 to 479	84.6 to 1040
	LM Guide - ultra-heavy load,		NR-LA	▶B-98	→ 🖰 ←	44 to 599	113 to 1300
	high rigidity types	N	NR-B	▶B-102	1	33 to 479	84.6 to 1040

^{*}For specification tables for each model, please see the separate "B Product Specifications".

Selecting a Type

dammy

External dime	ensions (mm)		
Height	Width	Features	Major application
24 to 48	34 to 70	Long service life, long-term mainte- nance-free operation Thin, compact design, large radial load capacity	Surface grinder table Tool grinder table
24 to 33	34 to 48	Low dust generation, low noise, acceptable running sound Superbly high speed Superbly high speed mounting error	Electric discharge machinePrinted circuit board drilling
24 to 33	52 to 73	Smooth motion in all mounting orientations Stainless steel type also available as standard	machine Chip mounter High-speed transfer equip-
24 to 135	34 to 250		ment Traveling unit of robots
24 to 48	34 to 70		 Machining center NC lathe Five axis milling machine
24 to 48	34 to 70		Conveyance systemMold guide of pressing
24 to 48	34 to 70	Thin, compact design, large radial load capacity Superb in planar running accuracy Superb capability of absorbing mounting error	machines Inspection equipment Testing machine Food-related machine Medical equipment 3D measuring instrument Packaging machine Injection molding machine
24 to 68	52 to 140	Stainless steel type also available as standard Type M1, achieving max service temperature of 150°C, also available	
24 to 48	52 to 100		
24 to 48	52 to 100		Woodworking machine Ultra precision table Semiconductor/liquid crystal
24 to 48	52 to 100		manufacturing equipment
31 to 75	72 to 170	Long service life, long-term maintenance-free operation Low dust generation, low noise, acceptable running sound	
31 to 90	72 to 215	Superbly high speed Smooth motion in all mounting orientations Ultra-heavy load capacity optimal for machine tools	
31 to 75	50 to 126	Thin, compact design, large radial load capacity High vibration resistance and impact resistance due to improved damping	Machining center
31 to 90	50 to 156	characteristics Superb in planar running accuracy	NC lathe Grinding machine
48 to 70	100 to 140	Long service life, long-term mainte- Large radial load capacity nance-free operation High vibration resistance and	 Five axis milling machine Jig borer Drilling machine
48 to 70	100 to 140	Low dust generation, low noise, acceptable running sound damping characteristics Superbly high speed Superb in planar running accuracy	 Drilling machine NC milling machine Horizontal milling machine
55 to 80	70 to 100	Smooth motion in all mounting ori- entations Has dimensions almost the same as that of the full-ball type LM	Mold processing machineGraphite working machine
55 to 80	70 to 100	Ultra-heavy load capacity optimal for machine tools Guide model HSR, which is practically a global standard size	 Electric discharge machine Wire-cut electric discharge machine
31 to 105	72 to 260	Ultra-heavy load capacity optimal for machine tools High vibration resistance and impact resistance due to improved damping	
31 to 105	72 to 260	High vibration resistance and impact resistance due to improved damping characteristics Thin, compact design, large radial load capacity	
31 to 105	72 to 260	Superb in planar running accuracy	

				0	Load	Basic load rating (kN)		
	Classification	٦	Гуре	Specifica- tion Table*	capacity diagram	Basic dynamic	Basic static	
					ulayram	load rating	load rating	
фе	Full-ball	N	NR-LB	▶B-102	1	44 to 599	113 to 1300	
Radial type	LM Guide - ultra-heavy load,	- C	NR-R	▶B-94	→ 🗀 ←	33 to 479	84.6 to 1040	
Ra	high rigidity types		NR-LR	▶B-94	1	44 to 599	113 to 1300	
		V	SRG-A, C	▶B-208		11.3 to 131	25.8 to 266	
		W.	SRG-LA, LC	▶B-208		26.7 to 278	63.8 to 599	
		7 (1-1)	SRG-R, V	▶B-210		11.3 to 131	25.8 to 266	
	Caged Roller	UE	SRG-LR, LV	▶B-210	T	26.7 to 278	63.8 to 599	
	LM Guide - super ultra-heavy- load, high rigidity	NE	SRN-C	▶B-214	→ 🖰 ←	59.1 to 131	119 to 266	
	types		SRN-LC	▶B-214	1	76 to 278	165 to 599	
			SRN-R	▶B-216		59.1 to 131	119 to 266	
			SRN-LR	▶B-216		76 to 278	165 to 599	
			SRW-LR	▶B-220		115 to 278	256 to 599	
be		-	SNS-C	▶B-32		37 to 199	61 to 315	
oad ty			SNS-LC	▶B-32		44 to 422	78 to 679	
4-way equal load type			SNS-R	▶B-28		37 to 199	61 to 315	
way e	Caged Ball LM Guide -		SNS-LR	▶B-28		44 to 422	78 to 679	
4	ultra-heavy load, high rigidity types	V (_	SNS-CH	▶B-40		69 to 136	110 to 225	
		Wren	SNS-LCH	▶B-40	_	83 to 164	144 to 295	
		1 1	SNS-RH	▶B-36	J	69 to 136	110 to 225	
		Viai	SNS-LRH	▶B-36	1	83 to 164	144 to 295	
			NRS-A	▶B-100		25.9 to 376	59.8 to 737	
		A Lar	NRS-LA	▶B-100		34.5 to 470	79.7 to 920	
	Full-ball LM Guide -		NRS-B	▶B-104		25.9 to 376	59.8 to 737	
	ultra-heavy load, high rigidity types	" (J-127.	NRS-LB	▶B-104		34.5 to 470	79.7 to 920	
		7 (NRS-R	▶B-96		25.9 to 376	59.8 to 737	
		1 N r C	NRS-LR	▶B-96		34.5 to 470	79.7 to 920	

^{*}For specification tables for each model, please see the separate "B Product Specifications".

External dime	ensions (mm)				
Height	Width	Features		Major application	
31 to 105	72 to 260	Ultra-heavy load capacity optimal for machine tools			
31 to 105	50 to 200	 High vibration resistance and impact resistance due to improved damping characteristics. Thin, compact design, large radial load capacity 			
31 to 105	50 to 200	Superb in planar running accuracy			
24 to 70	47 to 140				
30 to 90	63 to 170	Long service life, long-term maintenance-free operation Low noise, acceptable running sound Superbly high speed			
24 to 80	34 to 100	Smooth motion due to prevention of rollers from skewing Ultra-heavy load capacity optimal for machine tools			
30 to 90	44 to 126				
44 to 63	100 to 140				
44 to 75	100 to 170	Long service life, long-term maintenance-free operation			
44 to 63	70 to 100	Low noise, acceptable running sound Superbly high speed Smooth motion due to prevention of rollers from skewing			
44 to 75	70 to 126	Ultra-heavy load capacity optimal for machine tools Low center of gravity, ultra-high rigidity		Tive axis mining machine	
70 to 100	135 to 200		•		
31 to 75	72 to 170	Long service life, long-term maintenance-free operation		Jig borerDrilling machineNC milling machine	
31 to 90	72 to 215	Low dust generation, low noise, acceptable running sound Superbly high speed Smooth motion in all mounting orientations	Horizontal milling machine Mold processing machine Graphite working machine Electric discharge machine Wire-cut electric discharge		
31 to 75	50 to 126	Ultra-heavy load capacity optimal for machine tools Thin, compact design, 4-way equal load High vibration resistance and impact resistance due to improved damping		Electric discharge machine	
31 to 90	50 to 156	characteristics		machine	
48 to 70	100 to 140	Long service life, long-term mainte- nance-free operation Low dust generation, low noise, impact resistance due to improved			
48 to 70	100 to 140	acceptable running sound Superbly high speed Smooth motion in all mounting ori- as that of the full-ball type LM			
55 to 80	70 to 100	entations Ultra-heavy load capacity optimal for machine tools			
55 to 80	70 to 100	tor machine tools			
31 to 105	72 to 260				
31 to 105	72 to 260				
31 to 105	72 to 260	Ultra-heavy load capacity optimal for machine tools High vibration resistance and impact resistance due to improved damping			
31 to 105	72 to 260	characteristics Thin, compact design, 4-way equal load			
31 to 105	50 to 200				
31 to 105	50 to 200				

						Basic load rating (kN)	
Classification		7	Гуре	Specifica- tion Table*	Load capacity diagram	Basic dynamic load rating	Basic static load rating
			SHS-C	▶B-6		14.2 to 205	24.2 to 320
			SHS-LC	▶B-6		17.2 to 253	31.9 to 408
	Caged Ball LM Guide -		SHS-V	▶B-8		14.2 to 205	24.2 to 320
	heavy-load, high rigidity types	l A	SHS-LV	▶B-8		17.2 to 253	31.9 to 408
		മ്പ്	SHS-R	▶B-10		14.2 to 128	24.2 to 197
			SHS-LR	▶B-10		36.8 to 161	64.7 to 259
			HSR-A	▶B-62		8.33 to 210	13.5 to 310
			HSR-M1A	▶B-182		8.33 to 37.3	13.5 to 61.1
			HSR-LA	▶B-62		21.3 to 282	31.8 to 412
			HSR-M1LA	▶B-182	→ ₹ ←	21.3 to 50.2	31.8 to 81.5
			HSR-CA	▶B-76		13.8 to 210	23.8 to 310
be			HSR-HA	▶B-76		21.3 to 518	31.8 to 728
4-way equal load type		N.	HSR-B	▶B-64		8.33 to 210	13.5 to 310
qual l	Full-ball LM Guide -		HSR-M1B	▶B-184		8.33 to 37.3	13.5 to 61.1
vay e	heavy-load, high rigidity types		HSR-LB	▶B-64		21.3 to 282	31.8 to 412
4-	1.9.2		HSR-M1LB	▶B-184		21.3 to 50.2	31.8 to 81.5
			HSR-CB	▶B-78		13.8 to 210	23.8 to 310
			HSR-HB	▶B-78		21.3 to 518	31.8 to 728
			HSR-R	▶B-70		1.08 to 210	2.16 to 310
			HSR-M1R	▶B-186		8.33 to 37.3	13.5 to 61.1
			HSR-LR	▶B-70		21.3 to 282	31.8 to 412
			HSR-M1LR	▶B-186		21.3 to 50.2	31.8 to 81.5
			HSR-HR	▶B-80		351 to 518	506 to 728
	Full-ball LM Guide - side mount types	C. C	HSR-YR	▶B-74		8.33 to 141	13.5 to 215
			HSR-M1YR	▶B-188		8.33 to 37.3	13.5 to 61.1

^{*} For specification tables for each model, please see the separate "B Product Specifications".

24 to 110						
Height Width 24 to 90	External dime	ensions (mm)				
24 to 90	Height	Width	Features	Major application		
Low dust generation, low noise, acceptable running sound	24 to 90	47 to 170				
Superbly high speed	24 to 90	47 to 170				
Has dimensions almost the same as that of the full-ball type LM (guide model HSR, which is practically a global standard size superb capability of absorbing mounting error Machining center	24 to 90	34 to 126	Superbly high speed			
Superb capability of absorbing mounting error	24 to 90	34 to 126	 Has dimensions almost the same as that of the full-ball type LM 			
28 to 80 34 to 100	28 to 80	34 to 100				
24 to 48	28 to 80	34 to 100		 XYZ axes of heavy cut- 		
24 to 48	24 to 110	47 to 215		 Grinding head feeding 		
30 to 110 63 to 215 30 to 145 63 to 215 30 to 145 63 to 350 24 to 110 47 to 215 24 to 48 47 to 100 30 to 110 63 to 215 30 to 145 63 to 350 111 to 110 16 to 156 28 to 55 34 to 70 30 to 110 44 to 156 30 to 145 250 to 266 28 to 90 33.5 to 124.5 28 to 90 33.5 to 124.5 28 to 55 33.5 to 69.5 28 to 55 33.5 to 69.5	24 to 48	47 to 100				
30 to 110 63 to 215 24 to 110 47 to 215 24 to 48 47 to 100 30 to 110 63 to 215 30 to 145 63 to 350 11 to 110 16 to 156 28 to 55 34 to 70 120 to 145 250 to 266 28 to 90 33.5 to 124.5 28 to 55 33.5 to 69.5 4 Heavy load, high rigidity Practically a global standard size Superb capability of absorbing mounting error Stainless steel type also available as standard Type MI, achieving max service temperature of 150°C, also available (Basic dynamic load rating: 2.03 to 5.16 kN) 4 Type MI, achieving max service temperature of 150°C, also available (Basic static load rating: 2.03 to 5.16 kN) 4 Type MI, achieving max service temperature of 150°C, also available 5 Easy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes 4 Easy mounting heigh when using 2 units opposed to each other since the side faces of the LM block have mounting holes 5 Laxis of lectric discharge machine 9 Virice axis milling machine 6 Car elevator 9 Food-related machine 9 Vehicle doors 9 Vehicle doors 9 Vehicle doors 10 Vehicle d	30 to 110	63 to 215		heavy moment and high accuracy		
30 to 110 63 to 215 30 to 145 63 to 350 24 to 110 47 to 215 24 to 48 47 to 100 30 to 110 63 to 215 30 to 48 63 to 100 30 to 145 63 to 350 30 to 145 63 to 350 30 to 146 63 to 215 30 to 147 to 215 30 to 148 63 to 100 30 to 110 63 to 215 30 to 145 63 to 350 11 to 110 16 to 156 28 to 55 34 to 70 30 to 110 44 to 156 28 to 90 33.5 to 124.5 28 to 90 33.5 to 124.5 28 to 90 33.5 to 69.5 30 to 145 63 to 350 28 to 90 33.5 to 69.5	30 to 48	63 to 100		NC milling machine Horizontal milling machine Gantry five axis milling machine Z axis of electric discharge machines Wire-cut electric discharge machine Car elevator Food-related machine Testing machine Vehicle doors		
24 to 110 47 to 215 24 to 48 47 to 100 30 to 110 63 to 215 30 to 48 63 to 100 30 to 110 63 to 215 30 to 145 63 to 350 30 to 145 63 to 350 11 to 110 16 to 156 28 to 90 33.5 to 124.5 28 to 90 33.5 to 124.5 28 to 55 33.5 to 69.5 28 to 55 33.5 to 69.5	30 to 110	63 to 215				
Heavy load, high rigidity	30 to 145	63 to 350				
Practically a global standard size Superb capability of absorbing mounting error Stainless steel type also available as standard Type M1, achieving max service temperature of 150°C, also available Type M2, with high corrosion resistance, also available (Basic dynamic load rating: 2.33 to 5.57 kN) (Basic static load rating: 2.03 to 5.16 kN) Type M2, with high corrosion resistance, also available (Basic dynamic load rating: 2.33 to 5.57 kN) (Basic static load rating: 2.03 to 5.16 kN) Printed circuit board drilling machine ATC Construction equipme Shield machine Semiconductor/liquid crystal manufacturing equipment Practically a global standard size Superb capability of absorbing mounting error Stainless steel type also available (Basic dynamic load rating: 2.03 to 5.16 kN) Printed circuit board drilling machine ATC Construction equipme Shield machine Semiconductor/liquid crystal manufacturing equipment Provided mounting error Stainless steel type also available (Basic dynamic load rating: 2.03 to 5.57 kN) (Basic static load rating: 2.03 to 5.57 kN) Basic static load rating: 2.03 to 5.57 kN) Printed circuit board drilling machine Semiconductor/liquid crystal manufacturing equipment Provided drilling machine Nothing Nation Shield machine Semiconductor/liquid crystal manufacturing equipment Provided virule foots Shield machine Semiconductor/liquid crystal manufacturing equipment Printed circuit board drilling machine Nation Shield machine Semiconductor/liquid crystal manufacturing equipment Printed circuit board drilling machine Nation Nation Shield machine Semiconductor/liquid crystal manufacturing equipment Provided ricuit board drilling machine Nation	24 to 110	47 to 215				
Type M1, achieving max service temperature of 150°C, also available Type M2, with high corrosion resistance, also available Type M2, with high corrosion resistance, also available (Basic dynamic load rating: 2.33 to 5.57 kN) (Basic static load rating: 2.03 to 5.16 kN) 30 to 145 63 to 350 11 to 110 16 to 156 28 to 55 34 to 70 120 to 145 28 to 90 33.5 to 124.5 Easy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available Type M1, achieving max service temperature of 150°C, also available as standard Type M1, achieving max service temperature of 150°C, also available as standard Type M1, achieving max service temperature of 150°C, also available as standard Type M1, achieving max service temperature of 150°C, also available as standard Type M1, achieving max service temperature of 150°C, also available as standard Type M1, achieving max service temperature of 150°C, also available as standard Type M1, achieving max service temperature of 150°C, also available as standard Type M1, achieving max service temperature of 150°C, also available as standard Type M1, achieving max service temperature of 150°C, also available as standard Type M1, achieving max service temperature	24 to 48	47 to 100	Superb capability of absorbing mounting error			
Type M2, with high corrosion resistance, also available (Basic dynamic load rating: 2.33 to 5.57 kN) 30 to 110 63 to 215 30 to 145 63 to 350 11 to 110 16 to 156 28 to 55 34 to 70 120 to 145 250 to 266 28 to 90 33.5 to 124.5 28 to 55 33.5 to 69.5 28 to 55 33.5 to 69.5	30 to 110	63 to 215	 Type M1, achieving max service temperature of 150℃, also 			
30 to 110 63 to 215 (Basic static load rating: 2.03 to 5.16 kN) Construction equipmes	30 to 48	63 to 100	 Type M2, with high corrosion resistance, also available 	drilling machine		
30 to 145 63 to 350 11 to 110 16 to 156 28 to 55 34 to 70 30 to 110 44 to 156 30 to 55 44 to 70 120 to 145 250 to 266 28 to 90 33.5 to 124.5 Beasy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes 28 to 55 33.5 to 69.5 Peasy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes Peasy mounting and reduced mounting equipment Peasy load, high rigidity Superb capability of absorbing mounting error Stainless steel type also available as standard Type M1, achieving max service temperature of 150°C, are available as standard Components opposed.	30 to 110	63 to 215		 Construction equipment 		
11 to 110	30 to 145	63 to 350		 Semiconductor/liquid 		
30 to 110 44 to 156 30 to 55 44 to 70 120 to 145 250 to 266 28 to 90 33.5 to 124.5 Beasy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes 28 to 55 33.5 to 69.5 Beasy mounting and reduced mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes Beasy mounting and reduced mounting elight when using 2 units opposed to each other since the side faces of the LM block have mounting holes Personal Research of the LM block have mounting holes Beasy mounting and reduced mounting elight when using 2 units opposed to each other since the side faces of the LM block have mounting holes Personal Research of t	11 to 110	16 to 156				
28 to 90 33.5 to 124.5 Beasy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes 28 to 55 33.5 to 69.5 Beasy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes Beasy mounting and reduced mounting ending 4 Heavy load, high rigidity Superb capability of absorbing mounting error Stainless steel type also available as standard Type M1, achieving max service temperature of 150°C, and a graph of the components opposed to ach other since the side faces of the LM block have mounting holes 28 to 55 33.5 to 69.5	28 to 55	34 to 70				
120 to 145	30 to 110	44 to 156				
28 to 90 33.5 to 124.5 • Easy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes 28 to 55 33.5 to 69.5 • Easy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes • Heavy load, high rigidity 9 Superb capability of absorbing mounting error Stainless steel type also available as standard • Type M1, achieving max service temperature of 150°C, load available as standard • Type M1, achieving max service temperature of 150°C, load available as standard • Type M1, achieving max service temperature of 150°C, load available as standard	30 to 55	44 to 70				
28 to 90 33.5 to 124.5 mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes 28 to 55 33.5 to 69.5 mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes 9 Superb capability of absorbing mounting error Stainless steel type also available as standard Type M1, achieving max service temperature of 150°C, components opposed	120 to 145	250 to 266				
Type M1, achieving max ser- vice temperature of 150°C, also a weither the series of 150°C, components opposed	28 to 90	33.5 to 124.5	mounting height when using 2 units opposed to each other since the side faces of the LM • Stainless steel type also	machine tools Z axis of woodworking machines		
each other	28 to 55	33.5 to 69.5	 Type M1, achieving max service temperature of 150°C, 			

					Load	Basic load rating (kN)		
	Classification	7	Гуре	Specifica- tion Table*	capacity diagram	Basic dynamic load rating	Basic static load rating	
	Full-ball		JR-A	▶B-164	1	19.9 to 88.5	34.4 to 137	
	LM Guides - special LM rail	TIII	JR-B	▶B-164	→ 🖫 ←	19.9 to 88.5	34.4 to 137	
	types	U.	JR-R	▶B-164	1	19.9 to 88.5	34.4 to 137	
	Caged Ball Cross LM Guide		SCR	▶B-56	→ 🎨 ←	36.8 to 253	64.7 to 408	
type	Full-ball LM Guide - orthogonal type		CSR	▶B-154		8.33 to 80.4	13.5 to 127.5	
4-way equal load type	Caged Ball LM Guide - wide, low center of gravity types	The state of the s	SHW-CA	▶B-44	↓ → <u>*</u> * ←	4.31 to 70.2	5.66 to 91.4	
4-way 6			SHW-CR, HR	▶B-46		4.31 to 70.2	5.66 to 91.4	
	Full-ball LM Guide -	rail.	HRW-CA	▶B-108		4.31 to 63.8	81.4 to 102	
	wide, low center of gravity types		HRW-CR, LR	▶B-110		3.29 to 50.2	7.16 to 81.5	
	Full-ball Straight - Curved Guide	<u> </u>	HMG	▶B-172	→	2.56 to 66.2	Straight section 4.23 to 66.7 Curved section 0.44 to 36.2	
	Full-ball LM Guide -		HR, HR-T	▶B-138	↓ → ::::::::::::::::::::::::::::::::::::	1.57 to 141	3.04 to 206	
Ф	separate types	I (GSR-T	▶B-146	†	5.69 to 25.1	8.43 to 33.8	
rchangeabl designs			GSR-V	▶B-146	→515+ †	4.31 to 10.29	5.59 to 12.65	
Interchangeable designs	Full-ball LM Guides - LM rail-rack inter- grated type		GSR-R	▶B-150	↓ →====================================	10.29 to 25.1	12.65 to 33.8	

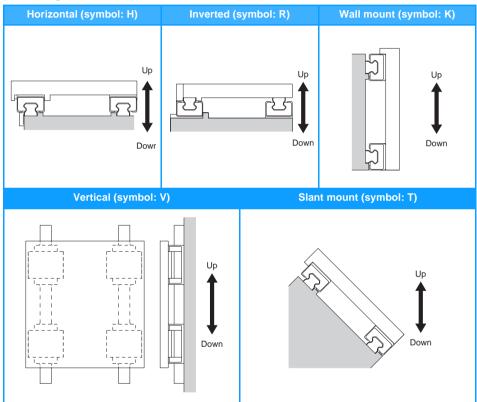
^{*}For specification tables for each model, please see the separate "B Product Specifications".

External dime	ansiona (mm)		
Height	Width	Features	Major application
61 to 114	70 to 140	Since the central part of the LM rail is thinly structured, the LM Guide is capa-	Automated warehouse Garage Crane
61 to 114	70 to 140		Gantry robot FMS traveling rail Lift FMS traveling rail Shield machine
65 to 124	48 to 100	tional shape, it can be used as a struc- tural member	 Conveyance system Welding machine Stage setting
70 to 180	88 to 226	A compact XY structure is allowed due to an XY orthogonal, single-piece LM block Since a saddle-less structure is allowed, the machine can be lightweighted and compactly designed Long service life, long-term maintenance-free operation Low dust generation, low noise, acceptable running sound Superbly high speed	Low center of gravity, precision XY table NC lathe Optical measuring instrument Automatic lathe Inspection equipment Cartesian coordinate robot
47 to 118	38.8 to 129.8	A compact XY structure is allowed due to an XY orthogonal, single-piece LM block Since a saddle-less structure is allowed, the machine can be lightweighted and compactly designed	Bonding machine XY axes of horizontal machining center
12 to 50	40 to 162	Long service life, long-term maintenance- free operation Low dust generation, low noise, accept- able running sound Superbly high speed	
12 to 50	30 to 130	Smooth motion in all mounting orientations Wide, low center of gravity, space saving structure Stainless steel type also available as standard	Z axis of IC printed circuit board drilling machine Z axis of small electric discharge machine Loader Machining center Machining center Construction equipment
17 to 60	60 to 200	4-way equal load, thin and highly rigid Wide, low center of gravity, space saving structure	NC lathe Railroad vehicle Robot Wire-cut electric discharge machine
12 to 50	30 to 130	Stainless steel type also available as standard	
24 to 90	47 to 170	Freedom of design Cost reduction through simplified structure	Large swivel base Pendulum vehicle for railroad Pantagraph Control unit Optical measuring machine Tool grinder X-Ray machine Tool changer
8.5 to 60	18 to 125	Thin, high rigidity, space saving structure Interchangeable with Cross-Roller Guide Preload can be adjusted Stainless steel type also available as standard	XYZ axes of electric discharge machine Precision table XZ axes of NC lathe Assembly robot Conveyance system Machining center Wire-cut electric discharge machine Tool changer Woodworking machine
20 to 38	32 to 68	changeable	Industrial robot Various conveyance systems
20 to 30	32 to 50	 Preload can be adjusted Capable of absorbing vertical level error and horizontal tolerance for parallelism 	 Automated warehouse Palette changer ATC
30 to 38	59.91 to 80.18	LM rail-rack integrated design eliminates assembly and adjustment work LM rail-rack integrated design enables a space-saving structure to be achieved Capable of supporting long strokes	Door closing device Guide using an aluminum mold base Welding machine Coating machine Car washing machine

						Basic load rating (kN)		
	Classification	7	Туре	Specifica- tion Table*	Load capac- ity diagram	Basic dynamic load rating	Basic static load rating	
	Caged Ball		SRS	▶B-50	.	1.51 to 16.5	1.29 to 20.2	
	LM Guides		SRS-W	▶B-52	→ <u></u> +	2.01 to 9.12	1.94 to 8.55	
			RSR, RSR-K, RSR-V	▶B-116		0.18 to 8.82	0.27 to 12.7	
			RSR-M1V	▶B-198		1.47 to 8.82	2.25 to 12.7	
	Full-ball LM Guides		RSR-N	▶B-114		0.3 to 14.2	0.44 to 20.6	
S			RSR-M1N	▶B-198		2.6 to 14.2	3.96 to 20.6	
Miniature types			RSR-Z	▶B-122		0.88 to 4.41	1.37 to 6.57	
iatur			RSR-W, WV	▶B-118		0.25 to 6.66	0.47 to 9.8	
Μį	E. II ball		RSR-M1WV	▶B-200]	2.45 to 6.66	3.92 to 9.8	
	Full-ball LM Guide - wide types		RSR-WN	▶B-118	→ 🗀 ←	0.39 to 9.91	0.75 to 14.9	
	wide types		RSR-M1WN	▶B-200	<u> </u>	3.52 to 9.91	5.37 to 14.9	
			RSR-WZ	▶B-124		1.37 to 6.66	2.16 to 9.8	
	Full-ball LM Guide -	وصفا ا	RSH, RSH-K, RSH-V	▶B-128		0.88 to 2.65	1.37 to 4.02	
	ball-retaining plate types		RSH-Z	▶B-132		0.88 to 4.41	1.37 to 6.57	
	Full-ball LM Guide - orthogonal type		MX	▶B-160		0.59 to 2.04	1.1 to 3.21	
Circular arc types	Full-ball LM Guides		HCR	▶B-168	→ ↓ ←	4.7 to 141	8.53 to 215	
Self-aligning types	Full-ball LM Guides		NSR-TBC	▶B-178	↓ → ! +	9.41 to 90.8	18.6 to 152	

^{*} For specification tables for each model, please see the separate "B Product Specifications".

External dimensions (mm)						
Height	Width	Features	Major application			
8 to 25	17 to 48	Long service life, long-term mainte- nance-free operation Low dust generation, low noise, acceptable running sound Superbly high speed	IC/LSI manufacturing machine Hard disc drive Slide unit of OA equipment Stepper			
9 to 16	25 to 60	Smooth motion in all mounting ori- entations Stainless steel type also available as standard Lightweight and compact	Wafer transfer equipment Printed circuit board assembly table Medical equipment Printed circuit board assembly table Medical equipment Plotting machine Feed mechanism of IC bonding machine Inspection equipment			
4 to 25	8 to 46					
10 to 25	20 to 46	 Stainless steel type also available as standard 				
4 to 25	8 to 46	 Long type with increased load capacity also offered as standard Type M1, achieving max service 				
10 to 25	20 to 46	temperature of 150°C, also available	IC/LSI manufacturing machine			
8 to 16	17 to 32		Hard disc drive Slide unit of OA equipment			
4.5 to 16	12 to 60		Wafer transfer equipment Printed circuit board assembly table Medical equipment			
12 to 16	30 to 60	Long type with increased load capacity also offered as standard Type M1, achieving max service	Electronic components of electron microscope Optical stage			
4.5 to 16	12 to 60		Stepper Plotting machine Feed mechanism of IC bonding machine			
12 to 16	30 to 60		Inspection equipment			
9 to 16	25 to 60					
8 to 13	17 to 27	 Equipped with a ball retainer Stainless steel type also available 				
8 to 16	17 to 32	as standard				
10 to 14.5	15.2 to 30.2	A compact XY structure is allowed due to an XY orthogonal, single- piece LM block Stainless steel type also available as standard	Ic/LSI manufacturing machine Inspection equipment Slide unit of OA equipment Wafer transfer equipment Feed mechanism of IC bonding machine Printed circuit board assembly table Medical equipment Electronic components of electron microscope Optical stage			
18 to 90	39 to 170	Circular motion guide in a 4-way equal load design Highly accurate circular motion without play Allows an efficient design with the LM block placed in the loading point Large circular motion easily achieved	Large swivel base Pendulum vehicle for railroad Medical equipment Pantagraph Control unit Optical measuring machine Tool grinder X-Ray machine CT scanner Medical equipment Stage setting Car elevator Amusement machine Turntable Tool changer			
40 to 105	70 to 175	Can be used in rough mount due to self-aligning on the fit surface of the case Preload can be adjusted Can be mounted on a black steel sheet	Various conveyance systems Automated warehouse Palette changer			


Setting Conditions

Conditions of the LM Guide

[Mounting Orientation]

The LM Guide can be mounted in the following five orientations. If oil is to be used as a lubricant, it is necessary to change the lubrication routing and the related settings. When ordering an LM Guide, please specify the mounting orientation.

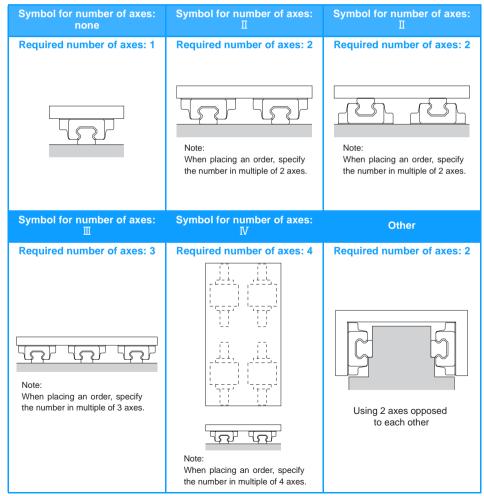
[Mounting Orientation]

Setting Conditions

[Symbol for Number of Axes]

With the LM Guide, the normal and high-accuracy grades are interchangeable when two or more units of the LM Guide are used in combination on the same plane. However, when using two or more units of a model of precision or higher grade, or with a radial clearance of C1 or C0, specify the number of LM rails (symbol for number of axes) in advance.

(For accuracy standards and radial clearance standards, see A-118 and A-113, respectively.)


Model number coding

SHS25C2SSCO+1000LP - II

Model number (details are given on the corresponding page of the model)

Symbol for number of axes ("II" indicates 2 axes. No symbol for a single axis)

[Symbol for Number of Axes]

[Service environment]

Lubrication

When using an LM system, it is necessary to provide effective lubrication. Without lubrication, the rolling elements or the raceway may be worn faster and the service life may be shortened.

A lubricant has effects such as the following.

- (1) Minimizes friction in moving elements to prevent seizure and reduce wear.
- (2) Forms an oil film on the raceway to decrease stress acting on the surface and extend rolling fatigue life.
- (3) Covers the metal surface to prevent rust formation.

To fully bring out an LM system's functions, it is necessary to provide lubrication according to the conditions.

Even with an LM system with seals, the internal lubricant gradually seeps out during operation. Therefore, the system needs to be lubricated at an appropriate interval according to the conditions.

Corrosion Prevention

■Determining a Material

Any LM system requires a material that meets the environments. For use in environments where corrosion resistance is required, some LM system models can use martensite stainless steel.

(Martensite stainless steel can be used for LM Guide models SSR, SHW, SRS, HSR, SR, HRW, RSR, RSR-Z, RSH RSH-Z and HR.)

The HSR series includes HSR-M2, a highly corrosion resistant LM Guide using austenite stainless steel, which has high anti-corrosive effect. For details, see A-292.

■Surface Treatment

The surfaces of the rails and shafts of LM systems can be treated for anti-corrosive or aesthetic purposes.

THK offers THK-AP treatment, which is the optimum surface treatment for LM systems.

There are roughly three types of THK-AP treatment: AP-HC, AP-C, and AP-CF. (See A-20.)

Contamination Protection

When foreign material enters an LM system, it will cause abnormal wear or shorten the service life, and it is necessary to prevent foreign material from entering the system. When entrance of dust or other foreign material is predicted, it is important to select an effective sealing device or dust-control device that meets the environment conditions.

THK offers contamination protection accessories for LM Guides by model number, such as end seals made of special synthetic rubber with high wear resistance, and side seals and inner seals for further increasing dust-prevention effect.

In addition, for locations with adverse environment, Laminated Contact Scraper LaCS and dedicated bellows are available by model number. Also, THK offers dedicated caps for LM rail mounting holes, designed to prevent cutting chips from entering the LM rail mounting holes.

When it is required to provide contamination protection for a Ball Screw in an environment exposed to cutting chips and moisture, we recommend using a telescopic cover that protects the whole system or a large bellows.

sale@technobearing.ru

[Special environments]

Clean Room

In a clean environment like clean rooms, generation of dust from the LM system has to be reduced and anti-rust oil cannot be used. Therefore, it is necessary to increase the corrosion resistance of the LM system. In addition, depending on the level of cleanliness, a dust collector is required.

Dust Generation from the LM System

■ Measure to Prevent Dust Generation Resulting from Flying Grease

THK AFE-CA and AFF Grease

Use environmentally clean grease that produces little dust.

■ Measure to Prevent Dust Generation Resulting from Metallic Abrasion Dust

Caged Ball LM Guide

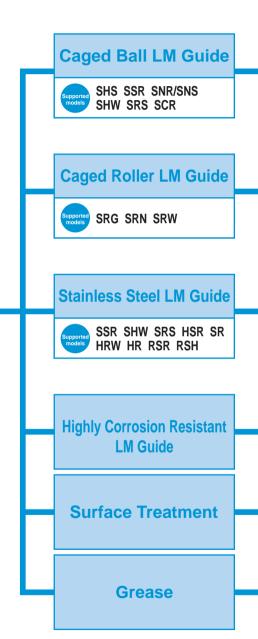
Use the Caged Ball LM Guide, which has no friction between balls and generates little metallic abrasion dust, to allow generation of dust to be minimized.

Corrosion Prevention

■ Material-based Measure

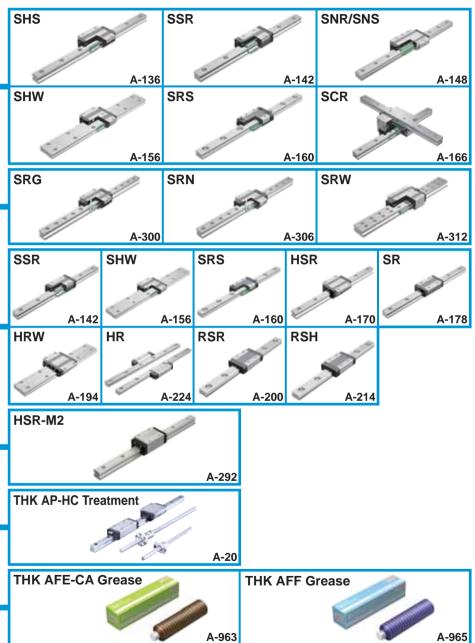
Stainless Steel LM Guide

This LM Guide uses martensite stainless steel, which has an anti-corrosion effect.


Highly Corrosion Resistant LM Guide

It uses austenite stainless steel, which has a high anti-corrosion effect, in its LM rail.

■ Measure Through Surface Treatment


THK AP-HC, AP-C and AP-CF Treatment

The LM system is surface treated to increase corrosion resistance.

Setting Conditions

Vacuum

In a vacuum environment, measures to prevent gas from being emitted from a resin and grease from flying are required and anti-rust oil cannot be used. Therefore, it is necessary to select a product with high corrosion resistance.

■ Measure to Prevent Emission of Gas from Resin

Stainless Steel LM Guide

It uses stainless steel in the endplate (ball circulation unit made of resin) of the LM block to reduce emission of gas.

■ Measure to Prevent Grease from Evaporating

Vacuum Grease

If a general-purpose grease is used in a vacuum environment, oil contained in the grease evaporates and the grease looses lubricity. Therefore, use a vacuum grease that uses fluorine based oil, whose vapor pressure is low, as the base oil.

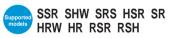
■Corrosion Prevention

Stainless Steel LM Guide

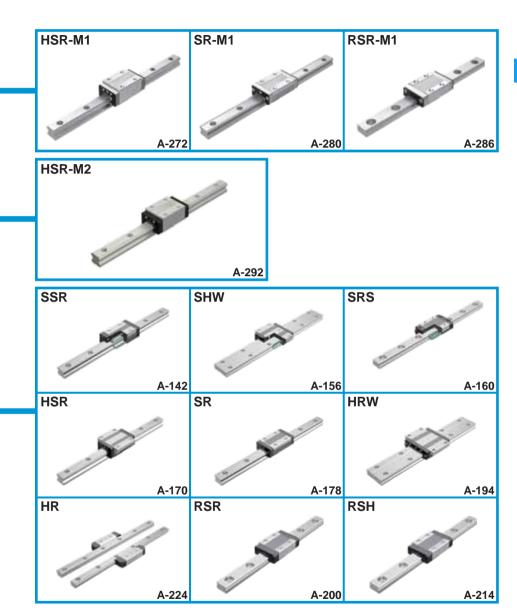
In a vacuum environment, use a stainless steel LM Guide, which is highly corrosion resistant.

High Temperature LM Guide

If high temperature is predicted due to baking, use a High Temperature LM Guide, which is highly resistant to heat and corrosion.


Highly Corrosion Resistant LM Guide

This LM Guide uses austenite stainless steel, which has a high anti-corrosion effect, in the LM rail.


Highly Corrosion Resistant LM Guide

Stainless Steel LM Guide

Vacuum Grease

Point of Selection Setting Conditions

As with clean room applications, it is necessary to increase corrosion resistance through material selection and surface treatment.

■ Material-based Measure

Stainless Steel LM Guide

This LM Guide uses martensite stainless steel, which has an anti-corrosion effect.

Highly Corrosion Resistant LM Guide

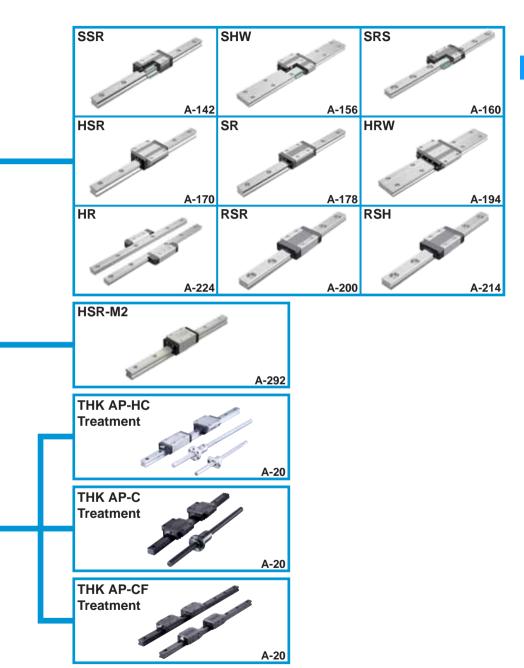
It uses austenite stainless steel, which has a high anti-corrosion effect, in its LM rail.

Measure Through Surface Treatment

THK AP-HC, AP-C and AP-CF Treatment

The LM system is surface treated to increase corrosion resistance.

Stainless Steel LM Guide



SSR SHW SRS HSR SR HRW HR RSR RSH

Highly Corrosion Resistant LM Guide

Surface Treatment

Point of Selection Setting Conditions

High Speed

In a high speed environment, it is necessary to apply an optimum lubrication method that reduces heat generation during high speed operation and increases grease retention.

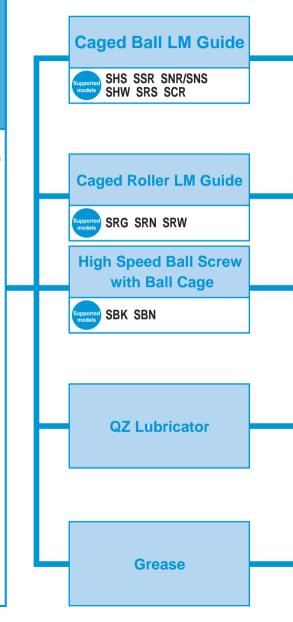
■ Measures to Reduce Heat Generation

Caged Ball LM Guide

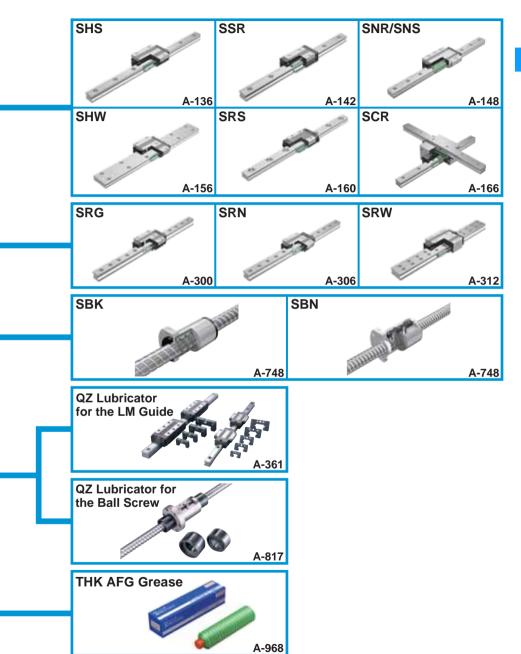
Use of a ball cage eliminates friction between balls to reduce heat generation. In addition, grease retention is increased, thus to achieve long service life and high speed operation.

High Speed Ball Screw with Ball Cage

Use of a ball cage and an ideal ball recirculation structure enables fast feeding, which conventional products have not achieved.


THK AFG Grease

It reduces heat generation in high speed operation and has superb lubricity.


■ Measure to Improve Lubrication

QZ Lubricator

Since it supplements oil loss, the lubrication and maintenance interval can significantly be extended. It also applies the right amount of oil to the raceway, making itself an eco-friendly lubrication system that does not contaminate the surrounding area.

Point of Selection Setting Conditions

High Temperature

In a high temperature environment, dimensional alteration caused by heat is problematic. Use a High Temperature LM Guide, which is heat resistant and whose dimensions little change after being heated, and a high temperature grease.

■Heat Resistance

High Temperature LM Guide

It is an LM Guide that is highly resistant to heat and whose dimensions little change after being heated and cooled.

Grease

High Temperature Grease

Use a high temperature grease with which the rolling resistance of the LM system little fluctuates even temperature changes from a normal to high range.

Low Temperature

Use an LM system whose resin component are little affected by low temperature, as a measure to increase corrosion resistance in transition from normal to low temperature, and a grease with a low rolling resistance fluctuation even at low temperature.

Impact of Low Temperature on Resin Components

Stainless Steel LM Guide

The endplate (ball circulation path normally made of resin) of the LM block is made of stainless steel.

■Corrosion Prevention

Provide surface treatment to the LM system to increase its corrosion resistance.

Use THK AFC Grease, with which the rolling resistance of the system little fluctuates even at low temperature.

Micro Motion

Micro strokes cause oil film break and poor lubrication, resulting in early wear. In such cases, select a grease with which the oil film strength is high and an oil film can easily be formed.

Grease

THK AFC Grease

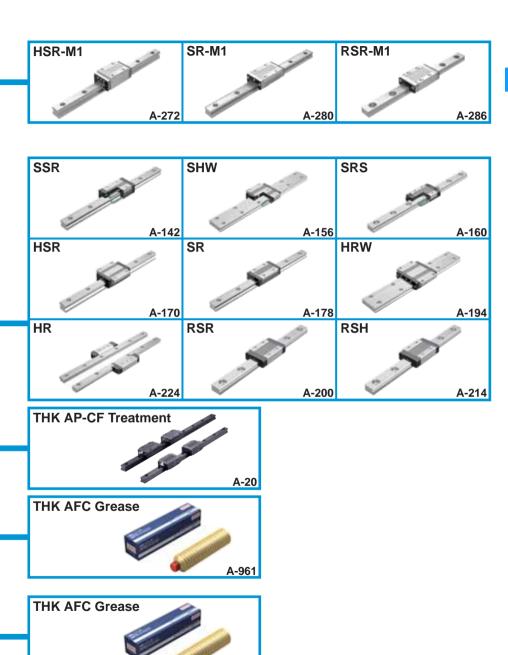
AFC Grease is a urea-based grease that excels in oil film strength and wear resistance.

High Temperature LM Guide

HSR-M1 SR-M1 RSR-M1

High Temperature Grease

Stainless Steel LM Guide


SSR SHW SRS HSR SR HRW HR RSR RSH

Surface Treatment

Grease

Grease

Setting Conditions

A-961

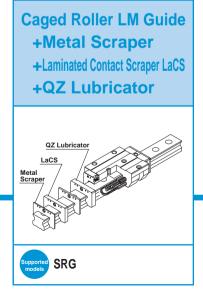
Foreign Matter

If foreign matter enters the LM system, it will cause abnormal wear and shorten the service life. Therefore, it is necessary to prevent such entrance of foreign matter.

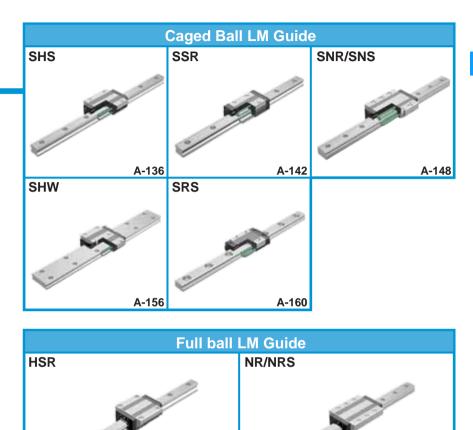
Especially in an environment containing minute foreign matter or a water-soluble coolant that a telescopic cover or a bellows cannot remove, it is necessary to attach a contamination protection accessory capable of efficiently removing foreign matter.

■Metal Scraper

It is used to remove relatively large foreign objects such as cutting chips, spatter and sand or hard foreign matter that adhere to the LM rail.


■ Laminated Contact Scraper LaCS

Unlike a metal scraper, it removes foreign matter while it is in contact with the LM rail. Therefore, it demonstrates a high contamination protection effect against minute foreign matter, which has been difficult to remove with conventional metal scrapers.


■QZ Lubricator

QZ Lubricator is a lubrication system that feeds the right amount of lubricant by closely contacting its highly oil-impregnated fiber net to the ball raceway.

LM Guide +Metal Scraper +Laminated Contact Scraper LaCS +QZ Lubricator Acceptage Caged Ball LM Guide SHS SSR SNR/SNS SHW SRS Full Ball LM Guide HSR NR/NRS

Point of Selection Setting Conditions

A-186

A-170

Calculating the Applied Load

The LM Guide is capable of receiving loads and moments in all directions that are generated due to the mounting orientation, alignment, gravity center position of a traveling object, thrust position and cutting resistance.

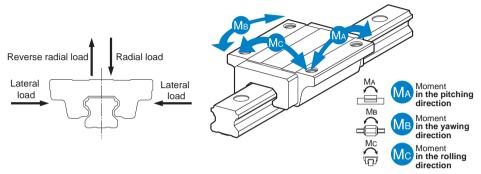
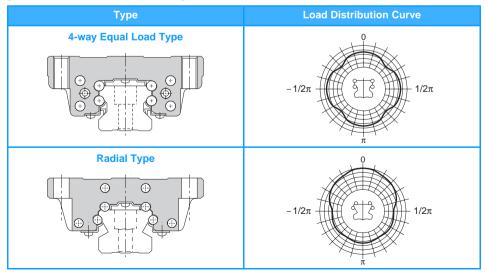



Fig.1 Directions of the Loads Applied on the LM Guide

Rated Load of an LM Guide in Each Direction

The LM Guide is categorized into roughly two types: the 4-way equal load type, which has the same rated load in the radial, reverse radial and lateral directions, and the radial type, which has a large rated load in the radial direction. With the radial type LM Guide, the rated load in the radial direction is different from that in the reverse radial and lateral directions. When such loads are applied, multiply the basic load rating by the corresponding factor. Those factors are specified in the respective sections.

[Rated Loads in All Directions]

Calculating the Applied Load

Calculating an Applied Load

[Single-Axis Use]

Moment Equivalence

When the installation space for the LM Guide is limited, you may have to use only one LM block, or double LM blocks closely contacting with each other. In such a setting, the load distribution is not uniform and, as a result, an excessive load is applied in localized areas (i.e., both ends) as shown in Fig.2. Continued use under such conditions may result in flaking in those areas, consequently shortening the service life. In such a case, calculate the actual load by multiplying the moment value by any one of the equivalent-moment factors specified in Table1 to Table9.

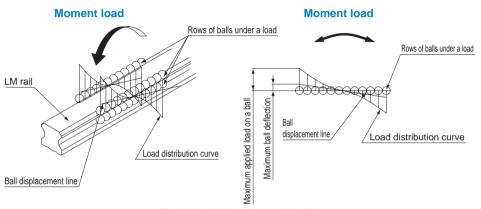


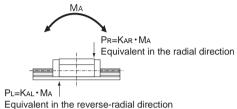
Fig.2 Ball Load when a Moment is Applied

An equivalent-load equation applicable when a moment acts on an LM Guide is shown below.

$P = K \cdot M$

P : Equivalent load per LM Guide (N)

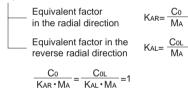
K : Equivalent moment factor


M : Applied moment (N-mm)

Equivalent Factor

Since the rated load is equivalent to the permissible moment, the equivalent factor to be multiplied when equalizing the M_A , M_B and M_C moments to the applied load per block is obtained by dividing the rated loads in the corresponding directions.

With those models other than 4-way equal load types, however, the load ratings in the 4 directions differ from each other. Therefore, the equivalent factor values for the M_{A} and M_{C} moments also differ depending on whether the direction is radial or reverse radial.


■Equivalent Factors for the MA Moment

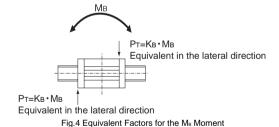

quivalent in the reverse-radial direction

Fig.3 Equivalent Factors for the MA Moment

■Equivalent Factors for the M_B Moment

Equivalent factors for the MB Moment

Equivalent factor in the lateral directions
$$K_{B=} \frac{C_{OT}}{M_B}$$

Calculating the Applied Load

■Equivalent Factors for the Mc Moment

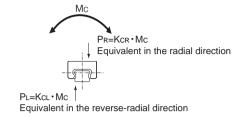


Fig.5 Equivalent Factors for the Mc Moment

Equivalent factors for the Mc Moment

$$\frac{C_0}{\text{Kcr} \cdot \text{Mc}} = \frac{C_{0L}}{\text{Kcl} \cdot \text{Mc}} = 1$$

C_0	: Basic static load rating (radial direction)	(N)
C_{OL}	: Basic static load rating (reverse radial direction)	(N)
$C_{\text{от}}$: Basic static load rating (lateral direction)	(N)
P_R	: Calculated load (radial direction)	(N)
P_L	: Calculated load (reverse radial direction)	(N)
P_T	: Calculated load (lateral direction)	(N)

Table1 Equivalent Factors (Models SHS, SSR and SNR)

N4	lal Nia				Equivale	ent factor			
Model No.		K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	К в1	K _{B2}	Kcr	Kcl
	15	1.38	×10 ⁻¹	2.69	× 10 ⁻²	1.38×10 ⁻¹	2.69×10 ⁻²	1.50	×10 ⁻¹
	15L	1.07	× 10 ⁻¹	2.22×10 ⁻²		1.07×10 ⁻¹	2.22×10 ⁻²	1.50×10 ⁻¹	
	20	1.15	×10 ⁻¹	2.18×10 ⁻²		1.15×10 ⁻¹	2.18×10 ⁻²	1.06	×10 ⁻¹
	20L	8.85	×10 ⁻²	1.79	×10 ⁻²	8.85×10 ⁻²	1.79×10 ⁻²	1.06×10 ⁻¹	
	25	9.25	×10 ⁻²	1.90	× 10 ⁻²	9.25×10 ⁻²	1.90×10 ⁻²	9.29	×10 ⁻²
	25L	7.62	× 10 ⁻²	1.62	× 10 ⁻²	7.62×10 ⁻²	1.62×10 ⁻²	9.29	X 10 ⁻²
	30	8.47	× 10 ⁻²	1.63	× 10 ⁻²	8.47×10 ⁻²	1.63×10 ⁻²	7.69	×10 ⁻²
SHS	30L	6.52×10 ⁻²		1.34	× 10 ⁻²	6.52×10 ⁻²	1.34×10 ⁻²	7.69	X 10 ⁻²
опо	35	6.95	× 10 ⁻²	1.43	× 10 ⁻²	6.95×10 ⁻²	1.43×10 ⁻²	6.29	×10 ⁻²
	35L	5.43	× 10 ⁻²	1.16	× 10 ⁻²	5.43×10 ⁻²	1.16×10 ⁻²	6.29	X 10 ⁻²
	45	6.13	× 10 ⁻²	1.24×10 ⁻²		6.13×10 ⁻²	1.24×10 ⁻²	4.69	X 10 ⁻²
	45L	4.79	× 10 ⁻²	1.02	× 10 ⁻²	4.79×10 ⁻²	1.02×10 ⁻²	4.69	×10 ⁻²
	55	4.97×10 ⁻²		1.02×10 ⁻²		4.97×10 ⁻²	1.02×10 ⁻²	4.02	X 10 ⁻²
	55L	3.88×10 ⁻²		8.30×10 ⁻³		3.88×10 ⁻²	8.30×10 ⁻³	4.02×10 ⁻²	
	65	3.87×10 ⁻²		7.91×10³		3.87×10 ⁻²	7.91×10 ⁻³	3.40×10 ⁻²	
	65L	3.06	× 10 ⁻²	6.51	×10 ⁻³	3.06×10 ⁻²	6.51×10 ⁻³	3.40	X 10 ⁻²
	15XW (TB)	2.08×10 ⁻¹	1.04×10 ⁻¹	3.75×10 ⁻²	1.87×10 ⁻²	1.46×10 ⁻¹	2.59×10 ⁻²	1.71×10 ⁻¹	8.57×10 ⁻²
	15XV	3.19×10 ⁻¹	1.60×10 ⁻¹	5.03×10 ⁻²	2.51×10 ⁻²	2.20×10 ⁻¹	3.41 × 10 ⁻²	1.71×10 ⁻¹	8.57×10 ⁻²
	20XW (TB)	1.69×10 ⁻¹	8.46×10 ⁻²	3.23×10 ⁻²	1.62×10 ⁻²	1.19×10 ⁻¹	2.25×10 ⁻²	1.29×10 ⁻¹	6.44×10 ⁻²
SSR	20XV	2.75×10 ⁻¹	1.37×10 ⁻¹	4.28×10 ⁻²	2.14×10 ⁻²	1.89×10 ⁻¹	2.89×10 ⁻²	1.29×10 ⁻¹	6.44×10 ⁻²
JOIN	25XW (TB)	1.41×10 ⁻¹	7.05×10 ⁻²	2.56×10 ⁻²	1.28×10 ⁻²	9.86×10 ⁻²	1.77×10 ⁻²	1.10×10 ⁻¹	5.51×10 ⁻²
	25XV	2.15×10 ⁻¹	1.08×10 ⁻¹	3.40×10 ⁻²	1.70×10 ⁻²	1.48×10 ⁻¹	2.31×10 ⁻²	1.10×10 ⁻¹	5.51×10 ⁻²
	30XW	1.18×10 ⁻¹	5.91×10 ⁻²	2.19×10 ⁻²	1.10×10 ⁻²	8.26×10 ⁻²	1.52×10 ⁻²	9.22×10 ⁻²	4.61×10 ⁻²
	35XW	1.01×10 ⁻¹	5.03×10 ⁻²	1.92×10 ⁻²	9.60×10 ⁻³	7.04×10 ⁻²	1.33×10 ⁻²	7.64×10 ⁻²	3.82×10 ⁻²
	25	1.16×10 ⁻¹	7.41×10 ⁻²	2.18×10 ⁻²	1.40×10 ⁻²	7.02×10 ⁻²	1.33×10 ⁻²	9.09×10 ⁻²	5.82×10 ⁻²
	25L	8.79×10 ⁻²	5.62×10 ⁻²	1.82×10 ⁻²	1.16×10 ⁻²	5.41×10 ⁻²	1.13×10 ⁻²	9.09×10 ⁻²	5.82×10 ⁻²
	30	1.02×10 ⁻¹	6.51×10 ⁻²	1.86×10 ⁻²	1.19×10 ⁻²	6.16×10 ⁻²	1.13×10 ⁻²	8.11×10 ⁻²	5.19×10 ⁻²
	30L	7.60×10 ⁻²	4.87×10 ⁻²	1.55×10 ⁻²	9.93×10 ⁻³	4.68×10 ⁻²	9.58×10 ⁻³	8.11×10 ⁻²	5.19×10 ⁻²
	35	8.92×10 ⁻²	5.71×10 ⁻²	1.67×10 ⁻²	1.07×10 ⁻²	5.40×10 ⁻²	1.01 × 10 ⁻²	6.73×10 ⁻²	4.31×10 ⁻²
	35L	7.01×10 ⁻²	4.48×10 ⁻²	1.37×10 ⁻²	8.79×10 ⁻³	4.27×10 ⁻²	8.41×10 ⁻³	6.73×10 ⁻²	4.31×10 ⁻²
SNR	45	6.55×10 ⁻²	4.19×10 ⁻²	1.35×10 ⁻²	8.62×10 ⁻³	4.03×10 ⁻²	8.32×10 ⁻³	5.10×10 ⁻²	3.27×10 ⁻²
	45L	5.32×10 ⁻²	3.41×10 ⁻²	1.10×10 ⁻²	7.01×10 ⁻³	3.26×10 ⁻²	6.73×10 ⁻³	5.10×10 ⁻²	3.27×10 ⁻²
	55	5.85×10 ⁻²	3.74×10 ⁻²	1.13×10 ⁻²	7.24×10 ⁻³	3.56×10 ⁻²	6.92×10 ⁻³	4.36×10 ⁻²	2.79×10 ⁻²
	55L	4.55×10 ⁻²	2.91×10 ⁻²	9.36×10 ⁻³	5.99×10 ⁻³	2.79×10 ⁻²	5.75×10 ⁻³	4.36×10 ⁻²	2.79×10 ⁻²
	65	5.07×10 ⁻²	3.25×10 ⁻²	9.92×10 ⁻³	6.35×10 ⁻³	3.09×10 ⁻²	6.06×10 ⁻³	3.70×10 ⁻²	2.37×10 ⁻²
	65L	3.58×10 ⁻²	2.29×10 ⁻²	7.67×10 ⁻³	4.91×10 ⁻³	2.21×10 ⁻²	4.75×10 ⁻³	3.70×10 ⁻²	2.37×10 ⁻²
	85L	2.92×10 ⁻²	1.87×10 ⁻²	6.20×10 ⁻³	4.00×10 ⁻³	1.80×10 ⁻²	3.80×10 ⁻³	2.78×10 ⁻²	1.78×10 ⁻²

Kari: Equivalent factor in the Ma radial direction when one LM block is used

Kall : Equivalent factor in the Ma reverse radial direction

when one LM block is used

KAR2 : Equivalent factor in the MA radial direction when two LM blocks are used in close contact with each other Kal2 : Equivalent factor in the Ma reverse radial direction when two LM blocks are used in close contact with each other

 K_{B1} : M_{B} Equivalent factor when one LM block is used

K_{B2}: M_B Equivalent factor when two LM blocks are used in

close contact with each other K_{CR} : Equivalent factor in the M_{C} radial direction K_{CL} : Equivalent factor in the M_{C} reverse radial direction

Calculating the Applied Load

Table2 Equivalent Factors (Models SNS, SHW and SRS)

30 30 35		K _{AR1}		Equivalent factor									
25 30 30 35 35		r\AR1	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl				
30 30 35	5	1.12×10 ⁻¹	9.42×10 ⁻²	2.11×10 ⁻²	1.78×10 ⁻²	1.02×10 ⁻¹	1.91×10 ⁻²	9.41×10 ⁻²	7.90×10 ⁻²				
30 35 35	5L	8.52×10 ⁻²	7.16×10 ⁻²	1.77×10 ⁻²	1.48×10 ⁻²	7.73×10 ⁻²	1.60×10 ⁻²	9.41×10 ⁻²	7.90×10 ⁻²				
35 35	0	9.86×10 ⁻²	8.28×10 ⁻²	1.80×10 ⁻²	1.51×10 ⁻²	8.93×10 ⁻²	1.63×10 ⁻²	8.42×10 ⁻²	7.07×10 ⁻²				
35	0L	7.37×10 ⁻²	6.19×10 ⁻²	1.50×10 ⁻²	1.26×10 ⁻²	6.68×10 ⁻²	1.36×10 ⁻²	8.42×10 ⁻²	7.07×10 ⁻²				
	5	8.64×10 ⁻²	7.26×10 ⁻²	1.61×10 ⁻²	1.36×10 ⁻²	7.83×10 ⁻²	1.46×10 ⁻²	7.01×10 ⁻²	5.89×10 ⁻²				
SNS 45	5L	6.80×10 ⁻²	5.71×10 ⁻²	1.33×10 ⁻²	1.12×10 ⁻²	6.17×10 ⁻²	1.21×10 ⁻²	7.01×10 ⁻²	5.89×10 ⁻²				
	5	6.34×10 ⁻²	5.33×10 ⁻²	1.30×10 ⁻²	1.10×10 ⁻²	5.75×10 ⁻²	1.18×10 ⁻²	5.27×10 ⁻²	4.43×10 ⁻²				
45	5L	5.17×10 ⁻²	4.34×10 ⁻²	1.06×10 ⁻²	8.94×10 ⁻³	4.69×10 ⁻²	9.64×10 ⁻³	5.27×10 ⁻²	4.43×10 ⁻²				
55	5	5.67×10 ⁻²	4.76×10 ⁻²	1.10×10 ⁻²	9.22×10 ⁻³	5.14×10 ⁻²	9.94×10 ⁻³	4.52×10 ⁻²	3.80×10 ⁻²				
55	5L	4.42×10 ⁻²	3.72×10 ⁻²	9.09×10 ⁻³	7.64×10 ⁻³	4.01×10 ⁻²	8.24×10 ⁻³	4.52×10 ⁻²	3.80×10 ⁻²				
65	5	4.92×10 ⁻²	4.13×10 ⁻²	9.62×10 ⁻³	8.08×10 ⁻³	4.46×10 ⁻²	8.71×10 ⁻³	3.82×10 ⁻²	3.21×10 ⁻²				
65	5L	3.47×10 ⁻²	2.92×10 ⁻²	7.45×10 ⁻³	6.26×10 ⁻³	3.15×10 ⁻²	6.75×10 ⁻³	3.82×10 ⁻²	3.21×10 ⁻²				
85	5L	2.83×10 ⁻²	2.38×10 ⁻²	6.00×10 ⁻³	5.10×10 ⁻³	2.57×10 ⁻²	5.50×10 ⁻³	2.86×10 ⁻²	2.40×10 ⁻²				
12	2	2.48×10 ⁻¹		4.69×10 ⁻²		2.48×10 ⁻¹	4.69×10 ⁻²	1.40×10 ⁻¹					
12	2HR	1.70×10 ⁻¹		3.52×10 ⁻²		1.70×10 ⁻¹	3.52×10 ⁻²	1.40×10 ⁻¹					
14	4	1.92×10⁻¹		3.80×10 ⁻²		1.92×10 ⁻¹	3.80×10 ⁻²	9.93×10 ⁻²					
SHW 17	7	1.72×10 ⁻¹		3.41×10 ⁻²		1.72×10 ⁻¹	3.41×10 ⁻²	6.21×10 ⁻²					
21	1	1.59×10 ⁻¹		2.95×10 ⁻²		1.59×10 ⁻¹	2.95×10 ⁻²	5.57×10 ⁻²					
27	7	1.21×10 ⁻¹		2.39×10 ⁻²		1.21×10 ⁻¹	2.39×10 ⁻²	4.99×10 ⁻²					
35	5	8.15×10 ⁻²		1.64×10 ⁻²		8.15×10 ⁻²	1.64×10 ⁻²	3.02×10 ⁻²					
50	0	6.22×10 ⁻²		1.24×10 ⁻²		6.22×10 ⁻²	1.24×10 ⁻²	2.30×10 ⁻²					
7		4.19×10 ⁻¹		7.46×10 ⁻²		4.18×10 ⁻¹	7.45×10 ⁻²	2.58×10 ⁻¹					
7 ٧	W	3.01×10 ⁻¹		5.67×10 ⁻²		3.00×10 ⁻¹	5.66×10 ⁻²	1.36×10 ⁻¹					
9		2.95×10 ⁻¹		5.26×10 ⁻²		3.04×10 ⁻¹	5.40×10 ⁻²	2.17×10 ⁻¹					
9\	W	2.37×10 ⁻¹		4.25×10 ⁻²		2.44×10 ⁻¹	4.37×10 ⁻²	1.06×10 ⁻¹					
SRS 12	2	2.94×10 ⁻¹		4.50×10 ⁻²		2.94×10 ⁻¹	4.50×10 ⁻²	1.53×10 ⁻¹					
12	2W	2.00×10 ⁻¹		3.69×10 ⁻²		2.00×10 ⁻¹	2.00×10 ⁻¹ 3.69×10 ⁻²		7.97×10 ⁻²				
15	5	2.17×10 ⁻¹		3.69×10 ⁻²		2.17×10 ⁻¹	(10 ⁻¹ 3.69×10 ⁻² 1.41×		×10 ⁻¹				
15	5W	1.67×10 ⁻¹		2.94×10 ⁻²		1.67×10 ⁻¹	1.67×10 ⁻¹ 2.94×10 ⁻² 4.83×		×10 ⁻²				
20	0	1.80×10 ⁻¹		3.30×10 ⁻²		1.86×10 ⁻¹ 3.41×10 ⁻² 9.34		×10 ⁻²					
25	5	1.14×10 ⁻¹		2.17×10 ⁻²		1.14×10 ⁻¹ 2.17×10 ⁻² 8.13		×10 ⁻²					

 K_{AR1} : Equivalent factor in the M_{A} radial direction when one LM block is used

 $K_{\text{\tiny{AL1}}}$: Equivalent factor in the $M_{\text{\tiny{A}}}$ reverse radial direction

when one LM block is used

Karz: Equivalent factor in the Ma radial direction when two LM blocks are used in close contact with each other

 $K_{\text{AL2}}\,$: Equivalent factor in the M_{A} reverse radial direction when two LM blocks are used in close contact with

each other

 $\begin{array}{lll} K_{\text{B1}} &: M_{\text{B}} \text{ Equivalent factor when one LM block is used} \\ K_{\text{B2}} &: M_{\text{B}} \text{ Equivalent factor when two LM blocks are used in} \\ &: \text{close contact with each other} \end{array}$

 $K_{\text{\tiny CR}}~:$ Equivalent factor in the $M_{\text{\tiny C}}$ radial direction

Kcl. : Equivalent factor in the Mc reverse radial direction

Table3 Equivalent Factors (Models SCR and HSR)

Model No.		Equivalent factor									
		K ar1	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl		
	25	9.25	× 10 ⁻²	1.90×10 ⁻²		9.25×10 ⁻²	1.90×10 ⁻²	9.29>	<10 ⁻²		
	30	8.47×10 ⁻²		1.63×10 ⁻²		8.47×10 ⁻²	1.63×10 ⁻²	7.69>	<10 ⁻²		
SCR	35	6.95×10 ⁻²		1.43×10 ⁻²		6.95×10 ⁻²	1.43×10 ⁻²	6.29>	<10 ⁻²		
	45	6.13	×10 ⁻²	1.24×10 ⁻²		6.13×10 ⁻²	<10 ⁻² 1.24×10 ⁻² 4.69		<10 ⁻²		
	65	3.87×10 ⁻²		7.91×10 ⁻³		3.87×10 ⁻²	3.87×10 ⁻² 7.91×10 ⁻³		<10 ⁻²		
	8	4.39×10 ⁻¹		6.75×10 ⁻²		4.39×10 ⁻¹	6.75×10 ⁻²	2.97>	<10 ⁻¹		
	10	3.09×10 ⁻¹		5.33×10 ⁻²		3.09×10 ⁻¹ 5.33×10 ⁻²		2.35×10 ⁻¹			
	12	2.08×10 ⁻¹		3.74×10 ⁻²		2.08×10 ⁻¹ 3.74×10 ⁻²		1.91×10⁻¹			
	15	1.68×10 ⁻¹		2.95×10 ⁻²		1.68×10 ⁻¹ 2.95×10 ⁻²		1.60×10 ⁻¹			
	20	1.25×10 ⁻¹		2.28×10 ⁻²		1.25×10 ⁻¹ 2.28×10 ⁻²		1.18×10 ⁻¹			
	20L	9.83×10 ⁻²		1.91×10 ⁻²		9.83×10 ⁻² 1.91×10 ⁻²		1.18×10 ⁻¹			
	25	1.12×10 ⁻¹		2.01 × 10 ⁻²		1.12×10 ⁻¹	2×10 ⁻¹ 2.01×10 ⁻²		1.00×10 ⁻¹		
	25L	8.66×10 ⁻²		1.68×10 ⁻²		8.66×10 ⁻² 1.68×10 ⁻²		1.00×10 ⁻¹			
	30	8.93×10 ⁻²		1.73×10 ⁻²		8.93×10 ⁻² 1.73×10 ⁻²		8.31×10 ⁻²			
	30L	7.02×10 ⁻²		1.43×10 ⁻²		7.02×10 ⁻² 1.43×10 ⁻²		8.31×10 ⁻²			
	35	7.81×10 ⁻²		1.55×10 ⁻²		7.81×10 ⁻² 1.55×10 ⁻²		6.74>	6.74×10 ⁻²		
	35L	6.15×10 ⁻²		1.28×10 ⁻²		6.15×10 ⁻² 1.28×10 ⁻²		6.74>	6.74×10 ⁻²		
HSR	45	6.71×10 ⁻²		1.21 × 10 ⁻²		6.71×10 ⁻² 1.21×10 ⁻²		5.22×10 ⁻²			
IIOIX	45L	5.20×10 ⁻²		1.00×10 ⁻²		5.20×10 ⁻²	5.20×10 ⁻² 1.00×10 ⁻²		5.22×10 ⁻²		
	55	5.59×10 ⁻²		1.03×10 ⁻²		5.59×10 ⁻²	5.59×10 ⁻² 1.03×10 ⁻²		4.27×10 ⁻²		
	55L	4.33×10 ⁻²		8.56×10 ⁻³		4.33×10 ⁻²	4.33×10 ⁻² 8.56×10 ⁻³		4.27×10 ⁻²		
	65	4.47×10 ⁻²		9.13×10 ⁻³		4.47×10 ⁻² 9.13×10 ⁻³		3.69×10 ⁻²			
	65L	3.28×10 ⁻²		7.06×10 ⁻³		3.28×10 ⁻² 7.06×10 ⁻³		3.69×10 ⁻²			
	85	3.73×10 ⁻²		6.80×10 ⁻³		3.73×10 ⁻² 6.80×10 ⁻³		2.79×10 ⁻²			
	85L	2.89×10 ⁻²		5.68×10 ⁻³		2.89×10 ⁻² 5.68×10 ⁻³		2.79×10 ⁻²			
	100	2.60×10 ⁻²		5.15×10 ⁻³		2.60×10 ⁻² 5.15×10 ⁻³		2.25×10 ⁻²			
	120	2.36×10 ⁻²		4.72×10 ⁻³		2.36×10 ⁻² 4.72×10 ⁻³		1.97×10 ⁻²			
	150	2.17×10 ⁻²		4.35×10 ⁻³		2.17×10 ⁻² 4.35×10 ⁻³		1.61×10 ⁻²			
	15M2A	1.65×10⁻¹		2.89×10 ⁻²		1.65×10 ⁻¹ 2.89×10 ⁻²		1.86×10 ⁻¹			
	20M2A	1.23×10 ⁻¹		2.23×10 ⁻²		1.23×10 ⁻¹	1.23×10 ⁻¹ 2.23×10 ⁻²		1.34×10 ⁻¹		
	25M2A	1.10×10 ⁻¹		1.98×10 ⁻²		1.10×10 ⁻¹	1.98×10 ⁻²	1.14×10 ⁻¹			

 $K_{\mbox{\scriptsize AR1}}$: Equivalent factor in the $M_{\mbox{\tiny A}}$ radial direction when one LM block is used

 $K_{\mbox{\tiny AL1}}\,$: Equivalent factor in the $M_{\mbox{\tiny A}}$ reverse radial direction

when one LM block is used

 $K_{\mbox{\tiny AR2}}$: Equivalent factor in the $M_{\mbox{\tiny A}}$ radial direction when two LM blocks are used in close contact with each other

 $K_{\text{AL2}}\,$: Equivalent factor in the M_{A} reverse radial direction when two LM blocks are used in close contact with

each other

 $K_{\text{B}_{1}}$: M_{B} Equivalent factor when one LM block is used $K_{\text{B}_{2}}$: M_{B} Equivalent factor when two LM blocks are used in

close contact with each other

 K_{CR} : Equivalent factor in the M_{C} radial direction K_{CL} : Equivalent factor in the M_{C} reverse radial direction

Calculating the Applied Load

Table4 Equivalent Factors (Models SR and NR)

Model No.		Equivalent factor								
		K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	К в1	K _{B2}	Kcr	Kcl	
SR	15W (TB)	2.09×10 ⁻¹	1.04×10 ⁻¹	3.74×10 ⁻²	1.87×10 ⁻²	1.46×10 ⁻¹	2.58×10 ⁻²	1.70×10 ⁻¹	8.48×10 ⁻²	
	15V (SB)	3.40×10 ⁻¹	1.70×10 ⁻¹	4.94×10 ⁻²	2.47×10 ⁻²	2.35×10 ⁻¹	3.32×10 ⁻²	1.70×10 ⁻¹	8.48×10 ⁻²	
	20W (TB)	1.72×10 ⁻¹	8.61×10 ⁻²	3.24×10 ⁻²	1.62×10 ⁻²	1.21×10 ⁻¹	2.25×10 ⁻²	1.30×10 ⁻¹	6.49×10 ⁻²	
	20V (SB)	2.72×10 ⁻¹	1.36×10 ⁻¹	4.33×10 ⁻²	2.16×10 ⁻²	1.88×10 ⁻¹	2.94×10 ⁻²	1.30×10 ⁻¹	6.49×10 ⁻²	
	25W (TB)	1.38×10 ⁻¹	6.89×10 ⁻²	2.59×10 ⁻²	1.30×10 ⁻²	9.67×10 ⁻²	1.80×10 ⁻²	1.11×10 ⁻¹	5.55×10 ⁻²	
	25V (SB)	2.17×10 ⁻¹	1.09×10 ⁻¹	3.46×10 ⁻²	1.73×10 ⁻²	1.51×10 ⁻¹	2.35×10 ⁻²	1.11×10 ⁻¹	5.55×10 ⁻²	
	30W (TB)	1.15×10 ⁻¹	5.74×10 ⁻²	2.22×10 ⁻²	1.11×10 ⁻²	8.06×10 ⁻²	1.55×10 ⁻²	9.22×10 ⁻²	4.61×10 ⁻²	
	30V (SB)	1.99×10 ⁻¹	9.93×10 ⁻²	2.99×10 ⁻²	1.49×10 ⁻²	1.37×10 ⁻¹	2.02×10 ⁻²	9.22×10 ⁻²	4.61×10 ⁻²	
	35W (TB)	1.04×10 ⁻¹	5.21×10 ⁻²	1.92×10 ⁻²	9.61×10 ⁻³	7.31×10 ⁻²	1.33×10 ⁻²	7.64×10 ⁻²	3.82×10 ⁻²	
	35V (SB)	1.70×10 ⁻¹	8.51×10 ⁻²	2.61×10 ⁻²	1.31×10 ⁻²	1.17×10 ⁻¹	1.77×10 ⁻²	7.64×10 ⁻²	3.82×10 ⁻²	
	45W (TB)	9.12×10 ⁻²	4.56×10 ⁻²	1.69×10 ⁻²	8.47×10 ⁻³	6.39×10 ⁻²	1.17×10 ⁻²	5.71×10 ⁻²	2.85×10 ⁻²	
	55W (TB)	6.89×10 ⁻²	3.44×10 ⁻²	1.39×10 ⁻²	6.93×10 ⁻³	4.84×10 ⁻²	9.66×10 ⁻³	5.46×10 ⁻²	2.73×10 ⁻²	
	25X	1.10×10 ⁻¹	7.78×10 ⁻²	2.19×10 ⁻²	1.55×10 ⁻²	8.11×10 ⁻²	1.63×10 ⁻²	9.26×10 ⁻²	6.58×10 ⁻²	
	25XL	8.91×10 ⁻²	6.33×10 ⁻²	1.79×10 ⁻²	1.27×10 ⁻²	6.55×10 ⁻²	1.33×10 ⁻²	9.26×10 ⁻²	6.58×10 ⁻²	
	30	9.66×10 ⁻²	6.86×10 ⁻²	1.84×10 ⁻²	1.31×10 ⁻²	7.05×10 ⁻²	1.35×10 ⁻²	8.28×10 ⁻²	5.88×10 ⁻²	
	30L	7.43×10 ⁻²	5.27×10 ⁻²	1.52×10 ⁻²	1.08×10 ⁻²	5.47×10 ⁻²	1.13×10 ⁻²	8.28×10 ⁻²	5.88×10 ⁻²	
	35	8.82×10 ⁻²	6.26×10 ⁻²	1.64×10 ⁻²	1.16×10 ⁻²	6.42×10 ⁻²	1.20×10 ⁻²	6.92×10 ⁻²	4.91×10 ⁻²	
	35L	6.67×10 ⁻²	4.74×10 ⁻²	1.35×10 ⁻²	9.61×10 ⁻³	4.90×10 ⁻²	1.00×10 ⁻²	6.92×10 ⁻²	4.91×10 ⁻²	
	45	6.84×10 ⁻²	4.86×10 ⁻²	1.30×10 ⁻²	9.23×10 ⁻³	5.00×10 ⁻²	9.58×10 ⁻³	5.19×10 ⁻²	3.68×10 ⁻²	
	45L	5.11×10 ⁻²	3.62×10 ⁻²	1.08×10 ⁻²	7.66×10 ⁻³	3.79×10 ⁻²	8.07×10 ⁻³	5.19×10 ⁻²	3.68×10 ⁻²	
NR	55	5.75×10 ⁻²	4.08×10 ⁻²	1.11×10 ⁻²	7.90×10 ⁻³	4.21×10 ⁻²	8.21×10 ⁻³	4.44×10 ⁻²	3.15×10 ⁻²	
NK	55L	4.53×10 ⁻²	3.22×10 ⁻²	9.16×10 ⁻³	6.51×10 ⁻³	3.34×10 ⁻²	6.79×10 ⁻³	4.44×10 ⁻²	3.15×10 ⁻²	
	65	4.97×10 ⁻²	3.53×10 ⁻²	9.74×10 ⁻³	6.91×10 ⁻³	3.64×10 ⁻²	7.18×10 ⁻³	3.75×10 ⁻²	2.66×10 ⁻²	
	65L	3.56×10 ⁻²	2.53×10 ⁻²	7.51×10 ⁻³	5.33×10 ⁻³	2.65×10 ⁻²	5.61×10 ⁻³	3.75×10 ⁻²	2.66×10 ⁻²	
	75	4.21×10 ⁻²	2.99×10 ⁻²	8.31×10 ⁻³	5.90×10 ⁻³	3.08×10 ⁻²	6.13×10 ⁻³	3.16×10 ⁻²	2.24×10 ⁻²	
	75L	3.14×10 ⁻²	2.23×10 ⁻²	6.74×10 ⁻³	4.78×10 ⁻³	2.33×10 ⁻²	5.04×10 ⁻³	3.16×10 ⁻²	2.24×10 ⁻²	
	85	3.70×10 ⁻²	2.62×10 ⁻²	7.31×10 ⁻³	5.19×10 ⁻³	2.71×10 ⁻²	5.40×10 ⁻³	2.80×10 ⁻²	1.99×10 ⁻²	
	85L	2.80×10 ⁻²	1.99×10 ⁻²	6.07×10 ⁻³	4.31×10 ⁻³	2.08×10 ⁻²	4.55×10 ⁻³	2.80×10 ⁻²	1.99×10 ⁻²	
	100	3.05×10 ⁻²	2.17×10 ⁻²	6.20×10 ⁻³	4.41×10 ⁻³	2.26×10 ⁻²	4.63×10 ⁻³	2.38×10 ⁻²	1.69×10 ⁻²	
	100L	2.74×10 ⁻²	1.95×10 ⁻²	5.46×10 ⁻³	3.87×10 ⁻³	2.00×10 ⁻²	4.00×10 ⁻³	2.38×10 ⁻²	1.69×10 ⁻²	

 $K_{\mbox{\tiny AR1}}\,$: Equivalent factor in the $M_{\mbox{\tiny A}}$ radial direction when one LM block is used

KAL1 : Equivalent factor in the MA reverse radial direction when one LM block is used

 $K_{\mbox{\tiny AR2}}\,$: Equivalent factor in the $M_{\mbox{\tiny A}}$ radial direction when two LM blocks are used in close contact with each other $K_{\scriptscriptstyle{AL2}}\;$: Equivalent factor in the $M_{\scriptscriptstyle{A}}$ reverse radial direction when two LM blocks are used in close contact with each other

 K_{B1} : M_{B} Equivalent factor when one LM block is used K_{B2} : M_{B} Equivalent factor when two LM blocks are used in close contact with each other

KCR : Equivalent factor in the Mc radial direction

Kcl.: Equivalent factor in the Mc reverse radial direction

Table5 Equivalent Factors (Models NRS and HRW)

Maa	lal Na		Equiv	alent factor		
IVIOC	lel No.	Karı Kal	.1 Kar2 Kal2	K _{B1}	K _{B2}	Kcr Kcl
	25X	1.05×10 ⁻¹	2.11 × 10 ⁻²	1.05×10 ⁻¹	2.11×10 ⁻²	9.41×10 ⁻²
	25XL	8.60×10 ⁻²	1.73×10 ⁻²	8.60×10 ⁻²	1.73×10 ⁻²	9.41×10 ⁻²
	30	9.30×10 ⁻²	1.77×10 ⁻²	9.30×10 ⁻²	1.77×10 ⁻²	8.44×10 ⁻²
	30L	7.17×10 ⁻²	1.47×10 ⁻²	7.17×10 ⁻²	1.47×10 ⁻²	8.44×10 ⁻²
	35	8.47×10 ⁻²	1.57×10 ⁻²	8.47×10 ⁻²	1.57×10 ⁻²	7.08×10 ⁻²
	35L	6.44×10 ⁻²	1.31 × 10 ⁻²	6.44×10 ⁻²	1.31×10 ⁻²	7.08×10 ⁻²
	45	6.58×10 ⁻²	1.25×10 ⁻²	6.58×10 ⁻²	1.25×10 ⁻²	5.26×10 ⁻²
	45L	4.92×10 ⁻²	1.04×10 ⁻²	4.92×10 ⁻²	1.04×10 ⁻²	5.26×10 ⁻²
NRS	55	5.54×10 ⁻²	1.07×10 ⁻²	5.54×10 ⁻²	1.07×10 ⁻²	4.52×10 ⁻²
INKS	55L	4.38×10 ⁻²	8.85×10 ⁻³	4.38×10 ⁻²	8.85×10 ⁻³	4.52×10 ⁻²
	65	4.79×10 ⁻²	9.38×10 ⁻³	4.79×10 ⁻²	9.38×10 ⁻³	3.81×10 ⁻²
	65L 3.43×10 ⁻²		7.25×10 ⁻³	3.43×10 ⁻²	7.25×10 ⁻³	3.81×10 ⁻²
	75	4.05×10 ⁻²	8.01 × 10 ⁻³	4.05×10 ⁻²	8.01×10 ⁻³	3.20×10 ⁻²
	75L	3.03×10 ⁻²	6.50×10 ⁻³	3.03×10 ⁻²	6.50×10 ⁻³	3.20×10 ⁻²
	85	3.56×10 ⁻²	7.05×10 ⁻³	3.56×10 ⁻²	7.05×10 ⁻³	2.83×10 ⁻²
	85L	2.70×10 ⁻²	5.87×10 ⁻³	2.70×10 ⁻²	5.87×10 ⁻³	2.83×10 ⁻²
	100	2.93×10 ⁻²	5.97×10 ⁻³	2.93×10 ⁻²	5.97×10 ⁻³	2.41×10 ⁻²
	100L	2.65×10 ⁻²	5.27×10 ⁻³	2.65×10 ⁻²	5.27×10 ⁻³	2.41×10 ⁻²
	12	2.72×10 ⁻¹	5.16×10 ⁻²	5.47×10 ⁻¹	1.04×10 ⁻¹	1.40×10 ⁻¹
	14	2.28×10 ⁻¹	4.16×10 ⁻²	4.54×10 ⁻¹	8.28×10 ⁻²	1.01×10 ⁻¹
	17	1.95×10⁻¹	3.33×10 ⁻²	1.95×10 ⁻¹	3.33×10 ⁻²	6.32×10 ⁻²
HRW	21	1.64×10 ⁻¹	2.89×10 ⁻²	1.64×10 ⁻¹	2.89×10 ⁻²	5.92×10 ⁻²
	27	1.30×10 ⁻¹	2.33×10 ⁻²	1.30×10 ⁻¹	2.33×10 ⁻²	5.12×10 ⁻²
	35	8.66×10 ⁻²	1.59×10 ⁻²	8.66×10 ⁻²	1.59×10 ⁻²	3.06×10 ⁻²
	50	6.50×10 ⁻²	1.21 × 10 ⁻²	6.50×10 ⁻²	1.21×10 ⁻²	2.35×10 ⁻²
	60	5.77×10 ⁻²	8.24×10 ⁻³	5.77×10 ⁻²	8.24×10 ⁻³	1.77×10 ⁻²

 K_{AR1} : Equivalent factor in the M_{A} radial direction when one LM block is used

 $K_{\text{\tiny{AL1}}}\,$: Equivalent factor in the $M_{\text{\tiny{A}}}$ reverse radial direction

when one LM block is used

Kara: Equivalent factor in the Ma radial direction when two
LM blocks are used in close contact with each other

 $K_{\text{\tiny AL2}}\,\,$: Equivalent factor in the $M_{\text{\tiny A}}$ reverse radial direction when two LM blocks are used in close contact with each other

 $K_{\tt B1}$: $M_{\tt B}$ Equivalent factor when one LM block is used $K_{\tt B2}$: $M_{\tt B}$ Equivalent factor when two LM blocks are used in

close contact with each other

 K_{CR} : Equivalent factor in the M_{C} radial direction K_{CL} : Equivalent factor in the M_{C} reverse radial direction

Calculating the Applied Load

Table6 Equivalent Factors (Model RSR)

	1.1.81.				Equivale	ent factor			
IVIOC	lel No.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	К в1	K _{B2}	Kcr	Kcl
	3M	9.20×10 ⁻¹		1.27	×10 ⁻¹	9.20×10 ⁻¹	1.27×10 ⁻¹	6.06	×10 ⁻¹
	3N	6.06	×10 ⁻¹	1.01	×10 ⁻¹	6.06×10 ⁻¹	1.01×10 ⁻¹	6.06	×10 ⁻¹
	3W	7.03	×10 ⁻¹	1.06	×10 ⁻¹	7.03×10 ⁻¹	1.06×10 ⁻¹	3.17	×10 ⁻¹
	3WN	4.76	×10 ⁻¹	8.27	×10 ⁻²	4.76×10 ⁻¹	8.27×10 ⁻²	3.17	×10 ⁻¹
	5M	6.67	×10 ⁻¹	9.06	X 10 ⁻²	6.67×10 ⁻¹	9.06×10 ⁻²	3.85×10⁻¹	
	5N	5.21	×10 ⁻¹	8.00	X 10 ⁻²	5.21×10 ⁻¹	8.00×10 ⁻²	3.85×10 ⁻¹	
	5W	4.85	×10 ⁻¹	7.28	×10 ⁻²	4.85×10 ⁻¹	7.28×10 ⁻²	1.96	×10 ⁻¹
	5WN	3.44	×10 ⁻¹	5.93×10 ⁻²		3.44×10 ⁻¹	5.93×10 ⁻²	1.96	×10 ⁻¹
	7M	4.66	×10 ⁻¹	6.57	×10 ⁻²	4.66×10 ⁻¹	6.57×10 ⁻²	2.74	×10 ⁻¹
	7Z	4.66	×10 ⁻¹	6.60	×10 ⁻²	4.66×10 ⁻¹	6.60×10 ⁻²	2.74	×10 ⁻¹
	7N	2.88	×10 ⁻¹	5.01	×10 ⁻²	2.88×10 ⁻¹	5.01×10 ⁻²	2.74	×10 ⁻¹
	7W	3.07	×10 ⁻¹	5.30	×10 ⁻²	3.07×10 ⁻¹	5.30×10 ⁻²	1.40	×10 ⁻¹
	7WZ	3.30	×10 ⁻¹	5.12	X 10 ⁻²	3.30×10 ⁻¹	5.12×10 ⁻²	1.40	×10 ⁻¹
	7WN	2.18	×10 ⁻¹	4.13	×10 ⁻²	2.18×10 ⁻¹	4.13×10 ⁻²	1.40	×10 ⁻¹
	9K	3.06×10 ⁻¹		5.19×10 ⁻²		3.06×10 ⁻¹	5.19×10 ⁻²	2.15	×10 ⁻¹
	9Z	3.06×10 ⁻¹		5.23×10 ⁻²		3.06×10 ⁻¹	5.23×10 ⁻²	2.15	×10 ⁻¹
	9N	2.15×10 ⁻¹		4.08×10 ⁻²		2.15×10 ⁻¹	4.08×10 ⁻²	2.15	×10 ⁻¹
RSR	9WV	2.44×10 ⁻¹		4.22×10 ⁻²		2.44×10 ⁻¹	4.22×10 ⁻²	1.09	×10 ⁻¹
	9WZ	2.44×10 ⁻¹		4.22×10 ⁻²		2.44×10 ⁻¹	4.22×10 ⁻²	1.09	×10 ⁻¹
	9WN	1.73×10 ⁻¹		3.32	X 10 ⁻²	1.73×10 ⁻¹	4.22×10 ⁻²	1.09	×10 ⁻¹
	12V	3.52×10 ⁻¹	2.46×10 ⁻¹	5.37×10 ⁻²	3.76×10 ⁻²	2.81×10 ⁻¹	4.21×10 ⁻²	2.09×10 ⁻¹	1.46×10 ⁻¹
	12Z	3.52×10 ⁻¹	2.46×10 ⁻¹	5.37×10 ⁻²	3.76×10 ⁻²	2.81×10 ⁻¹	4.21×10 ⁻²	2.09×10 ⁻¹	1.46×10 ⁻¹
	12N	2.30×10 ⁻¹	1.61×10 ⁻¹	4.08×10 ⁻²	2.85×10 ⁻²	1.85×10 ⁻¹	3.25×10 ⁻²	2.09×10 ⁻¹	1.46×10 ⁻¹
	12WV	2.47×10 ⁻¹	1.73×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	1.99×10 ⁻¹	3.49×10 ⁻²	1.02×10 ⁻¹	7.15×10 ⁻²
	12WZ	2.47×10 ⁻¹	1.73×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	1.99×10 ⁻¹	3.49×10 ⁻²	1.02×10 ⁻¹	7.15×10 ⁻²
	12WN	1.71×10 ⁻¹	1.20×10 ⁻¹	3.36×10 ⁻²	2.35×10 ⁻²	1.38×10 ⁻¹	2.70×10 ⁻²	1.02×10 ⁻¹	7.15×10 ⁻²
	14WV	2.10×10 ⁻¹	1.47×10 ⁻¹	3.89×10 ⁻²	2.73×10 ⁻²	1.69×10 ⁻¹	3.10×10 ⁻²	8.22×10 ⁻²	5.75×10 ⁻²
	15V	2.77×10 ⁻¹	1.94×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	2.21×10 ⁻¹	3.45×10 ⁻²	1.69×10 ⁻¹	1.18×10 ⁻¹
	15Z	2.77×10 ⁻¹	1.94×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	2.21×10 ⁻¹	3.45×10 ⁻²	1.69×10 ⁻¹	1.18×10 ⁻¹
	15N	1.70×10 ⁻¹	1.19×10 ⁻¹	3.24×10 ⁻²	2.27×10 ⁻²	1.37×10 ⁻¹	2.59×10 ⁻²	1.69×10 ⁻¹	1.18×10 ⁻¹
	15WV	1.95×10 ⁻¹	1.36×10 ⁻¹	3.52×10 ⁻²	2.46×10 ⁻²	1.56×10 ⁻¹	2.80×10 ⁻²	5.83×10 ⁻²	4.08×10 ⁻²
	15WZ	1.95×10 ⁻¹	1.36×10 ⁻¹	3.52×10 ⁻²	2.46×10 ⁻²	1.56×10 ⁻¹	2.80×10 ⁻²	5.83×10 ⁻²	4.08×10 ⁻²
	15WN	1.34×10 ⁻¹	9.41×10 ⁻²	2.68×10 ⁻²	1.88×10 ⁻²	1.09×10 ⁻¹	2.16×10 ⁻²	5.82×10 ⁻²	4.08×10 ⁻²
	20V	1.68×10 ⁻¹	1.18×10 ⁻¹	2.92×10 ⁻²	2.04×10 ⁻²	1.35×10 ⁻¹	2.32×10 ⁻²	1.30×10 ⁻¹	9.13×10 ⁻²
	20N	1.20×10 ⁻¹	8.39×10 ⁻²	2.30×10 ⁻²	1.61×10 ⁻²	9.68×10 ⁻²	1.84×10 ⁻²	1.30×10 ⁻¹	9.13×10 ⁻²
	•								

KAR1: Equivalent factor in the MA radial direction when one

LM block is used

 $K_{\text{\tiny{AL1}}}\,\,$: Equivalent factor in the $M_{\text{\tiny{A}}}$ reverse radial direction

when one LM block is used

 K_{AR2} : Equivalent factor in the M_{A} radial direction when two LM blocks are used in close contact with each other

KAL2 : Equivalent factor in the MA reverse radial direction when two LM blocks are used in close contact with each other

 $K_{\text{B}1}$: M_{B} Equivalent factor when one LM block is used $K_{\text{B}2}$: M_{B} Equivalent factor when two LM blocks are used in

close contact with each other

Kcr : Equivalent factor in the Mc radial direction

Kcl. : Equivalent factor in the Mc reverse radial direction

Table7 Equivalent Factors (Models RSH, HR and GSR)

Model No.		Equivalent factor							
IVIOC	iei ivo.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	К в1	K _{B2}	Kcr	Kcl
	7Z	4.66×10 ⁻¹		6.60	6.60×10 ⁻²		6.60×10 ⁻²	2.74	×10 ⁻¹
	7WZ	3.30	× 10 ⁻¹	5.12	× 10 ⁻²	3.30×10 ⁻¹	5.12×10 ⁻²	1.40	×10 ⁻¹
	9Z	3.06	× 10 ⁻¹	5.23	X 10 ⁻²	3.06×10 ⁻¹	5.23×10 ⁻²	2.15	×10 ⁻¹
RSH	9WZ	2.44	× 10 ⁻¹	4.22	X 10 ⁻²	2.44×10 ⁻¹	4.22×10 ⁻²	1.09	×10 ⁻¹
KOH	12Z	3.52×10 ⁻¹	2.46×10 ⁻¹	5.37×10 ⁻²	3.76×10 ⁻²	2.81×10 ⁻¹	4.21 × 10 ⁻²	2.09×10 ⁻¹	1.46×10 ⁻¹
	12WZ	2.47×10 ⁻¹	1.73×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	1.99×10 ⁻¹	3.49×10 ⁻²	1.02×10 ⁻¹	7.15×10 ⁻²
	15Z	2.77×10 ⁻¹	1.94×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	2.21×10 ⁻¹	3.45×10 ⁻²	1.69×10 ⁻¹	1.18×10 ⁻¹
	15WZ	1.95×10 ⁻¹	1.36×10 ⁻¹	3.52×10 ⁻²	2.46×10 ⁻²	1.56×10 ⁻¹	2.80×10 ⁻²	5.83×10 ⁻²	4.08×10 ⁻²
	918	2.65×10 ⁻¹	2.65×10 ⁻¹	_	_	2.65×10 ⁻¹	_	_	_
	1123	2.08×10 ⁻¹	2.08×10 ⁻¹	_	_	2.08×10 ⁻¹	_	_	_
	1530	1.56×10 ⁻¹	1.56×10 ⁻¹	_	_	1.56×10 ⁻¹	_	_	_
	2042	1.11×10 ⁻¹	1.11×10 ⁻¹	_	_	1.11×10 ⁻¹	_	_	_
	2042T	8.64×10 ⁻²	8.64×10 ⁻²	_	_	8.64×10 ⁻²	_	_	_
	2555	7.79×10 ⁻²	7.79×10 ⁻²	_	_	7.79×10 ⁻²	_	_	_
	2555T	6.13×10 ⁻²	6.13×10 ⁻²	_	_	6.13×10 ⁻²	_	_	_
HR	3065	6.92×10 ⁻²	6.92×10 ⁻²	_	_	6.92×10 ⁻²	_	_	_
пк	3065T	5.45×10 ⁻²	5.45×10 ⁻²	_	_	5.45×10 ⁻²	_	_	_
	3575	6.23×10 ⁻²	6.23×10 ⁻²	_	_	6.23×10 ⁻²	_	_	_
	3575T	4.90×10 ⁻²	4.90×10 ⁻²	_	_	4.90×10 ⁻²	_	_	_
	4085	5.19×10 ⁻²	5.19×10 ⁻²	_	_	5.19×10 ⁻²	_	_	_
	4085T	4.09×10 ⁻²	4.09×10 ⁻²	_	_	4.09×10 ⁻²	_	_	_
	50105	4.15×10 ⁻²	4.15×10 ⁻²	_	_	4.15×10 ⁻²	_	_	_
	50105T	3.27×10 ⁻²	3.27×10 ⁻²	_	_	3.27×10 ⁻²	_	_	_
	60125	2.88×10 ⁻²	2.88×10 ⁻²	_	_	2.88×10 ⁻²	_	_	_
	15T	1.61×10 ⁻¹	1.44×10 ⁻¹	2.88×10 ⁻²	2.59×10 ⁻²	1.68×10 ⁻¹	3.01 × 10 ⁻²	_	_
	15V	2.21×10 ⁻¹	1.99×10 ⁻¹	3.54×10 ⁻²	3.18×10 ⁻²	2.30×10 ⁻¹	3.68×10 ⁻²	_	_
	20T	1.28×10 ⁻¹	1.16×10 ⁻¹	2.34×10 ⁻²	2.10×10 ⁻²	1.34×10 ⁻¹	2.44×10 ⁻²	_	_
GSR	20V	1.77×10 ⁻¹	1.59×10 ⁻¹	2.87×10 ⁻²	2.58×10 ⁻²	1.84×10 ⁻¹	2.99×10 ⁻²	_	_
Jook	25T	1.07×10 ⁻¹	9.63×10 ⁻²	1.97×10 ⁻²	1.77×10 ⁻²	1.12×10 ⁻¹	2.06×10 ⁻²	_	_
	25V	1.47×10 ⁻¹	1.33×10 ⁻¹	2.42×10 ⁻²	2.18×10 ⁻²	1.53×10 ⁻¹	2.52×10 ⁻²	-	_
	30T	9.17×10 ⁻²	8.26×10 ⁻²	1.68×10 ⁻²	1.51×10 ⁻²	9.59×10 ⁻²	1.76×10 ⁻²	_	_
	35T	8.03×10 ⁻²	7.22×10 ⁻²	1.48×10 ⁻²	1.33×10 ⁻²	8.39×10 ⁻²	1.55×10 ⁻²	_	

Kari: Equivalent factor in the Ma radial direction when one

LM block is used

 $K_{\text{\tiny{AL1}}}\,$: Equivalent factor in the $M_{\text{\tiny{A}}}$ reverse radial direction

when one LM block is used

KAR2 : Equivalent factor in the MA radial direction when two LM blocks are used in close contact with each other Kal2 : Equivalent factor in the Ma reverse radial direction when two LM blocks are used in close contact with

each other

 $K_{\mbox{\tiny B1}}$: $M_{\mbox{\tiny B}}$ Equivalent factor when one LM block is used K_{B2} : M_B Equivalent factor when two LM blocks are used in

close contact with each other

 K_{CR} : Equivalent factor in the Mc radial direction K_{CL} : Equivalent factor in the Mc reverse radial direction

Calculating the Applied Load

Table8 Equivalent Factors (Model CSR, MX,JR, NSR and SRG)

	I-I NI-			Equivale	ent factor			
IVIOC	lel No.	Karı Kalı	K _{AR2}	K _{AL2}	К в1	K _{B2}	Kcr	Kcl
	15	1.68×10 ⁻¹	2.95>	<10 ⁻²	1.68×10 ⁻¹	2.95×10 ⁻²	1.60	×10 ⁻¹
	20S	1.25×10 ⁻¹	2.28>	<10 ⁻²	1.25×10 ⁻¹	2.28×10 ⁻²	1.187	×10 ⁻¹
	20	9.83×10 ⁻²	1.91>	<10 ⁻²	9.83×10 ⁻²	1.91×10 ⁻²	1.182	×10 ⁻¹
	25S	1.12×10 ⁻¹	2.01>	<10 ⁻²	1.12×10 ⁻¹	2.01×10 ⁻²	1.002	×10 ⁻¹
CSR	25	8.66×10 ⁻²	1.68>	<10 ⁻²	8.66×10 ⁻²	1.68×10 ⁻²	1.002	× 10 ⁻¹
	30S	8.93×10 ⁻²	1.73>	<10 ⁻²	8.93×10 ⁻²	1.73×10 ⁻²	8.31	×10 ⁻²
	30	7.02×10 ⁻²	1.43>	<10 ⁻²	7.02×10 ⁻²	1.43×10 ⁻²	8.31	×10 ⁻²
	35	6.15×10 ⁻²	1.28>	<10 ⁻²	6.15×10 ⁻²	1.28×10 ⁻²	6.742	×10 ⁻²
	45	5.20×10 ⁻²	1.00>	<10 ⁻²	5.20×10 ⁻²	1.00×10 ⁻²	5.22	×10 ⁻²
MX	5	4.27×10 ⁻¹	7.01>	<10 ⁻²	4.27×10 ⁻¹	7.01×10 ⁻²	3.85	×10 ⁻²
IVIA	7W	2.18×10 ⁻¹	4.13>	<10 ⁻¹	2.18×10 ⁻¹	4.13×10 ⁻¹	1.40	×10 ⁻¹
	25	1.12×10 ⁻¹	2.01>	<10 ⁻²	1.12×10 ⁻¹	2.01×10 ⁻²	1.00	×10 ⁻¹
JR	35	7.81×10 ⁻²	1.55>	<10 ⁻²	7.81×10 ⁻²	1.55×10 ⁻²	6.742	×10 ⁻²
JK	45	6.71×10 ⁻²	1.21>	<10 ⁻²	6.71×10 ⁻²	1.21×10 ⁻²	5.22	×10 ⁻²
	55	5.59×10 ⁻²	1.03>	<10 ⁻²	5.59×10 ⁻²	1.03×10 ⁻²	4.27	×10 ⁻²
	20TBC	2.29×10 ⁻¹	2.68>	<10 ⁻²	2.29×10 ⁻¹	2.68×10 ⁻²	_	_
	25TBC	2.01×10 ⁻¹	2.27>	<10 ⁻²	2.01×10 ⁻¹	2.27×10 ⁻²	_	_
NSR	30TBC	1.85×10 ⁻¹	1.93>	<10 ⁻²	1.85×10 ⁻¹	1.93×10 ⁻²	_	_
NOIN	40TBC	1.39×10 ⁻¹	1.60>	<10 ⁻²	1.39×10 ⁻¹	1.60×10 ⁻²	_	_
	50TBC	1.24×10 ⁻¹	1.42>	<10 ⁻²	1.24×10 ⁻¹	1.42×10 ⁻²	I	_
	70TBC	9.99×10 ⁻²	1.15>	<10 ⁻²	9.99×10 ⁻²	1.15×10 ⁻²	I	_
	15	1.23×10 ⁻¹	2.07>	<10 ⁻²	1.23×10 ⁻¹	2.07×10 ⁻²	1.042	×10 ⁻¹
	20	9.60×10 ⁻²	1.71>	<10 ⁻²	9.60×10 ⁻²	1.71×10 ⁻²	8.002	×10 ⁻²
	20L	7.21×10 ⁻²	1.42>	<10 ⁻²	7.21×10 ⁻²	1.42×10 ⁻²	8.002	×10 ⁻²
	25	8.96×10 ⁻²	1.55>	<10 ⁻²	8.96×10 ⁻²	1.55×10 ⁻²	7.23	×10 ⁻²
	25L	6.99×10 ⁻²	1.31>	<10 ⁻²	6.99×10 ⁻²	1.31×10 ⁻²		×10 ⁻²
	30	8.06×10 ⁻²	1.33>		8.06×10 ⁻²	1.33×10 ⁻²		×10 ⁻²
SRG	30L	6.12×10 ⁻²	1.11>		6.12×10 ⁻²	1.11×10 ⁻²		×10 ⁻²
5.10	35	7.14×10 ⁻²	1.18>	<10 ⁻²	7.14×10 ⁻²	1.18×10 ⁻²	4.982	×10 ⁻²
	35L	5.26×10 ⁻²	9.67>	<10⁻₃	5.26×10 ⁻²	9.67×10 ⁻³	4.982	×10 ⁻²
	45	5.49×10 ⁻²	9.58>	<10⁻³	5.49×10 ⁻²	9.58×10 ⁻³	3.85	×10 ⁻²
	45L	4.18×10 ⁻²	7.93>	<10⁻₃	4.18×10 ⁻²	7.93×10 ⁻³	3.85	×10 ⁻²
	55	4.56×10 ⁻²	8.04>		4.56×10 ⁻²	8.04×10 ⁻³	3.25	×10 ⁻²
	55L	3.37×10 ⁻²	6.42>	<10⁻³	3.37×10 ⁻²	6.42×10 ⁻³	3.25	×10 ⁻²
	65L	2.63×10 ⁻²	4.97>	<10 ⁻³	2.63×10 ⁻²	4.97×10 ⁻³	2.70	×10 ⁻²

KAR1: Equivalent factor in the MA radial direction when one

LM block is used

KAL1 : Equivalent factor in the MA reverse radial direction

when one LM block is used

KAR2: Equivalent factor in the MA radial direction when two LM blocks are used in close contact with each other $K_{{\mbox{\tiny AL2}}}\,$: Equivalent factor in the $M_{\mbox{\tiny A}}$ reverse radial direction when two LM blocks are used in close contact with each other

 $K_{\text{B}1}$: M_{B} Equivalent factor when one LM block is used $K_{\text{B}2}$: M_{B} Equivalent factor when two LM blocks are used in

close contact with each other

KCR : Equivalent factor in the Mc radial direction

Kcl.: Equivalent factor in the Mc reverse radial direction

Table9 Equivalent Factors (Models SRN and SRW)

Mod	lel No.	Equivalent factor							
IVIOC	iei ivo.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl
	35	7.14>	< 10 ⁻²	1.18	< 10 ⁻²	7.14×10 ⁻²	1.18×10 ⁻²	4.98>	<10 ⁻²
	35L	5.26>	< 10 ⁻²	9.67	≺10 ⁻³	5.26×10 ⁻²	9.67×10 ⁻³	4.98>	<10 ⁻²
	45	5.49>	< 10 ⁻²	9.58	≺10 ⁻³	5.49×10 ⁻²	9.58×10 ⁻³	3.85>	<10 ⁻²
SRN	45L	4.18>	< 10 ⁻²	7.93	≺10 ⁻³	4.18×10 ⁻²	7.93×10 ⁻³	3.85>	<10 ⁻²
	55	4.56>	< 10 ⁻²	8.04	≺10 ⁻³	4.56×10 ⁻²	8.04×10 ⁻³	3.25>	<10 ⁻²
	55L	3.37>	< 10 ⁻²	6.42	≺10 ⁻³	3.37×10 ⁻²	6.42×10 ⁻³	3.25>	<10 ⁻²
	65L	2.63>	< 10 ⁻²	4.97	≺10 ⁻³	2.63×10 ⁻²	4.97×10 ⁻³	2.70>	<10 ⁻²
	70	4.18×10 ⁻²		7.93	≺10 ⁻³	4.18×10 ⁻²	7.93×10 ⁻³	2.52>	<10 ⁻²
SRW	85	3.37>	< 10 ⁻²	6.42	≺10 ⁻³	3.37×10 ⁻²	6.42×10 ⁻³	2.09>	<10 ⁻²
	100	2.63	<10⁻²	4.97	≺10 ⁻³	2.63×10 ⁻²	4.97×10 ⁻³	1.77>	<10 ⁻²

KAR1: Equivalent factor in the MA radial direction when one LM block is used

 K_{AL1} : Equivalent factor in the M_{A} reverse radial direction when one LM block is used KAR2: Equivalent factor in the MA radial direction when two

LM blocks are used in close contact with each other

KAL2: Equivalent factor in the MA reverse radial direction when two LM blocks are used in close contact with

each other

 K_{B1} : M_{B} Equivalent factor when one LM block is used K_{B2}: M_B Equivalent factor when two LM blocks are used in

close contact with each other K_{CR} : Equivalent factor in the Mc radial direction K_{CL} : Equivalent factor in the Mc reverse radial direction

Calculating the Applied Load

[Example of calculation]

When one LM block is used

Model No.: SSR20XV1

Mass m=10 (kg)

No.3 No.4 Gravitational acceleration g=9.8 (m/s2) l₁=200 (mm) ℓ2=100 (mm) No.2 No.1 MA

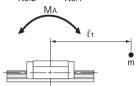
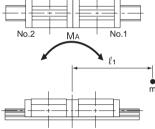


Fig.6 When One LM Block is Used

No.1
$$P_1=mg+K_{AR1}\cdot mg\cdot \ell_1+K_{CR}\cdot mg\cdot \ell_2=98+0.275\times 98\times 200+0.129\times 98\times 100=6752$$
 (N)

No.2
$$P_2=mg-K_{AL1} \cdot mg \cdot \ell_1+K_{CR} \cdot mg \cdot \ell_2=98-0.137 \times 98 \times 200+0.129 \times 98 \times 100=-1323$$
 (N)


No.3
$$P_3 = mg - K_{AL1} \cdot mg \cdot \ell_1 - K_{CL} \cdot mg \cdot \ell_2 = 98 - 0.137 \times 98 \times 200 - 0.0644 \times 98 \times 100 = -3218 (N)$$

No.4 $P_4 = mg + K_{AR1} \cdot mg \cdot \ell_1 - K_{CL} \cdot mg \cdot \ell_2 = 98 + 0.275 \times 98 \times 200 - 0.0644 \times 98 \times 100 = 4857 (N)$

When two LM blocks are used in close contact with each other

Model No.: SNS30R2

Gravitational acceleration q=9.8 (m/s2)

Mass m=5 (kg) $\ell_{1}=200 \text{ (mm)}$ l₂=150 (mm)

No.4

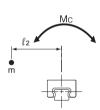


Fig.7 When Two LM Blocks are Used in Close Contact with Each Other

No.1 P₁=
$$\frac{mg}{2}$$
 +Kar2·mg· ℓ_1 +Kcr· $\frac{mg\cdot\ell_2}{2}$ = $\frac{49}{2}$ +0.018×49×200+0.0842× $\frac{49\times150}{2}$ =510.3 (N)

No.2 P₂=
$$\frac{mg}{2}$$
 -Kal2*mg*l₁+KcR* $\frac{mg*l_2}{2}$ = $\frac{49}{2}$ -0.0151×49×200+0.0842× $\frac{49\times150}{2}$ =186 (N)

No.3 P₃=
$$\frac{mg}{2}$$
 -K_{AL2}* mg * ℓ_1 -K_{CL}* $\frac{mg$ * $\ell_2}{2}$ = $\frac{49}{2}$ -0.0151×49×200-0.0707× $\frac{49$ ×150}{2} =-383.3 (N)

No.4 P₄=
$$\frac{mg}{2}$$
 +K_{AR2}·mg· ℓ_1 -KcL· $\frac{mg\cdot\ell_2}{2}$ = $\frac{49}{2}$ +0.018×49×200-0.0707× $\frac{49\times150}{2}$ =-58.9 (N)

Note1) Since an LM Guide used in vertical installation receives only a moment load, there is no need to apply a load force

Note2) In some models, load ratings differ depending on the direction of the applied load. With such a model, calculate an equivalent load in the direction of the smallest load rating.

[Double-axis Use]

Setting Conditions

Set the conditions needed to calculate the LM system's applied load and service life in hours.

The conditions consist of the following items.

(1) Mass: m (kg)

(2) Direction of the working load

(3) Position of the working point (e.g., center of gravity): ℓ_2 , ℓ_3 , h_1 (mm)

(4) Thrust position: ℓ_4 , h_2 (mm)

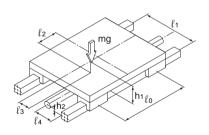
(5) LM system arrangement: ℓ_0 , ℓ_1 (mm) (No. of units and axes)

(6) Velocity diagram

Speed: V (mm/s) Time constant: t_n (s) Acceleration: α_n(mm/s²)

$$(\alpha_n = \frac{V}{t_n})$$

(7) Duty cycle


Number of reciprocations per minute: N₁(min⁻¹)

(8) Stroke length: $\ell_s(mm)$

(9) Average speed: V_m(m/s)

(10) Required service life in hours: Lh(h)

Gravitational acceleration g=9.8 (m/s²)

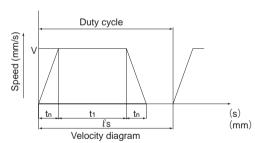


Fig.8 Condition

Calculating the Applied Load

Applied Load Equation

The load applied to the LM Guide varies with the external force, such as the position of the gravity center of an object, thrust position, inertia generated from acceleration/deceleration during start or stop, and cutting force.

In selecting an LM Guide, it is necessary to obtain the value of the applied load while taking into account these conditions.

Calculate the load applied to the LM Guide in each of the examples 1 to 10 shown below.

m	: Mass	(kg)
ℓ_n	: Distance	(mm)
F _n	: External force	(N)
Pn	: Applied load (radial/reverse radial direction)	(N)
P_{nT}	: Applied load (lateral directions)	(N)
g	: Gravitational acceleration	(m/s ²)
	$(g = 9.8 \text{m/s}^2)$	
V	: Speed	(m/s)
t n	: Time constant	(s)
α_{n}	: Acceleration	(m/s ²)

$$(\alpha_n = \frac{V}{t_n})$$

[Example]

	Condition	Applied Load Equation
1	Horizontal mount (with the block traveling) Uniform motion or dwell P3 P1 P1 P1 P1 P1 P2 P3 P2 P3 P4	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$
2	Horizontal mount, overhung (with the block traveling) Uniform motion or dwell Pa Pa Pa Pa Pa Pa Pa Pa Pa	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$

	Condition	Applied Load Equation
3	Uniform motion or dwell Part Part Part Part Part Part Part Part	P1 to P4 = $\frac{\text{mg} \cdot \ell_2}{2 \cdot \ell_0}$ P1T to P4T = $\frac{\text{mg} \cdot \ell_3}{2 \cdot \ell_0}$
4	Wall mount Uniform motion or dwell Part Part Part Part Part Part Part Part	P1 to P4 = $\frac{mg \cdot \ell_3}{2 \cdot \ell_1}$ P1T = P4T = $\frac{mg}{4} + \frac{mg \cdot \ell_2}{2 \cdot \ell_0}$ P2T = P3T = $\frac{mg}{4} - \frac{mg \cdot \ell_2}{2 \cdot \ell_0}$

Calculating the Applied Load

With the LM rails movable Horizontal mount $P_1 \text{ to } P_4 \text{ (max)} = \frac{mg}{4} + \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$ $P_1 \text{ to } P_4 \text{ (min)} = \frac{mg}{4} - \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$ $P_1 \text{ to } P_4 \text{ (min)} = \frac{mg}{4} - \frac{mg \cdot \sin \cdot \ell_2}{2 \cdot \ell_0}$ $P_1 \text{ to } P_4 \text{ (min)} = \frac{mg \cdot \cos \cdot \ell_2}{4} + \frac{mg \cdot \cos \cdot \ell_2}{2 \cdot \ell_0}$ $P_1 \text{ to } P_4 \text{ (min)} = \frac{mg \cdot \cos \cdot \ell_2}{4} + \frac{mg \cdot \sin \cdot \epsilon_2}{2 \cdot \ell_0}$ $P_1 \text{ to } P_2 \text{ to } P_3 \text{ to } P_4 \text{ to } P_$		Condition	Applied Load Equation
$P_{1} = + \frac{mg \cdot \cos\theta \cdot \ell_{2}}{4} + \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{1}}$ $- \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{1} = \frac{mg \cdot \sin\theta}{4} + \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2} = + \frac{mg \cdot \cos\theta}{4} - \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $- \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg \cdot \sin\theta}{4} - \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{3} = + \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} - \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg \cdot \sin\theta}{4} - \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{3} = \frac{mg \cdot \sin\theta}{4} - \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$	5	Horizontal mount P1 P2 P3 P4 P4 P4 P5 E.g.: XY table	
E.g.: NC lathe Carriage $P_{4T} = \frac{mg \cdot \cos\theta \cdot \ell_3}{2 \cdot \ell_1} - \frac{mg \cdot \sin\theta \cdot h_1}{2 \cdot \ell_1}$ $P_{4T} = \frac{mg \cdot \sin\theta}{4} + \frac{mg \cdot \sin\theta \cdot \ell_2}{2 \cdot \ell_0}$	6	P ₂ P ₁ P ₁ P ₂	$-\frac{\text{mg} \cdot \cos\theta \cdot \ell_3}{2 \cdot \ell_1} + \frac{\text{mg} \cdot \sin\theta \cdot h_1}{2 \cdot \ell_1}$ $P_{1T} = \frac{\text{mg} \cdot \sin\theta}{4} + \frac{\text{mg} \cdot \sin\theta \cdot \ell_2}{2 \cdot \ell_0}$ $P_{2} = + \frac{\text{mg} \cdot \cos\theta}{4} - \frac{\text{mg} \cdot \cos\theta \cdot \ell_2}{2 \cdot \ell_0}$ $-\frac{\text{mg} \cdot \cos\theta \cdot \ell_3}{2 \cdot \ell_1} + \frac{\text{mg} \cdot \sin\theta \cdot h_1}{2 \cdot \ell_1}$ $P_{2T} = \frac{\text{mg} \cdot \sin\theta}{4} - \frac{\text{mg} \cdot \sin\theta \cdot \ell_2}{2 \cdot \ell_0}$ $P_{3} = + \frac{\text{mg} \cdot \cos\theta}{4} - \frac{\text{mg} \cdot \cos\theta \cdot \ell_2}{2 \cdot \ell_0}$ $+ \frac{\text{mg} \cdot \cos\theta \cdot \ell_3}{2 \cdot \ell_1} - \frac{\text{mg} \cdot \sin\theta \cdot h_1}{2 \cdot \ell_1}$ $P_{3T} = \frac{\text{mg} \cdot \sin\theta}{4} - \frac{\text{mg} \cdot \sin\theta \cdot \ell_2}{2 \cdot \ell_0}$ $P_{4} = + \frac{\text{mg} \cdot \cos\theta}{4} + \frac{\text{mg} \cdot \cos\theta \cdot \ell_2}{2 \cdot \ell_0}$ $+ \frac{\text{mg} \cdot \cos\theta \cdot \ell_3}{4} - \frac{\text{mg} \cdot \sin\theta \cdot h_1}{2 \cdot \ell_1}$

Calculating the Applied Load

	Condition	Applied Load Equation
9	Vertical mount with inertia $l_0 = \frac{V}{\ln x}$ $l_1 = \frac{V}{\ln x}$ $Velocity \ diagram$ E.g.: Conveyance lift	During acceleration $P_1 \text{ to } P_4 = \frac{m \cdot (g + \alpha_1) \cdot \ell_2}{2 \cdot \ell_0}$ $P_{1T} \text{ to } P_{4T} = \frac{m \cdot (g + \alpha_1) \cdot \ell_3}{2 \cdot \ell_0}$ During uniform motion $P_1 \text{ to } P_4 = \frac{mg \cdot \ell_2}{2 \cdot \ell_0}$ $P_{1T} \text{ to } P_{4T} = \frac{mg \cdot \ell_3}{2 \cdot \ell_0}$ During deceleration $P_1 \text{ to } P_4 = \frac{m \cdot (g - \alpha_3) \cdot \ell_2}{2 \cdot \ell_0}$ $P_{1T} \text{ to } P_{4T} = \frac{m \cdot (g - \alpha_3) \cdot \ell_3}{2 \cdot \ell_0}$
10	Horizontal mount with external force lack of the control of the c	Under force F ₁ P ₁ to P ₄ = $\frac{F_1 \cdot \ell_5}{2 \cdot \ell_0}$ P ₁ T to P ₄ T = $\frac{F_1 \cdot \ell_4}{2 \cdot \ell_0}$ Under force F ₂ P ₁ = P ₄ = $\frac{F_2}{4} + \frac{F_2 \cdot \ell_2}{2 \cdot \ell_0}$ P ₂ = P ₃ = $\frac{F_2}{4} - \frac{F_2 \cdot \ell_2}{2 \cdot \ell_0}$ Under force F ₃ P ₁ to P ₄ = $\frac{F_3 \cdot \ell_3}{2 \cdot \ell_1}$ P ₁ T = P ₄ T = $\frac{F_3}{4} + \frac{F_3 \cdot \ell_2}{2 \cdot \ell_0}$ P ₂ T = P ₃ T = $\frac{F_3}{4} - \frac{F_3 \cdot \ell_2}{2 \cdot \ell_0}$

Calculating the Equivalent Load

The LM Guide can bear loads and moments in all directions, including a radial load (P_R), reverse radial load (P_L) and lateral loads (P_T), simultaneously.

Applied loads include the following.

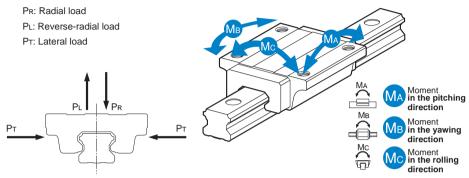


Fig.9 Directions of the Loads Applied on the LM Guide

[Equivalent Load P_E]

When two or more loads (e.g., radial load and lateral load) are simultaneously applied to the LM Guide, the service life and the static safety factor are calculated using equivalent load values obtained by converting all the loads into radial, lateral and other loads.

[Equivalent Load Equation]

The equivalent load equation for the LM Guide differs by model. For details, see the section corresponding to the subject model.

Example of equation for LM Guide model HSR

The equivalent load when a radial load (P_R) and a lateral load (P_T) are applied simultaneously is obtained using the following equation.

PE(equivalent load)=PR+PT

Pr: Radial load

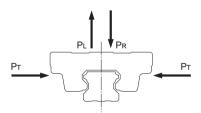


Fig.10 Equivalent of Load of the LM Guide

Calculating the Static Safety Factor

Calculating the Static Safety Factor

To calculate a load applied to the LM Guide, the average load required for calculating the service life and the maximum load needed for calculating the static safety factor must be obtained first. In a system subject to frequent starts and stops, placed under cutting forces or under a large moment caused by an overhang load, an excessively large load may apply to the LM Guide. When selecting a model number, make sure that the desired model is capable of receiving the required maximum load (whether stationary or in motion). Table10 shows standard values for the static safety factor.

Table10 Reference Value of Static Safety Factors (fs)

(N)

Machine using the LM Guide	Load conditions	Lower limit of fs
General industrial	Without vibration or impact	1 to 1.3
machinery	With vibration or impact	2 to 3
Machine tool	Without vibration or impact	1 to 1.5
Machine (00)	With vibration or impact	2.5 to 7

When the radial load is large	fн•fτ•fc•Co P _R ≧fs
When the reverse radial load is large	$\frac{f_{H} \cdot f_{T} \cdot f_{C} \cdot C_{0L}}{P_{L}} \geqq fs$
When the lateral loads are large	<u>fн•fт•fc•Cот</u> Рт ≧fs

fs : Static safety factor

: Basic static load rating

(radial direction)

COL : Basic static load rating (N)

(reverse-radial direction)

Сот : Basic static load rating (N)

(lateral direction)

 P_R : Calculated load (radial direction) (N)

Pi : Calculated load (N)

(reverse-radial direction)

Рт : Calculated load (lateral direction) (N)

: Hardness factor (see Fig.11 on A-101)

f⊤ : Temperature factor (see Fig.12 on A-101)

: Contact factor (see Table11 on A-101) fс

Calculating the Average Load

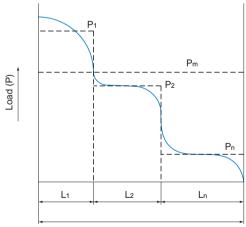
In cases where the load applied to each LM block fluctuates under different conditions, such as an industrial robot holding a work with its arm as it advances and receding with its arm empty, and a machine tool handling various workpieces, it is necessary to calculate the service life of the LM Block while taking into account such fluctuating loading conditions.

The average load (P_m) is the load under which the service life of the LM Guide is equivalent to that under varying loads applied to the LM blocks.

$$\mathbf{P}_{m} = \sqrt[3]{\frac{1}{L} \cdot \sum_{n=1}^{n} (\mathbf{P}_{n}^{3} \cdot \mathbf{L}_{n})}$$

P_m : Average load (N)

P_n : Varying load (N)
L : Total travel distance (mm)


_n : Distance traveled under load Pn (mm)

Note) The above equation or the equation (1) below applies when the rolling elements are balls.

(1) When the load fluctuates stepwise

$$P_{m} = \sqrt[3]{\frac{1}{L} (P_{1}^{3} \cdot L_{1} + P_{2}^{3} \cdot L_{2} \cdots + P_{n}^{3} \cdot L_{n})} \cdots (1)$$

P_m : Average load (N)
P_n : Varying load (N)
L : Total travel distance (mm)
L_n : Distance traveled under P_n (mm)

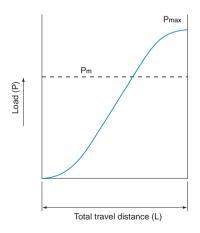
Total travel distance (L)

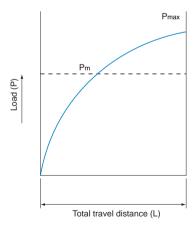
(2) When the load fluctuates monotonically

 $P_{m} \doteq \frac{1}{3} (P_{min} + 2 \cdot P_{max}) \cdots (2)$

 P_{min} : Minimum load

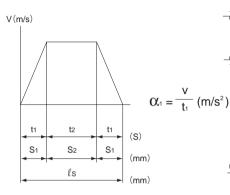
(N) (N)

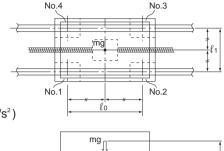

P_{max}: Maximum load

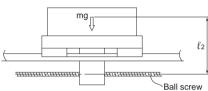

Pmax
Pm
Pm
Total travel distance (L)

(3) When the load fluctuates sinusoidally

(a) $P_m = 0.65 P_{max} \cdots (3)$


(b) $P_m = 0.75 P_{max} \cdots (4)$




Example of Calculating the Average Load (1) - with Horizontal Mount

[Conditions]

and Acceleration/Deceleration Considered

[Load Applied to the LM Block]

During uniform motion

$$P_1 = + \frac{mg}{4}$$

$$P_2 = + \frac{mg}{4}$$

$$P_3 = + \frac{mg}{4}$$

$$P_4 = + \frac{mg}{4}$$

During acceleration

$$Pa_1 = P_1 + \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_2}$$

$$Pa_2 = P_2 - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_2}$$

$$Pa_3 = P_3 - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_2}$$

$$Pa_4 = P_4 + \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

During deceleration

$$Pd_1 = P_1 - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

$$Pd_2 = P_2 + \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

$$Pd_3 = P_3 + \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

$$Pd_4 = P_4 - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

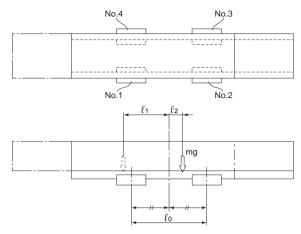
[Average load]

$$P_{m_1} = \sqrt[3]{\frac{1}{\ell_s} \left(Pa_1^3 \cdot s_1 + P_1^3 \cdot s_2 + Pd_1^3 \cdot s_3 \right)}$$

$$P_{m_2} = \sqrt[3]{\frac{1}{\ell_s} (Pa_2^3 \cdot s_1 + P_2^3 \cdot s_2 + Pd_2^3 \cdot s_3)}$$

$$P_{m_3} = \sqrt[3]{\frac{1}{\ell_s} (Pa_3^3 \cdot s_1 + P_3^3 \cdot s_2 + Pd_3^3 \cdot s_3)}$$

$$P_{m_4} = \sqrt[3]{\frac{1}{\ell_s} \left(Pa_4^3 \cdot s_1 + P_4^3 \cdot s_2 + Pd_4^3 \cdot s_3 \right)}$$


Note) Pan and Pdn represent loads applied to each LM block. The suffix "n" indicates the block number in the diagram above.

Calculating the Average Load

Example of Calculating the Average Load (2) - When the Rails are

Movable

[Conditions]

[Load Applied to the LM Block]

•At the left of the arm

$$P_{\ell_1} = + \frac{mg}{4} + \frac{mg \cdot \ell_1}{2 \cdot \ell_2}$$

$$P_{\ell 2} = + \frac{mg}{4} - \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$$

$$P_{\ell 3} = + \frac{mg}{4} - \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$$

$$P_{\ell 4} = + \frac{mg}{4} + \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$$

•At the right of the arm

$$P_{r_1} = + \frac{mg}{4} - \frac{mg \cdot \ell_1}{2}$$

$$P_{r_2} = + \frac{mg}{4} + \frac{mg \cdot \ell_2}{2 \cdot \ell_0}$$

$$P_{r_3} = + \frac{mg}{4} + \frac{mg \cdot \ell_2}{2 \cdot \ell_0}$$

$$P_{r4} = + \frac{mg}{4} - \frac{mg \cdot \ell_2}{2 \cdot \ell_0}$$

[Average load]

$$P_{m_1} = \frac{1}{3} (2 \cdot |P_{\ell_1}| + |P_{r_1}|)$$

$$P_{m_2} = \frac{1}{3} (2 \cdot |P_{\ell_2}| + |P_{r_2}|)$$

$$P_{m_3} = \frac{1}{3} (2 \cdot |P_{\ell_3}| + |P_{r_3}|)$$

$$P_{m4} = \frac{1}{3} (2 \cdot |P_{\ell 4}| + |P_{r4}|)$$

Note) P_{in} and P_{m} represent loads applied to each LM block. The suffix "n" indicates the block number in the diagram above.

Calculating the Nominal Life

The service life of an LM Guide is subject to variations even under the same operational conditions. Therefore, it is necessary to use the nominal life defined below as a reference value for obtaining the service life of the LM Guide. The nominal life means the total travel distance that 90% of a group of units of the same LM Guide model can achieve without flaking (scale-like pieces on the metal surface) after individually running under the same conditions.

Nominal Life Equation for an LM Guide Using Balls

L	= (<u>f</u> w · P	-) × 50
L	: Nominal life	(km)
С	: Basic dynamic loa	ad rating (N)
Pc	: Calculated load	(N)
fн	: Hardness factor	(see Fig.11 on A-101)

/ fn · fr · fc C \3

 $\begin{array}{ll} f_T & : Temperature\ factor(see\ Fig.12\ on\ A-101) \\ f_C & : Contact\ factor & (see\ Table11\ on\ A-101) \\ \end{array}$

fw : Load factor (see Table12 on A-102)

Rated Life Equation for an LM Guide Using Rollers

$$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{C}}{f_{W}} \cdot \frac{C}{P_{C}}\right)^{\frac{10}{3}} \times 100$$

: Nominal life (km) C : Basic dynamic load rating (N) P_{c} : Calculated load (N) : Hardness factor (see Fig.11 on A-101) f⊤ : Temperature factor(see Fig.12 on A-101) f_C : Contact factor (see Table11 on A-101) : Load factor (see Table12 on A-102)

Once the nominal life (L) has been obtained, the service life time can be obtained using the following equation if the stroke length and the number reciprocations are constant.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

1.0

Point of Selection

Calculating the Nominal Life

[fH: Hardness Factor]

To ensure the achievement of the optimum load capacity of the LM Guide, the raceway hardness must be between 58 and 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor (fH).

Since the LM Guide has sufficient hardness, the fh value for the LM Guide is normally 1.0 unless otherwise specified.

0.9 0.8 Hardness factor fH 0.7 0.6 0.5 0.4 0.3 0.2 0 1 60 50 40 30 20 10 Raceway hardness (HRC)

Fig.11 Hardness Factor (fH)

[f_T:Temperature Factor]

If the temperature of the environment surrounding the operating LM Guide exceeds 100°C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.12.

In addition, the selected LM Guide must also be of a high temperature type.

Note) The LM Guide is designed to normally be used at environment temperature of 80°C or less.

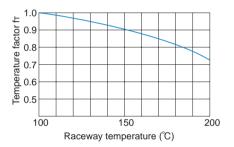


Fig.12 Temperature Factor (f₇)

[fc: Contact Factor]

When multiple LM blocks are used in close contact with each other, it is difficult to achieve uniform load distribution due to moment loads and mounting-surface accuracy. When using multiple blocks in close contact with each other, multiply the basic load rating (C or C₀) by the corresponding contact factor indicated in Table11.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table11.

Table11 Contact Factor (fc)

rabio i i comact i actor (ic)		
Number of blocks used in close contact	Contact factor fc	
2	0.81	
3	0.72	
4	0.66	
5	0.61	
6 or greater	0.6	
Normal use	1	

[fw: Load Factor]

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, where the effects of speed and vibration are estimated to be significant, divide the basic dynamic load rating (C) by a load factor selected from Table12, which contains empirically obtained data.

Table12 Load Factor (fw)

Vibrations/ impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

Calculating the Nominal Life

Example of Calculating the Nominal Life (1) - with Horizontal Mount and High-speed Acceleration

[Conditions]

Model No. : HSR35LA2SS+2500LP-II

(basic dynamic load rating: C =50.2 kN)

(basic static load rating: C₀=81.4 kN)

Mass : m_1 =800 kg Distance : ℓ_0 =600 mm

 $m_2 = 500 \text{ kg}$ $\ell_1 = 400 \text{ mm}$

Speed : V =0.5 m/s ℓ_2 =120 mm Time : t_1 =0.05 s ℓ_3 =50 mm

 $t_2 = 2.8 \text{ s}$ $\ell_4 = 200 \text{ mm}$ $t_3 = 0.15 \text{ s}$ $\ell_5 = 350 \text{ mm}$

Acceleration : $\alpha_1 = 10 \text{ m/s}^2$

 $\alpha_3 = 3.333 \text{ m/s}^2$

Stroke : ℓ s =1450 mm

Gravitational acceleration g=9.8 (m/s²)

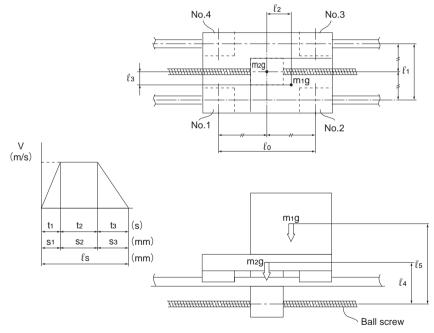


Fig.13 Condition

[Load Applied to the LM Block]

Calculate the load applied to each LM block.

During uniform motion

■Applied load in the radial direction P_n

$$\begin{array}{lll} P_1 & = + & \frac{m_1 g}{4} - \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} + \frac{m_1 g \cdot \ell_3}{2 \cdot \ell_1} + \frac{m_2 g}{4} = +2891 N \\ P_2 & = + & \frac{m_1 g}{4} + \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} + \frac{m_1 g \cdot \ell_3}{2 \cdot \ell_1} + \frac{m_2 g}{4} = +4459 N \\ P_3 & = + & \frac{m_1 g}{4} + \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} - \frac{m_1 g \cdot \ell_3}{2 \cdot \ell_1} + \frac{m_2 g}{4} = +3479 N \\ P_4 & = + & \frac{m_1 g}{4} - \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} - \frac{m_1 g \cdot \ell_3}{2 \cdot \ell_1} + \frac{m_2 g}{4} = +1911 N \end{array}$$

During leftward acceleration

■Applied load in the radial direction Plan

$$\begin{split} & \text{P}\ell a_1 = P_1 - \quad \frac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} \quad - \quad \frac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} = - \quad 275.6 \text{ N} \\ & \text{P}\ell a_2 = P_2 \ + \quad \frac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} \quad + \quad \frac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} = + 7625.6 \text{ N} \\ & \text{P}\ell a_3 = P_3 \ + \quad \frac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} \quad + \quad \frac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} = + 6645.6 \text{ N} \\ & \text{P}\ell a_4 = P_4 \ - \quad \frac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} \quad - \quad \frac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} = - 1255.6 \text{ N} \end{split}$$

■Applied load in the lateral direction Ptlan

$$\begin{split} & \text{Pt}\ell a_1 = - \ \, \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = - \, 333.3 \, N \\ & \text{Pt}\ell a_2 = + \ \, \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = + \, 333.3 \, N \\ & \text{Pt}\ell a_3 = + \ \, \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = + \, 333.3 \, N \\ & \text{Pt}\ell a_4 = - \ \, \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = - \, 333.3 \, N \end{split}$$

During leftward deceleration

■Applied load in the radial direction Pℓdn

$$\begin{array}{lll} P\ell d_1 &= & P_1 + & \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} & + & \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} & = +3946.6 \, N \\ \\ P\ell d_2 &= & P_2 - & \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} & - & \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} & = +3403.4 \, N \\ \\ P\ell d_3 &= & P_3 - & \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} & - & \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} & = +2423.4 \, N \\ \\ P\ell d_4 &= & P_4 + & \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} & + & \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} & = +2966.6 \, N \end{array}$$

Calculating the Nominal Life

■Applied load in the lateral direction Ptℓd₁

$$\begin{split} &Pt\ell d_1 = + \quad \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} \quad = + \; 111.1 \, N \\ &Pt\ell d_2 = - \quad \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} \quad = - \; 111.1 \, N \\ &Pt\ell d_3 = - \quad \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} \quad = - \; 111.1 \, N \\ &Pt\ell d_4 = + \quad \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} \quad = + \; 111.1 \, N \end{split}$$

During rightward acceleration

■Applied load in the radial direction Pran

$$\begin{array}{lll} Pra_1 \ = \ P_1 + & \dfrac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} \ + & \dfrac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} \ = \ +6057.6 \, N \\ \\ Pra_2 \ = \ P_2 - & \dfrac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} \ - & \dfrac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} \ = \ +1292.4 \, N \\ \\ Pra_3 \ = \ P_3 - & \dfrac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} \ - & \dfrac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} \ = \ + \ 312.4 \, N \\ \\ Pra_4 \ = \ P_4 + & \dfrac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} \ + & \dfrac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} \ = \ +5077.6 \, N \end{array}$$

■Applied load in the lateral direction Ptran

$$\begin{split} & \text{Ptra}_1 = + \quad \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = + 333.3 \text{N} \\ & \text{Ptra}_2 = - \quad \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = - 333.3 \text{N} \\ & \text{Ptra}_3 = - \quad \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = - 333.3 \text{N} \\ & \text{Ptra}_4 = + \quad \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = + 333.3 \text{N} \end{split}$$

During rightward deceleration

■Applied load in the radial direction Prdn

$$\begin{array}{lll} Prd_1 &=& P_1 - \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} & - \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} & = +1835.4 N \\ Prd_2 &=& P_2 + \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} & + \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} & = +5514.6 N \\ Prd_3 &=& P_3 + \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} & + \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} & = +4534.6 N \\ Prd_4 &=& P_4 - \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} & - \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} & = +855.4 N \end{array}$$

■Applied load in the lateral direction Ptrdn

Ptrd₁ =
$$-\frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0}$$
 = -111.1 N

$$Ptrd_2 = + \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} = + 111.1 \, N$$

$$Ptrd_3 = + \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} = + 111.1 \, N$$

$$Ptrd_4 = + \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} = -111.1 \, N$$

[Combined Radial And Thrust Load]

• During uniform motion:

$$P_{E1} = P_1 = 2891 \text{ N}$$

$$P_{E2} = P_2 = 4459 \text{ N}$$

$$P_{E3} = P_3 = 3479 \text{ N}$$

$$P_{F4} = P_4 = 1911 \text{ N}$$

During leftward acceleration

$$P_{E}\ell a_{1} = |P\ell a_{1}| + |Pt\ell a_{1}| = 608.9 \text{ N}$$

 $P_{E}\ell a_{2} = |P\ell a_{2}| + |Pt\ell a_{2}| = 7958.9 \text{ N}$

$$P_{E}la_{3} = |Pla_{3}| + |Ptla_{3}| = 6978.9 \text{ N}$$

$$P_{E}la_{4} = |Pla_{4}| + |Ptla_{4}| = 1588.9 \text{ N}$$

During leftward deceleration

$$P_{E}\ell d_{1} = |P\ell d_{1}| + |Pt\ell d_{1}| = 4057.7 \text{ N}$$

$$P_{E}\ell d_{2} = |P\ell d_{2}| + |Pt\ell d_{2}| = 3514.5 \text{ N}$$

$$P_{E}\ell d_{3} = |P\ell d_{3}| + |Pt\ell d_{3}| = 2534.5 \text{ N}$$

$$P_{E}\ell d_{4} = |P\ell d_{4}| + |Pt\ell d_{4}| = 3077.7 \text{ N}$$

[Static Safety Factor]

As indicated above, the maximum load is applied to the LM Guide during the leftward acceleration of the second LM block. Therefore, the static safety factor (f_s) is obtained in the following equation.

$$f_{\text{S}} = \; \frac{C_{\text{o}}}{P_{\text{E}} \ell \, a_{\text{o}}} \; = \; \frac{81.4 \times 10^{3}}{7958.9} = 10.2$$

During rightward acceleration

$$P_E ra_1 = |Pra_1| + |Ptra_1| = 6390.9 N$$

$$P_E ra_2 = |Pra_2| + |Ptra_2| = 1625.7 N$$

 $P_E ra_3 = |Pra_3| + |Ptra_3| = 645.7 N$

$$P_{E}ra_{4} = |Pra_{4}| + |Ptra_{4}| = 5410.9 \text{ N}$$

During rightward deceleration

$$P_E rd_1 = |Prd_1| + |Ptrd_1| = 1946.5 N$$

$$P_E rd_2 = |Prd_2| + |Ptrd_2| = 5625.7 N$$

 $P_E rd_3 = |Prd_3| + |Ptrd_3| = 4645.7 N$

Calculating the Nominal Life

[Average Load Pmn]

Obtain the average load applied to each LM block.

$$\begin{split} P_{m1} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{S}}} \left(P_{E} \ell \, a_{1}^{3} \cdot S_{1} + P_{E1}^{3} \cdot S_{2} + P_{E} \ell \, d_{1}^{3} \cdot S_{3} + P_{E} r a_{1}^{3} \cdot S_{1} + P_{E1}^{3} \cdot S_{2} + P_{E} r d_{1}^{3} \cdot S_{3} \right) \\ &= \sqrt[3]{\frac{1}{2 \times 1450}} (608.9^{3} \times 12.5 + 2891^{3} \times 1400 + 4057.7^{3} \times 37.5 + 6390.9^{3} \times 12.5 + 2891^{3} \times 1400 + 1946.5^{3} \times 37.5) \end{split}$$

= 2940.1N

$$\begin{split} P_{m2} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{s}}} \left(P_{E}\ell \, a_{2}^{3} \cdot S_{1} + P_{E2}^{3} \cdot S_{2} + P_{E}\ell \, d_{2}^{3} \cdot S_{3} + P_{E}ra_{2}^{3} \cdot S_{1} + P_{E2}^{3} \cdot S_{2} + P_{E}rd_{2}^{3} \cdot S_{3} \right) \\ &= \sqrt[3]{\frac{1}{2 \times 1450}} \left(7958.9^{3} \times 12.5 + 4459^{3} \times 1400 + 3514.5^{3} \times 37.5 + 1625.7^{3} \times 12.5 + 4459^{3} \times 1400 + 5625.7^{3} \times 37.5 \right) \end{split}$$

= 4492.2N

$$\begin{split} P_{m3} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{S}}} \; \left(P_{E} \ell \; a_{3}^{3} \cdot S_{1} + P_{E3}^{3} \cdot S_{2} + P_{E} \ell \; d_{3}^{3} \cdot S_{3} + P_{E} r a_{3}^{3} \cdot S_{1} + P_{E3}^{3} \cdot S_{2} + P_{E} r d_{3}^{3} \cdot S_{3} \right) \\ &= \sqrt[3]{\frac{1}{2 \times 1450}} \left(6978.9^{3} \times 12.5 + 3479^{3} \times 1400 + 2534.5^{3} \times 37.5 + 645.7^{3} \times 12.5 + 3479^{3} \times 1400 + 4645.7^{3} \times 37.5 \right) \end{split}$$

= 3520.4N

$$\begin{split} P_{m4} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{S}}} \; \left(P_{E} \ell \; a_{4}{}^{3} \cdot S_{1} + P_{E4}{}^{3} \cdot S_{2} + P_{E} \ell \; d_{4}{}^{3} \cdot S_{3} + P_{E} r a_{4}{}^{3} \cdot S_{1} + P_{E4}{}^{3} \cdot S_{2} + P_{E} r d_{4}{}^{3} \cdot S_{3} \right) \\ &= \sqrt[3]{\frac{1}{2 \times 1450}} \left(1588.9^{3} \times 12.5 + 1911^{3} \times 1400 + 3077.7^{3} \times 37.5 + 5410.9^{3} \times 12.5 + 1911^{3} \times 1400 + 966.5^{3} \times 37.5 \right) \end{split}$$

= 1985.5N

[Nominal Life L_n]

The nominal life of the four LM blocks is obtained from the corresponding nominal life equations shown below.

$$\begin{split} L_1 &= \left(\frac{C}{f_W \cdot P_{m1}}\right)^3 \times 50 = \ 73700 \ \text{km} \\ L_2 &= \left(\frac{C}{f_W \cdot P_{m2}}\right)^3 \times 50 = \ 20600 \ \text{km} \\ L_3 &= \left(\frac{C}{f_W \cdot P_{m3}}\right)^3 \times 50 = \ 43000 \ \text{km} \\ L_4 &= \left(\frac{C}{f_W \cdot P_{m4}}\right)^3 \times 50 = \ 239000 \ \text{km} \\ & \text{(where fw} = 1.5) \end{split}$$

Therefore, the service life of the LM Guide used in a machine or equipment under the conditions stated above is equivalent to the nominal life of the second LM block, which is 20,600 km.

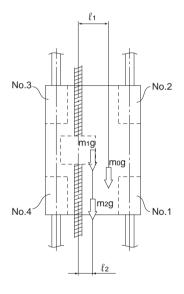
Example of Calculating the Nominal Life (2) - with Vertical Mount

[Conditions]

Model No. : HSR25CA2SS+1500L- II

(basic dynamic load rating: C =19.9 kN) (basic static load rating: C₀=34.4 kN)

Mass : $m_0 = 100 \text{ kg}$ Distance : $\ell_0 = 300 \text{ mm}$


 m_1 = 200 kg ℓ_1 = 80 mm m_2 = 100 kg ℓ_2 = 50 mm

Stroke : ℓ_s = 1000 mm ℓ_s = 280 mm ℓ_s = 150 mm

ℓ₅=250 mm

The mass (m₀) is loaded only during ascent; it is removed during descent.

Gravitational acceleration g=9.8 (m/s²)

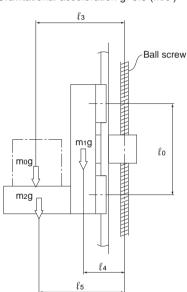


Fig.14 Condition

[Load Applied to the LM Block]

During Ascent

■Load applied to each LM block in the radial direction Pu₁ during ascent

$$\begin{array}{lll} Pu_1 & = & + & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} & + & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} & + & \frac{m_0g \cdot \ell_3}{2 \cdot \ell_0} & = & + & 1355.6 \; N \\ \\ Pu_2 & = & - & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} & - & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} & - & \frac{m_0g \cdot \ell_3}{2 \cdot \ell_0} & = & - & 1355.6 \; N \\ \\ Pu_3 & = & - & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} & - & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} & - & \frac{m_0g \cdot \ell_3}{2 \cdot \ell_0} & = & - & 1355.6 \; N \\ \\ Pu_4 & = & + & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} & + & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} & + & \frac{m_0g \cdot \ell_3}{2 \cdot \ell_0} & = & + & 1355.6 \; N \end{array}$$

■Load applied to each LM block in the lateral direction Ptu_n during ascent

$$\begin{array}{lll} Ptu_1 & = & + & \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} & + & \frac{m_2 g \cdot \ell_2}{2 \cdot \ell_0} & + & \frac{m_0 g \cdot \ell_1}{2 \cdot \ell_0} & = & + 375.7 \; N \\ \\ Ptu_2 & = & - & \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} & - & \frac{m_2 g \cdot \ell_2}{2 \cdot \ell_0} & - & \frac{m_0 g \cdot \ell_1}{2 \cdot \ell_0} & = & - 375.7 \; N \\ \\ Ptu_3 & = & - & \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} & - & \frac{m_2 g \cdot \ell_2}{2 \cdot \ell_0} & - & \frac{m_0 g \cdot \ell_1}{2 \cdot \ell_0} & = & - 375.7 \; N \\ \\ Ptu_4 & = & + & \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} & + & \frac{m_2 g \cdot \ell_2}{2 \cdot \ell_0} & + & \frac{m_0 g \cdot \ell_1}{2 \cdot \ell_0} & = & + 375.7 \; N \\ \end{array}$$

During Descent

■Load applied to each LM block in the radial direction Pdn during descent

$$\begin{array}{lll} Pd_1 & = & + & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} \ + & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} \ = & + 898.3 \ N \\ \\ Pd_2 & = & - & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} \ - & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} \ = & - 898.3 \ N \\ \\ Pd_3 & = & - & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} \ - & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} \ = & - 898.3 \ N \\ \\ Pd_4 & = & + & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} \ + & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} \ = & + 898.3 \ N \end{array}$$

■Load applied to each LM block in the lateral direction Ptd₁ during descent

$$\begin{array}{lll} Ptd_1 & = & + & \frac{m_1g \cdot \ell_2}{2 \cdot \ell_0} + \frac{m_2g \cdot \ell_2}{2 \cdot \ell_0} = & + 245 \; N \\ \\ Ptd_2 & = & - & \frac{m_1g \cdot \ell_2}{2 \cdot \ell_0} - \frac{m_2g \cdot \ell_2}{2 \cdot \ell_0} = & -245 \; N \\ \\ Ptd_3 & = & - & \frac{m_1g \cdot \ell_2}{2 \cdot \ell_0} - \frac{m_2g \cdot \ell_2}{2 \cdot \ell_0} = & -245 \; N \\ \\ Ptd_4 & = & + & \frac{m_1g \cdot \ell_2}{2 \cdot \ell_0} + \frac{m_2g \cdot \ell_2}{2 \cdot \ell_0} = & + 245 \; N \end{array}$$

[Combined Radial And Thrust Load]

During Ascent

P _{Eu1} =	P _{u1}	+	Pt _{u1} :	= 173	1.3 N	1
P _{Eu2} =	Pu2	+	Ptu2 :	= 173	1.3 N	١
P _{Eu3} =	P _{u3}	+	Ptu3 :	= 173	31.3 N	١
P _{Eu4} =	Pu4	+	Ptu4 :	= 173	31.3 N	١

During Descent

$$\begin{aligned} &\mathsf{P}_{\mathsf{Ed1}} = |\; \mathsf{Pd}_1 \;| + |\; \mathsf{Ptd}_1 \;| = 1143.3 \;\mathsf{N} \\ &\mathsf{P}_{\mathsf{Ed2}} = |\; \mathsf{Pd}_2 \;| + |\; \mathsf{Ptd}_2 \;| = 1143.3 \;\mathsf{N} \\ &\mathsf{P}_{\mathsf{Ed3}} = |\; \mathsf{Pd}_3 \;| + |\; \mathsf{Ptd}_3 \;| = 1143.3 \;\mathsf{N} \\ &\mathsf{P}_{\mathsf{Ed4}} = |\; \mathsf{Pd}_4 \;| + |\; \mathsf{Ptd}_4 \;| = 1143.3 \;\mathsf{N} \end{aligned}$$

[Static Safety Factor]

The static safety factor (fs) of the LM Guide used in a machine or equipment under the conditions stated above is obtained as follows.

$$f_{\text{S}} = \frac{C_{\text{0}}}{P_{\text{EU2}}} = \frac{34.4 \times 10^{3}}{1731.3} = 19.9$$

[Average Load Pmn]

Obtain the average load applied to each LM block.

$$\begin{split} P_{\text{m1}} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{\text{S}}} \left(P_{\text{EU1}}^{3} \cdot \ell_{\text{S}} + P_{\text{Ed1}}^{3} \cdot \ell_{\text{S}} \right)} = 1495.1 \text{ N} \\ P_{\text{m2}} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{\text{S}}} \left(P_{\text{EU2}}^{3} \cdot \ell_{\text{S}} + P_{\text{Ed2}}^{3} \cdot \ell_{\text{S}} \right)} = 1495.1 \text{ N} \\ P_{\text{m3}} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{\text{S}}} \left(P_{\text{EU3}}^{3} \cdot \ell_{\text{S}} + P_{\text{Ed3}}^{3} \cdot \ell_{\text{S}} \right)} = 1495.1 \text{ N} \\ P_{\text{m4}} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{\text{C}}} \left(P_{\text{EU4}}^{3} \cdot \ell_{\text{S}} + P_{\text{Ed4}}^{3} \cdot \ell_{\text{S}} \right)} = 1495.1 \text{ N} \end{split}$$

[Nominal Life L_n]

The nominal life of the four LM blocks is obtained from the corresponding nominal life equations

$$L_{1} = \left(\frac{C}{f_{W} \cdot P_{m1}}\right)^{3} \times 50 = 68200 \text{ km}$$

$$L_{2} = \left(\frac{C}{f_{W} \cdot P_{m2}}\right)^{3} \times 50 = 68200 \text{ km}$$

$$L_{3} = \left(\frac{C}{f_{W} \cdot P_{m3}}\right)^{3} \times 50 = 68200 \text{ km}$$

$$L_{4} = \left(\frac{C}{f_{W} \cdot P_{m4}}\right)^{3} \times 50 = 68200 \text{ km}$$
(where $f_{W} = 1.2$)

Therefore, the service life of the LM Guide used in a machine or equipment under the conditions stated above is 68.200 km.

Point of Selection Predicting the Rigidity

Predicting the Rigidity

Selecting a Radial Clearance (Preload)

Since the radial clearance of an LM Guide greatly affects the running accuracy, load carrying capacity and rigidity of the LM Guide, it is important to select an appropriate clearance according to the application. In general, selecting a negative clearance (i.e., a preload* is applied) while taking into account possible vibrations and impact generated from reciprocating motion favorably affects the service life and the accuracy.

For specific radial clearances, contact THK. We will help you select the optimal clearance according to the conditions.

The clearances of all LM Guide models (except model HR, GSR and GSR-R, which are separate types) are adjusted as specified before shipment, and therefore they do not need further preload adjustment.

Preload is an internal load applied to the rolling elements (balls, rollers, etc.) of an LM block in advance in order to increase its rigidity.

Table13 Types of Radial Clearance

	Table 13 Types of Nadial Clearance			
	Normal Clearance	Clearance C1 (Light Preload)	Clearance C0 (Medium Preload)	
Condition	 The loading direction is fixed, impact and vibrations are minimal and 2 rails are installed in parallel. Very high precision is not required, and the sliding resistance must be as low as possible. 	 An overhang load or moment load is applied. LM Guide is used in a single- rail configuration. Light load and high accuracy are required. 	 High rigidity is required and vibrations and impact are applied. Heavy-cutting machine tool 	
Examples of applications	Beam-welding machine Book-binding machin Automatic packaging machine XY axes of general industrial machinery Automatic sash-manufacturing machine Welding machine Flame cutting machine Tool changer Various kinds of material feeder	Grinding machine table feed axis Automatic coating machine Industrial robot various kinds of material high speed feeder NC drilling machine Vertical axis of general industrial machinery Printed circuit board drilling machine Electric discharge machine Measuring instrument Precision XY table	Machining center NC lathe Grinding stone feed axis of grinding machine Milling machine Vertical/horizontal boring machine Tool rest guide Vertical axis of machine tool	

Service Life with a Preload Considered

When using an LM Guide under a medium preload (clearance C0), it is necessary to calculate the service life while taking into account the magnitude of the preload.

To identify the appropriate preload for any selected LM Guide model, contact THK.

Rigidity

When the LM Guide receives a load, its rolling element, LM blocks and LM rails are elastically deformed within a permissible load range. The ratio between the displacement and the load is called rigidity value. (Rigidity values are obtained using the equation shown below.) The LM Guide's rigidity increases according to the magnitude of the preload. Fig.15 shows rigidity difference between normal, C1 and C0 clearances.

The effect of a preload for a 4-way equal load type is translated into the calculated load approx. 2.8 times greater than the magnitude of the preload.

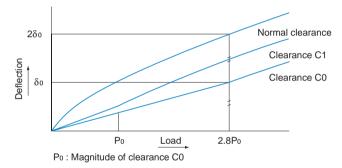



Fig.15 Rigidity Data

$$K = \frac{P}{\delta}$$

Predicting the Rigidity

Radial Clearance Standard for Each Model

Radial clearance

[Radial clearances of models SHS and SCR] Unit: µm

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
15	-5 to 0	-12 to -5	_
20	-6 to 0	-12 to -6	-18 to -12
25	-8 to 0	-14 to -8	-20 to -14
30	-9 to 0	-17 to -9	-27 to -17
35	-11 to 0	-19 to -11	-29 to -19
45	-12 to 0	-22 to -12	-32 to -22
55	-15 to 0	-28 to -16	-38 to -28
65	-18 to 0	-34 to -22	-45 to -34

[Radial clearance for model SSR]

Unit: µm

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
15	-4 to +2	-10 to -4
20	-5 to +2	-12 to -5
25	-6 to +3	−15 to −6
30	-7 to +4	-18 to -7
35	-8 to +4	-20 to -8

[Radial clearance for models SNR/SNS and NR/NRS]

Unit: µm

			•
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
25	-3 to +2	-6 to -3	-9 to -6
30	-4 to +2	-8 to -4	-12 to -8
35	-4 to +2	-8 to -4	-12 to -8
45	-5 to +3	-10 to -5	-15 to -10
55	-6 to +3	-11 to -6	-16 to -11
65	-8 to +3	-14 to -8	-20 to -14
75	-10 to +4	-17 to -10	-24 to -17
85	-13 to +4	-20 to -13	-27 to -20
100	-14 to +4	-24 to -14	-34 to -24

[Radial clearance for model SHW]

Unit: u.m.

			Onit. μm
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
12	-1.5 to 0	-4 to -1	-
14	-2 to 0	−5 to −1	_
17	-3 to 0	−7 to −3	_
21	-4 to +2	-8 to -4	_
27	-5 to +2	-11 to -5	ı
35	-8 to +4	-18 to -8	-28 to -18
50	-10 to +5	-24 to -10	-38 to -24

[Radial clearance for model SRS]

Unit: µm

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
7	-2 to +2	-3 to 0
9	-2 to +2	-4 to 0
12	-3 to +3	-6 to 0
15	-5 to +5	-10 to 0
20	-5 to +5	-10 to 0
25	-7 to +7	-14 to 0

100

120

150

[Radial clearance for models HSR, CSR and HSR-M1]

Unit: µm

Indication Light Medium Normal preload symbol preload Model No. No Symbol C1 C0 45 -10 to +5 -25 to -10 -40 to -25 55 -12 to +5 -29 to -12 -46 to -29 65 -14 to +7 -32 to -14 -50 to -32 -16 to +8 -36 to -16 -56 to -36 85 -19 to +9 -42 to -19

-21 to +10

-23 to +11

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
8	-1 to +1	-4 to -1	_
10	-2 to +2	-5 to -1	_
12	-3 to +3	-6 to -2	_
15	-4 to +2	-12 to -4	_
20	-5 to +2	-14 to -5	-23 to -14
25	-6 to +3	-16 to -6	-26 to -16
30	-7 to +4	-19 to -7	-31 to -19
35	-8 to +4	-22 to -8	-35 to -22

[Model HSR Grade Ct Radial Clearance]

Unit: µm

Indication symbol	Normal
Model No.	No Symbol
15	-8 to +2
20	-14 to +2
25	-16 to +2
30	-18 to +4
35	-20 to +4

[Radial clearances of models SR and SR-M1]

-47 to -21

-51 to -23

-65 to -42

-73 to -47

-79 to -51

Unit: µm

Unit: μι					
Normal	Light preload	Medium preload			
No Symbol	C1	C0			
-4 to +2	-10 to -4	_			
-5 to +2	-12 to -5	-17 to -12			
-6 to +3	-15 to -6	-21 to -15			
-7 to +4	-18 to -7	-26 to -18			
35 -8 to +4 -20 to -8		-31 to -20			
45 -10 to +5 -24 to -10		-36 to -24			
-12 to +5	-28 to -12	-45 to -28			
70 -14 to +7 -32 to -14		-50 to -32			
-20 to +9	-46 to -20	-70 to -46			
100 -22 to +10 -52 to -22		-78 to -52			
-25 to +12	-57 to -25	-87 to -57			
-29 to +14	-69 to -29	-104 to -69			
	No Symbol -4 to +2 -5 to +2 -6 to +3 -7 to +4 -8 to +4 -10 to +5 -12 to +5 -14 to +7 -20 to +9 -22 to +10 -25 to +12	No Symbol C1 -4 to +2 -10 to -4 -5 to +2 -12 to -5 -6 to +3 -15 to -6 -7 to +4 -18 to -7 -8 to +4 -20 to -8 -10 to +5 -24 to -10 -12 to +5 -28 to -12 -14 to +7 -32 to -14 -20 to +9 -46 to -20 -22 to +10 -52 to -22 -25 to +12 -57 to -25			

[Radial clearance for model HRW]

Unit: µm

Indication symbol	Normal		Medium preload	
Model No.	No Symbol	C1	C0	
12	-1.5 to +1.5	-4 to -1	_	
14	14 -2 to +2 -5 to -1		_	
17	17 -3 to +2 -7 to -3		_	
21	21 -4 to +2 -8 to -4		_	
27	-5 to +2	-11 to -5	_	
35	-8 to +4	-18 to -8	-28 to -18	
50	-10 to +5	-24 to -10	-38 to -24	
60	-12 to +5	-27 to -12	-42 to -27	

[Radial clearance for models RSR, RSR-W, RSR-Z, RSR-WZ, RSH, RSH-Z and RSR-M1]

Unit: um

		Onit. µm
Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
3	0 to +1	-0.5 to 0
5	0 to +1.5	-1 to 0
7	-2 to +2	-3 to 0
9	-2 to +2	-4 to 0
12	-3 to +3	-6 to 0
15	-5 to +5	-10 to 0
20	-7 to +7	-14 to 0

Predicting the Rigidity

[Radial clearance for model MX]

Unit: µm

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
5	0 to +1.5	-1 to 0
7	-2 to +2	-3 to 0

[Radial clearance for model JR]

Unit: µm

Indication symbol	Normal
Model No.	No Symbol
25	0 to +30
35	0 to +30
45	0 to +50
55	0 to +50

[Radial clearances for models HCR and HMG]

Unit: µm

Normal	Light preload
No Symbol	C1
-3 to +3	-6 to -2
-4 to +2	-12 to -4
-6 to +3	-16 to -6
-8 to +4	-22 to -8
-10 to +5	-25 to -10
-14 to +7	-32 to -14
	No Symbol -3 to +3 -4 to +2 -6 to +3 -8 to +4 -10 to +5

[Radial clearance for model NSR-TBC]

Unit: µm

	Unit: μ					
	Indication symbol	Normal	Light preload	Medium preload		
ĺ	Model No.	No Symbol	C1	C0		
ĺ	20	-5 to +5	-15 to -5	-25 to -15		
	25	-5 to +5	-15 to -5	-25 to -15		
	30	-5 to +5	-15 to -5	-25 to -15		
	40	-8 to +8	-22 to -8	-36 to -22		
	50	-8 to +8	-22 to -8	-36 to -22		
	70	-10 to +10	-26 to -10	-42 to -26		

[Radial clearance for model HSR-M2]

Unit: µm

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
15	-4 to +2	-12 to -4
20	-5 to +2	−14 to −5
25	-6 to +3	-16 to -6

[Radial clearances for models SRG and SRN]

Unit: µm

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
15	-0.5 to 0	-1 to -0.5	-2 to -1
20	-0.8 to 0	-2 to -0.8	-3 to -2
25	-2 to -1	-3 to -2	-4 to -3
30	-2 to -1	-3 to -2	-4 to -3
35	-2 to -1	-3 to -2	-5 to -3
45	-2 to -1	-3 to -2	−5 to −3
55	-2 to -1	-4 to -2	-6 to -4
65	-3 to -1	−5 to −3	-8 to -5

[Radial clearance for model SRW]

Unit: μm

Indication symbol	Normal	Light preload	Medium preload	
Model No.	No Symbol	C1	C0	
70	-2 to -1	-3 to -2	-5 to -3	
85	-2 to -1	-4 to -2	-6 to -4	
100	−3 to −1	−5 to −3	-8 to -5	

Determining the Accuracy

Accuracy Standards

Accuracy of the LM Guide is specified in terms of running parallelism, dimensional tolerance for height and width, and height and width difference between a pair when 2 or more LM blocks are used on one rail or when 2 or more rails are mounted on the same plane.

For details, see "Accuracy Standard for Each Model" on A-118 to A-128.

[Running of Parallelism]

It refers to the tolerance for parallelism between the LM block and the LM rail reference surface when the LM block travels the whole length of the LM rail with the LM rail secured on the reference reference surface using bolts.

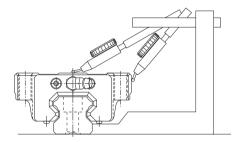


Fig.16 Running of Parallelism

[Difference in Height M]

Indicates a difference between the minimum and maximum values of height (M) of each of the LM blocks used on the same plane in combination.

[Difference in Width W₂]

Indicates a difference between the minimum and maximum values of the width (W₂) between each of the LM blocks, mounted on one LM rail in combination, and the LM rail.

Note1) When 2 or more rails are used on the same plane in parallel, only the width (W₂) tolerance and the difference on the master rail apply. The master LM rail is imprinted with "KB" (except for normal grade products) following the serial number.

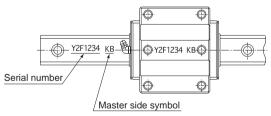


Fig.17 Master LM Rail

Note2) Accuracy measurements each represent the average value of the central point or the central area of the LM block.

Note3) The LM rail is smoothly curved so that the required accuracy is easily achieved by pressing the rail to the reference surface of the machine.

If it is mounted on a less rigid base such as an aluminum base, the curve of the rail will affect the accuracy of the machine. Therefore, it is necessary to define straightness of the rail in advance.

Guidelines for Accuracy Grades by Machine Type

Table14 shows guidelines for selecting an accuracy grade of the LM Guide according to the machine type.

Table14 Guideline for Accuracy Grades by Machine Type

	Towns of marchine			Accı	uracy gra	des		
	Type of machine	Ct7	Ct5	Normal	Н	Р	SP	UP
	Machining center					•	•	
	Lathe					•	•	
	Milling machine					•	•	
	Boring machine					•	•	
	Jig borer						•	•
	Grinding machine						•	•
0	Electric discharge machine					•	•	•
Machine tool	Punching press				•	•		
S j	Laser beam machine				•	•	•	
Ma	Woodworking machine	•	•	•	•	•		
	NC drilling machine				•	•		
	Tapping center				•	•		
	Palette changer			•				
	ATC	•	•	•				
	Wire cutting machine					•	•	
	Dressing machine						•	•
ت ق	Cartesian coordinate			•	•	•		
Industrial robot	Cylindrical coordinate			•	•			
	Wire bonding machine					•	•	
urin ent	Prober						•	•
onc fact ipm	Electronic component inserter				•	•		
Semiconductor manufacturing equipment	Printed circuit board drilling machine				•	•	•	
	Injection molding machine			•	•			
	3D measuring instrument						•	•
+=	Office equipment	•	•	•	•			
Other equipment	Conveyance system	•	•	•	•			
uipr	XY table				•	•	•	
99	Coating machine	•	•	•	•			
ther	Welding machine	•	•	•	•			
0	Medical equipment			•	•			
	Digitizer				•	•	•	
	Inspection equipment					•	•	•

Ct7: Grade Ct7

Normal : Normal grade

H : High accuracy grade : Precision Grade SP Super precision grade : Ultra precision grade

Ct5: Grade Ct5

Accuracy Standard for Each Model

Accuracies of models XSHS, SSR, SNR/SNS, SHW, HSR, SR, NR/NRS, HRW, NSR-TBC, HSR-M1, SR-M1 HSR-M2, SRG and SRN are categorized into Ct7 grade (Ct7), Ct5 grade (Ct5), Normal grade (no symbol), High accuracy grade (H), Precision grade (P), Super precision grade (SP) and Ultra precision grade (UP) by model numbers, as indicated in Table16 on A-119.

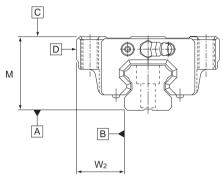


Fig.18

Table15 LM Rail Length and Running Parallelism by Accuracy Standard

Unit: µm

LM rail ler	ngth (mm)			Running	g Parallelism	Values		
Above	Or less	Grade Ct7	Grade Ct5	Normal grade	High- accuracy grade	Precision grade	Super precision grade	Ultra precision grade
_	50	6	6	5	3	2	1.5	1
50	80	6	6	5	3	2	1.5	1
80	125	6	6	5	3	2	1.5	1
125	200	7	6	5	3.5	2	1.5	1
200	250	9.5	6.5	6	4	2.5	1.5	1
250	315	11	7.5	7	4.5	3	1.5	1
315	400	13	8.5	8	5	3.5	2	1.5
400	500	16	11	9	6	4.5	2.5	1.5
500	630	18	13	11	7	5	3	2
630	800	20	15	12	8.5	6	3.5	2
800	1000	23	16	13	9	6.5	4	2.5
1000	1250	26	18	15	11	7.5	4.5	3
1250	1600	28	20	16	12	8	5	4
1600	2000	31	23	18	13	8.5	5.5	4.5
2000	2500	34	25	20	14	9.5	6	5
2500	3150	36	27	21	16	11	6.5	5.5
3150	4000	40	29	23	17	12	7.5	6
4000	5000	41	30	24	18	13	8.5	6.5

Note) Ct7 and Ct5 class are only applicable for model HSR.

Point of Selection

Determining the Accuracy

Table16 Accuracy Standards for Models SHS, SSR, SNR/SNS, SHW, HSR, SR, NR/NRS, HRW, NSR-TBC, HSR-M1, SR-M1, HSR-M2, SRG, and SRN.

Unit: mm

								Unit: mm	
Model	Accuracy standards	Grade Ct7	Grade Ct5	Normal grade	High- accuracy grade	Precision grade	Super precision grade	Ultra precision grade	
No.	Item	Ct7	Ct5	No Sym- bol	Н	Р	SP	UP	
	Dimensional tolerance in height M	_	_	±0.07	±0.03	±0.015	±0.007	l	
	Difference in height M	_	_	0.015	0.007	0.005	0.003		
8	Dimensional tolerance in width W ₂	-	-	±0.04	±0.02	±0.01	±0.007	1	
10	Difference in width W ₂	_	_	0.02	0.01	0.006	0.004	_	
12 14	Running parallelism of surface C against surface A		Δ	C (as sho	wn in A-1	18 Table1	5)		
	Running parallelism of surface D against surface B		Δ	D (as sho	wn in A-1		,		
	Dimensional tolerance in height M	±0.12	±0.12	±0.07	±0.03	0 -0.03	0 -0.015	0 -0.008	
	Difference in height M	0.025	0.025	0.02	0.01	0.006	0.004	0.003	
15 17	Dimensional tolerance in width W ₂	±0.12	±0.12	±0.06	±0.03	0 -0.02	0 -0.015	0 -0.008	
20	Difference in width W ₂	0.025	0.025	0.02	0.01	0.006	0.004	0.003	
21	21 Running parallelism of surface C against surface A ΔC (as shown in A-118 Table15)						5)		
	Running parallelism of surface D against surface B Δ D (as shown in A-118 Table15)					5)			
	Dimensional tolerance in height M	±0.12	±0.12	±0.08	±0.04	0 -0.04	0 -0.02	0 -0.01	
	Difference in height M	0.025	0.025	0.02	0.015	0.007	0.005	0.003	
25 27	Dimensional tolerance in width W ₂	±0.12	±0.12	±0.07	±0.03	0 -0.03	0 -0.015	0 -0.01	
30	Difference in width W ₂	0.035	0.035	0.025	0.015	0.007	0.005	0.003	
35	Running parallelism of surface C against surface A								
	Running parallelism of surface D against surface B		Δ	D (as sho	wn in A-1	18 Table1	5)		
	Dimensional tolerance in height M	_	_	±0.08	±0.04	0 -0.05	0 -0.03	0 -0.015	
40	Difference in height M	_	_	0.025	0.015	0.007	0.005	0.003	
45 50	Dimensional tolerance in width W ₂	-	-	±0.07	±0.04	0 -0.04	0 -0.025	0 -0.015	
55	Difference in width W ₂	_	_	0.03	0.015	0.007	0.005	0.003	
60	Running parallelism of surface C against surface A		Δ	C (as sho	wn in A-1	18 Table1	5)		
	Running parallelism of surface D against surface B		Δ	D (as sho	wn in A-1	18 Table1	5)		
	Dimensional tolerance in height M	_	_	±0.08	±0.04	0 -0.05	0 -0.04	0 -0.03	
65	Difference in height M	_	_	0.03	0.02	0.01	0.007	0.005	
70 75	Dimensional tolerance in width W ₂	_	_	±0.08	±0.04	0 -0.05	0 -0.04	0 -0.03	
	Difference in width W ₂	_	_	0.03	0.02	0.01	0.007	0.005	
120 150									
	Running parallelism of surface D against surface B		4	∆D (as sh	own in A-1	18 Fig.18)		
85 100 120	Difference in width W ₂ Running parallelism of surface C against surface A Running parallelism of surface D	0.03 0.02 0.01 0.007 0.							

Note) XFor models SRG and SRN, only precision or higher grades apply. (Ct7 grade, Ct5 grade, normal grade and high accuracy grade are not available.)

Note) Ct7 and Ct5 class are only applicable for model HSR.

• Accuracies of model HMG are defined by model number as indicated in Table17.

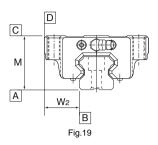


Table17 Model HMG Accuracy Standard

Unit: mm

Table18 LM Rail Length and Running Parallelism by Accuracy Standard Unit: μm

		Offic fills	
Model	Accuracy Standards	Normal grade	
No.	Item	No symbol	
	Dimensional tolerance in height M	±0.1	
	Difference in height M	0.02	
15	Dimensional tolerance in width W ₂	±0.1	
	Difference in width W2	0.02	
	Running parallelism of surface C against surface A	ΔC (as shown in Table18)	
	Running parallelism of surface D against surface B	ΔD (as shown in Table18)	
	Dimensional tolerance in height M	±0.1	
	Difference in height M	0.02	
	Dimensional tolerance in width W ₂	±0.1	
25 35	Difference in width W2	0.03	
35	Running parallelism of surface C against surface A	ΔC (as shown in Table18)	
	Running parallelism of surface D against surface B	ΔD (as shown in Table18)	
	Dimensional tolerance in height M	±0.1	
	Difference in height M	0.03	
	Dimensional tolerance in width W ₂	±0.1	
45 65	Difference in width W ₂	0.03	
65	Running parallelism of surface C against surface A	ΔC (as shown in Table18)	
	Running parallelism of surface D against surface B	ΔD (as shown in Table18)	

LM rail le	ngth (mm)	Running Parallelism Values
Above	Or less	Normal grade
_	125	30
125	200	37
200	250	40
250	315	44
315	400	49
400	500	53
500	630	58
630	800	64
800	1000	70
1000	1250	77
1250	1600	84
1600	2000	92

 Accuracies of model HCR are categorized into normal and high accuracy grades by model number as indicated in Table19.

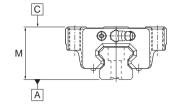


Fig.20

Table 19 Accuracy Standard for Model HCR

			Unit: mr	
Model No.	Accuracy standards	Normal grade	High-accuracy grade	
	Item	No Symbol	Н	
	Dimensional tolerance in height M	±0.2	±0.2	
	Difference in height M	0.05	0.03	
25 35	Running parallelism of surface C against surface A	ΔC (as shown in Table20)		
	Dimensional tolerance in height M	±0.2	±0.2	
45	Difference in height M	0.06	0.04	
65	Running parallelism of surface C against surface A	ΔC (as shown in Table20)		

Table20 LM Rail Length and Running Parallelism by Accuracy Standard

LM rail ler	ngth (mm)	Running Parallelism Values		
Above	Or less	Normal grade	High-accuracy grade	
_	125	30	15	
125	200	37	18	
200	250	40	20	
250	315	44	22	
315	400	49	24	
400	500	53	26	
500	630	58	29	
630	800	64	32	
800	1000	70	35	
1000	1250	77	38	
1250	1600	84	42	
1600	2000	92	46	

• Accuracies of model JR are defined by model number as indicated in Table21.

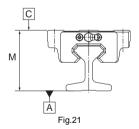
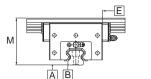


Table21 Accuracy Standard for Model JR


Unit: mm

Model	Accuracy standards	Normal grade		
No.	Item	No Symbol		
	Difference in height M	0.05		
25 35	Running parallelism of surface C against surface A	ΔC (as shown in Table22)		
	Difference in height M	0.06		
45 55	Running parallelism of surface C against surface A	ΔC (as shown in Table22)		

Table22 LM Rail Length and Running Parallelism by Accuracy Standard Unit: µm

LM rail ler	ngth (mm)	Running Parallelism Values
Above	Or less	Normal grade
_	50	5
50	80	5
80	125	5
125	200	6
200	250	8
250	315	9
315	400	11
400	500	13
500	630	15
630	800	17
800	1000	19
1000	1250	21
1250	1600	23
1600	2000	26
2000	2500	28
2500	3150	30
3150	4000	33
4000	5000	34

• Accuracies of models SCR and CSR are categorized into precision, super precision and ultra precision grades by model number as indicated in Table23.

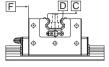


Fig.22

Table23 Accuracy Standard for Models SCR and CSR

				Unit: mm	
Model No.	Accuracy standards	Precision grade	Super precision grade	Ultra precision grade	
	Item	Р	SP	UP	
	Difference in height M	0.01	0.007	0.005	
15 20	Perpendicularity of surface D against surface B	0.005	0.004	0.003	
	Running parallelism of surface E against surface B	(as sho	ΔC own in Ta	able24)	
	Running parallelism of surface F against surface D	(as sho	ΔD own in Ta	able24)	
	Difference in height M	0.01	0.007	0.005	
	Perpendicularity of surface D against surface B	0.008	0.006	0.004	
25	Running parallelism of surface E against surface B	ΔC (as shown in Table24)			
	Running parallelism of surface F against surface D	ΔD (as shown in Table24)			
	Difference in height M	0.01	0.007	0.005	
20	Perpendicularity of surface D against surface B	0.01	0.007	0.005	
30 35	Running parallelism of surface E against surface B	(as sho	ΔC (as shown in Table24)		
	Running parallelism of surface F against surface D	(as sho	ΔD (as shown in Table24)		
	Difference in height M	0.012	0.008	0.006	
	Perpendicularity of surface D against surface B	0.012	0.008	0.006	
45	Running parallelism of surface E against surface B	ΔC (as shown in Table24)			
	Running parallelism of surface F against surface D	(as sho	ΔD own in Ta	able24)	
	Difference in height M	0.018	0.012	0.009	
	Perpendicularity of surface D against surface B	0.018	0.012	0.009	
65	Running parallelism of surface E against surface B	ΔC (as shown in Table24)			
	Running parallelism of surface F against surface D	ΔD (as shown in Table24)			

Table24 LM Rail Length and Running Parallelism by Accuracy Standard Unit: µm

LM rail le	ngth (mm)	Running Parallelism Values				
Above	Or less	Precision grade	Super precision grade	Ultra precision grade		
_	50	2	1.5	1		
50	80	2	1.5	1		
80	125	2	1.5	1		
125	200	2	1.5	1		
200	250	2.5	1.5	1		
250	315	3	1.5	1		
315	400	3.5	2	1.5		
400	500	4.5	2.5	1.5		
500	630	5	3	2		
630	800	6	3.5	2		
800	1000	6.5	4	2.5		
1000	1250	7.5	4.5	3		
1250	1600	8	5	4		
1600	2000	8.5	5.5	4.5		
2000	2500	9.5	6	5		
2500	3150	11	6.5	5.5		
3150	4000	12	7.5	6		
4000	5000	13	8.5	6.5		

Point of Selection

Determining the Accuracy

 Accuracies of model HR are categorized into normal, high accuracy, precision, super precision and ultra precision grades as indicated in Table25.

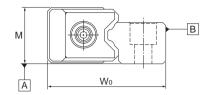


Fig.23

Table25 Accuracy Standard for Model HR

Unit: mm

Accuracy standards	Normal grade	High- accuracy grade	Precision grade	Super precision grade	Ultra precision grade
Item	No Symbol	Н	Р	SP	UP
Dimensional tolerance in height M	±0.1	±0.05	±0.025	±0.015	±0.01
Difference in height M Note 1)	0.03	0.02	0.01	0.005	0.003
Dimensional tolerance for total width Wo	±C).1		±0.05	
Difference in total width W ₀ Note 2)	0.03	0.015	0.01	0.005	0.003
Parallelism of the raceway against surfaces A and B	S ΔC (as shown in Table26)				

Note1) Difference in height M applies to a set of LM Guides used on the same plane.

Note2) Difference in total width W₀ applies to LM blocks used in combination on one LM rail.

Note3) Dimensional tolerance and difference in total width W₀ for precision and higher grades apply only to the master-rail side among a set of LM Guides. The master rail is imprinted with "KB" following a serial number.

Table26 LM Rail Length and Running Parallelism by Accuracy Standard

Unit: u.m

	Table20 Livi Kali Length and Kunning Farahelish by Accuracy Standard						
LM rail ler	ngth (mm)		Runn	ing Parallelism V	alues		
Above	Or less	Normal grade	High-accuracy grade	Precision grade	Super precision grade	Ultra precision grade	
_	50	5	3	2	1.5	1	
50	80	5	3	2	1.5	1	
80	125	5	3	2	1.5	1	
125	200	5	3.5	2	1.5	1	
200	250	6	4	2.5	1.5	1	
250	315	7	4.5	3	1.5	1	
315	400	8	5	3.5	2	1.5	
400	500	9	6	4.5	2.5	1.5	
500	630	11	7	5	3	2	
630	800	12	8.5	6	3.5	2	
800	1000	13	9	6.5	4	2.5	
1000	1250	15	11	7.5	4.5	3	
1250	1600	16	12	8	5	4	
1600	2000	18	13	8.5	5.5	4.5	
2000	2500	20	14	9.5	6	5	
2500	3150	21	16	11	6.5	5.5	
3150	4000	23	17	12	7.5	6	
4000	5000	24	18	13	8.5	6.5	

• Accuracies of model GSR are categorized into normal, high accuracy and precision grades by model number as indicated in Table27.

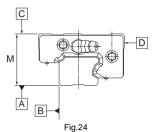


Table27 Accuracy Standard for Model GSR Unit: mm

Table28 LM Rail Length and Running Parallelism by Accuracy Standard

Model No.	Accuracy standards	Normal grade	High- accuracy grade	Precision grade	
NO.	Item	No Symbol	Н	Р	
	Dimensional tolerance in height M		±0.02		
15 20	Running parallelism of surface C against surface A	ΔC (as shown in Table28)			
	Running parallelism of surface D against sur- face B	ΔD (as shown in Table28)			
	Dimensional tolerance in height M	±0.03		±0.03	
25 30 35	Running parallelism of surface C against surface A	ΔC (as shown in Table28)			
33	Running parallelism of surface D against surface B	ΔD (as shown in Table28)			

LM rail length (mm)		Running Parallelism Values		
Above	Or less	Normal grade	High- accuracy grade	Precision grade
_	50	5	3	2
50	80	5	3	2
80	125	5	3	2
125	200	5	3.5	2
200	250	6	4	2.5
250	315	7	4.5	3
315	400	8	5	3.5
400	500	9	6	4.5
500	630	11	7	5
630	800	12	8.5	6
800	1000	13	9	6.5
1000	1250	15	11	7.5
1250	1600	16	12	8
1600	2000	18	13	8.5
2000	2500	20	14	9.5
2500	3150	21	16	11
3150	4000	23	17	12
4000	5000	24	18	13

Point of Selection

Determining the Accuracy

Accuracies of model GSR-R are categorized into normal and high accuracy grades by model number as indicated in Table29.

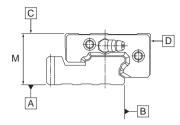


Fig.25

Table29 Accuracy Standard for GSR-R

Unit: mm

Model	Accuracy standards	Normal grade	High-accuracy grade
No.	Item	No Symbol	Н
	Dimensional tolerance in height M		
25 30 35	Running parallelism of surface C against surface A	ΔC (as shown in Table30)	
	Running parallelism of surface D against surface B	ΔD (as shown in Table30)	

Table 30 LM Rail Length and Running Parallelism by Accuracy Standard Unit: μm

LM rail length (mm)		Running Para	llelism Values
Above	Or less	Normal grade	High-accuracy grade
_	50	5	3
50	80	5	3
80	125	5	3
125	200	5	3.5
200	250	6	4
250	315	7	4.5
315	400	8	5
400	500	9	6
500	630	11	7
630	800	12	8.5
800	1000	13	9
1000	1250	15	11
1250	1600	16	12
1600	2000	18	13
2000	2500	20	14
2500	3150	21	16
3150	4000	23	17
4000	5000	24	18

 Accuracies of models SRS, RSR, RSR-M1, RSR-W, RSR-Z, RSR-WZ, RSH and RSH-Z are categorized into normal, high accuracy and precision grades by model number as indicated in Table31.

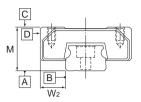


Fig.26

Table31 Accuracy Standards for Models SRS, RSR, RSR-M1, RSR-W, RSR-Z, RSR-WZ, RSH and RSH-Z Unit: mm

Model	Accuracy standards	Normal grade	High- accuracy grade	Precision grade	
No.	Item	No Symbol	Η	Р	
	Dimensional tolerance in height M	±0.03	-	±0.015	
	Difference in height M	0.015	_	0.005	
_	Dimensional tolerance in width W ₂	±0.03	_	±0.015	
3 5	Difference in width W2	0.015	_	0.005	
5	Running parallelism of surface C against surface A	ΔC (as shown in Table32)			
	Running parallelism of surface D against surface B	ΔD (as shown in Table32)			
	Dimensional tolerance in height M	±0.04	±0.02	±0.01	
7	Difference in height M	0.03	0.015	0.007	
9 12	Dimensional tolerance in width W ₂	±0.04	±0.025	±0.015	
14	Difference in width W2	0.03	0.02	0.01	
15 20 25	Running parallelism of surface C against sur- face A	∆C (as s	shown in	Table33)	
23	Running parallelism of surface D against surface B	ΔD (as shown in Table33)			

Table32 LM Rail Length and Running Parallelism for Models RSR3 and 5 by Accuracy Standard Unit: μm

LM rail length (mm)		Running Para	
Above	Or less	Normal grade	Precision grade
_	25	2.5	1.5
25	50	3.5	2
50	100	5.5	3
100	150	7	4
150	200	8.4	5

Table33 LM Rail Length and Running Parallelism for Models SRS, RSR7 to 25, and RSH by Accuracy Standard Unit: μ m

LM rail length (mm) Running Parallelism Values				
2.11.10.10.	·9 (······)	High-		
Above	Or less	Normal grade	accuracy grade	Precision grade
_	40	8	4	1
40	70	10	4	1
70	100	11	4	2
100	130	12	5	2
130	160	13 14	6	2
160 190	190 220	15	7	3
220	250	16	7 8	3
250	280	17	8	3
280	310	17	9	3
310	340	18	9	3
340	370	18	10	3
370	400	19	10	3
400	430	20	11	4
430	460	20	12	4
460	490	21	12	4
490	520	21	12	4
520	550	22	12	4
550	580	22	13	4
580	610	22	13	4
610	640	22	13	4
640	670	23	13	4
670	700	23	13	5
700	730	23	14	5
730	760	23	14	5
760	790	23	14	5
790	820	23	14	5
820	850	24	14	5
850	880	24	15	5
880	910	24	15	5
910 940	940 970	24	15 15	5 5
940	1000	25	16	5
1000	1030	25	16	5
1030	1060	25	16	6
1060	1090	25	16	6
1090	1120	25	16	6
1120	1150	25	16	6
1150	1180	26	17	6
1180	1210	26	17	6
1210	1240	26	17	6
1240	1270	26	17	6
1270	1300	26	17	6
1300	1330	26	17	6
1330	1360	27	18	6
1360	1390	27	18	6
1390	1420	27	18	6
1420	1450	27	18	7
1450	1480	27	18	7
1480	1510	27	18	7
1510	1540	28	19	7
1540	1570	28	19	7
1570	1600	28	19	1

Point of Selection

Determining the Accuracy

 Accuracies of model MX are categorized into normal and precision grades by model number as indicated in Table34.

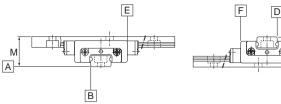


Fig.27

Table34 Accuracy Standard for Model MX
Unit: mm

Model	Accuracy standards	Normal grade	Precision grade
No.	Item	No Symbol	Р
	Difference in height M	0.015	0.005
	Perpendicularity of surface D against surface B	0.003	0.002
5	Running parallelism of surface E against surface B	ΔC (as shown in Table35	
	Running parallelism of surface F against surface D	ΔD (as shown in Table35	
	Difference in height M	0.03	0.007
	Perpendicularity of surface D against surface B	0.01	0.005
7	Running parallelism of surface E against surface B	Δ (as shown	C in Table36)
	Running parallelism of surface F against surface D	ΔD (as shown in Table36)	

Table35 LM Rail Length and Running Parallelism for Model MX5 by Accuracy Standard

ι	Jı	nit:	μm	

LM rail length (mm)		Running Para	llelism Values
Above	Or less	Normal grade	Precision grade
_	25	2.5	1.5
25	50	3.5	2
50	100	5.5	3
100	150	7	4
150	200	8.4	5

Table36 LM Rail Length and Running Parallelism for Model MX7 by Accuracy Standard

	иm

LM rail ler	ngth (mm)	Running Para	llelism Values			
Above	Or less	Normal grade	Precision grade			
_	40	8	1			
40	70	10	1			
70	100	11	2			
100	130	12	2			
130	160	13	2			
160	190	14	2			
190	220	15	3			
220	250	16	3			
250	280	17	3			
280	310	17	3			
310	340	18	3			
340	370	18	3			
370	400	19	3			
400	430	20	4			
430	460	20	4			
460	500	21	4			

 Accuracies of model SRW are categorized into precision, super precision and ultra precision grades by model number as indicated in Table37.

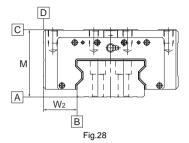


Table37 Accuracy Standard for Model SRW
Unit: mm

Table38 LM Rail Length and Running Parallelism by Accuracy Standard Unit: μm

Model No.	Accuracy standards	Precision grade	Super precision grade	Ultra precision grade
INO.	Item	Р	SP	UP
	Dimensional tolerance in height M	0 -0.05	0 -0.03	0 -0.015
	Difference in height M	0.007	0.005	0.003
70	Dimensional tolerance in width W ₂	0 -0.04	0 -0.025	0 -0.015
85	Difference in width W2	0.007	0.005	0.003
	Running parallelism of surface C against surface A	ΔC (as shown in Table38)		
	Running parallelism of surface D against surface B	ΔD (as shown in Table38)		
	Dimensional tolerance in height M	0 -0.05	0 -0.04	0 -0.03
	Difference in height M	0.01	0.007	0.005
400	Dimensional tolerance in width W ₂	0 -0.05	0 -0.04	0 -0.03
100	Difference in width W ₂	0.01	0.007	0.005
	Running parallelism of surface C against surface A	ΔC (as shown in Table38)		
	Running parallelism of surface D against surface B	ΔD (as shown in Table38)		able38)

LM rail ler	LM rail length (mm)		Running Parallelism Value	
Above	Or less	Precision grade	Super precision grade	Ultra precision grade
_	50	2	1.5	1
50	80	2	1.5	1
80	125	2	1.5	1
125	200	2	1.5	1
200	250	2.5	1.5	1
250	315	3	1.5	1
315	400	3.5	2	1.5
400	500	4.5	2.5	1.5
500	630	5	3	2
630	800	6	3.5	2
800	1000	6.5	4	2.5
1000	1250	7.5	4.5	3
1250	1600	8	5	4
1600	2000	8.5	5.5	4.5
2000	2500	9.5	6	5
2500	3000	11	6.5	5.5

LM Guide Feature of Each Model

Structure and Features of the Caged Ball LM Guide

Fig.1 Structural Drawing of the Caged Ball LM Guide Model SHS

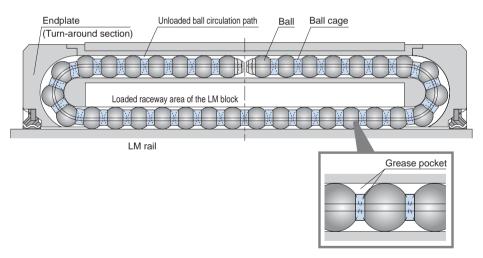


Fig.2 Circulation Structure inside the LM Block of the Caged Ball LM Guide

With the Caged Ball LM Guide, the use of a ball cage allows lines of evenly spaced balls to circulate, thus to eliminate friction between the balls.

In addition, grease held in a space between the ball circulation path and the ball cage (grease pocket) is applied on the contact surface between each ball and the ball cage as the ball rotates, forming an oil film on the ball surface. As a result, an oil film is not easily broken.

Features of Each Model

Structure and Features of the Caged Ball LM Guide

Advantages of the Ball Cage Technology

- (1) The absence of friction between balls, together with increased grease retention, achieves long service life and long-term maintenance-free (lubrication-free) operation.
- (2) The absence of ball-to-ball collision achieves low noise and acceptable running sound.
- (3) The absence of friction between balls achieves low heat generation and high speed operation.
- (4) The circulation of lines of evenly spaced balls ensures smooth ball rotation.
- (5) The absence of friction between balls allows high grease retention and low dust generation.

[Long Service Life and Long-term Maintenance-free Operation]

Nominal Life Equation for the LM Guide

$$L = \left(\frac{C}{P}\right)^3 \times 50$$

L : Nominal life (km) С : Basic dynamic load rating (N) : Applied load (N)

As indicated in the equation, the greater the basic dynamic load rating, the longer the nominal life of the LM Guide.

[Example of Calculation]

Comparison of Nominal Life Between the Caged Ball LM Guide model SHS25LR and the Conventional Full-ball Type Model HSR25LR

Calculation Assuming P = 13.6 kN

Basic dynamic rated load (C) of SHS25LR = 36.8 kN Basic dynamic rated load (C) of HSR25LR = 27.2 kN

Model SHS25LR
$$L = \left(\frac{C}{P}\right)^3 \times 50 = \left(\frac{36.8}{13.6}\right)^3 \times 50 = 990 \text{ km}$$

Model HSR25LR
$$L = \left(\frac{C}{P}\right)^3 \times 50 = \left(\frac{27.2}{13.6}\right)^3 \times 50 = 400 \text{ km}$$

The nominal life of the Caged Ball LM Guide model SHS25LR is 2.4 times* longer than the conventional full-ball type model HSR25LR.

When selecting a model number, it is necessary to perform a service life calculation according to the conditions.

1200

1600

• Data on Long Service Life and Long-term Maintenance-free Operation

Use of a ball cage eliminates friction between balls and increases grease retention, thus to achieve long service life and long-term maintenance-free operation.

[Condition]

Model No. : SHS25/HSR25 Speed : 60m/min Stroke : 350mm Acceleration: 9.8m/s2

Orientation: horizontal

Load : Caged Ball LM Guide model SHS: 11.1kN Conventional full-ball type model HSR: 9.8kN

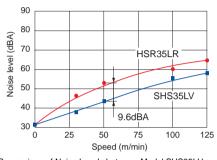
0

HSR25 (Conventional full-ball type) L = 435 kmLubricated every 100 km Nominal life: 400 km L = 1347 kmSHS25 (Caged Ball LM Guide) Initial lubrication only

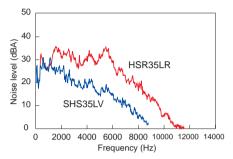
400

800 Distance traveled (km)

Features of Each Model


Structure and Features of the Caged Ball LM Guide

[Low Noise, Acceptable Running Sound]


Noise Level Data

Since the ball circulation path inside the LM block is made of resin, metallic noise between balls and the LM block is eliminated. In addition, use of a ball cage eliminates metallic noise of ball-to-ball collision, allowing a low noise level to be maintained even at high speed.

Model SHS35LV: Caged Ball LM Guide Model HSR35LR: conventional full-ball type

Comparison of Noise Levels between Model SHS35LV and Model HSR35LR

Comparison of Noise Levels between Model SHS35LV and Model HSR35LR (at speed of 50 m/min)

[High Speed]

High-speed Durability Test Data

Since use of a ball cage eliminates friction between balls, only a low level of heat is generated and superbly high speed is achieved.

[Condition] Model No.

: Caged Ball LM Guide Model SHS65LVSS

Speed : 200m/min Stroke : 2500mm

Lubrication: initial lubrication only

Applied load: 34.5kN Acceleration: 1.5G Calculated service life 19718km

Travel distance

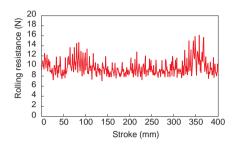
30000km

5000 10000 15000 20000 25000 30000

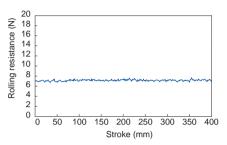
Distance traveled (km)

Grease remains, and no anomaly is observed in

the balls and grease.


Detail view of the ball cage

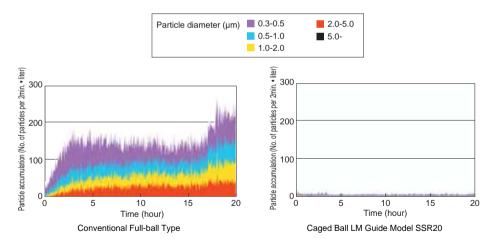
[Smooth Motion]


Rolling Resistance Data

Use of a ball cage allows the balls to be uniformly aligned and prevents a line of balls from meandering as they enter the LM block. This enables smooth and stable motion to be achieved, minimizes fluctuations in rolling resistance, and ensures high accuracy, in any mounting orientation.

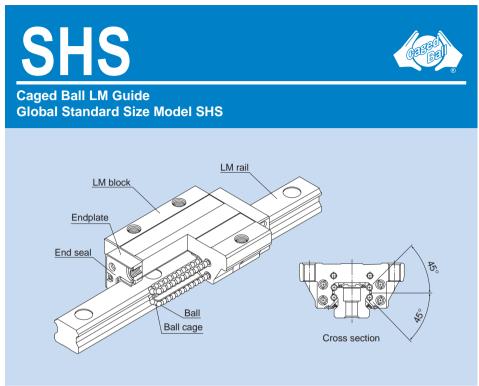
Model SHS25LV: Caged Ball LM Guide Model HSR25LR: conventional full-ball type

Rolling Resistance Fluctuation Data with HSR25LR (Feeding speed: 10mm/sec)



Rolling Resistance Fluctuation Data with SHS25LV (Feeding speed: 10mm/sec)

[Low dust generation]


Low Dust Generation Data

In addition to friction between balls, metallic contact has also been eliminated by using resin for the through holes. Furthermore, the Caged Ball LM Guide has a high level of grease retention and minimizes fly loss of grease, thus to achieve superbly low dust generation.

www.technobearing.ru 8 (800) 700-72-07 (бесплатно)

Features of Each Model Structure and Features of the Caged Ball LM Guide

^{*} For the ball cage, see A-130.

Structure and Features	$\triangleright \triangleright \triangleright$	A-137
Types and Features	>>>	A-138
Rated Loads in All Directions	>>>	A-140
Equivalent Load	>>>	A-140
Service Life	>>>	A-100
Radial Clearance Standard	>>>	A-113
Accuracy Standards	>>>	A-119
Shoulder Height of the Mounting Base and the Corner Radius	>>>	A-327
Error Allowance in the Parallelism between Two Rails	>>>	A-333
Error Allowance in Vertical Level between Two Rails	>>>	A-336
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	>>>	B-6
Standard Length and Maximum Length of the LM Rail	>>>	B-12
Tapped-hole LM Rail Type of Model SHS	>>>	B-13

www.technobearing.ru

Features of Each Model Global Standard Size Model SHS

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate.

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations. In addition, the LM block can receive a well-balanced preload, increasing the rigidity in the four directions while maintaining a constant, low friction coefficient. With the low sectional height and the high rigidity design of the LM block, this model achieves highly accurate and stable straight motion.

[4-way Equal Load]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

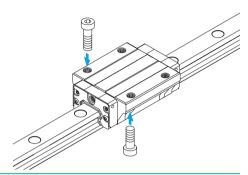
[Self-adjustment Capability]

The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

[Global Standard Size]

SHS is designed to have dimensions almost the same as that of Full Ball LM Guide model HSR, which THK as a pioneer of the linear motion system has developed and is practically a global standard size.

[Low Center of Gravity, High Rigidity]

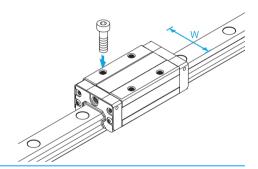

As a result of downsizing the LM rail section, the center of gravity is lowered and the rigidity is increased.

Types and Features

Model SHS-C

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom. Used in places where the table cannot have through holes for mounting bolts.

Specification Table⇒B-6



Model SHS-V

With this type, the LM block has a smaller width (W) and tapped holes.

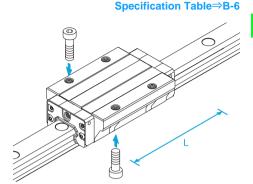
Used in places where the space for table width is limited.

Specification Table⇒**B-8**

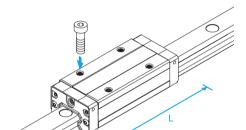
Model SHS-R

The LM block has a smaller width (W) and the mounting holes are tapped.

It succeeds the height dimension of full-ball type LM Guide HSR-R.


Specification Table⇒B-10

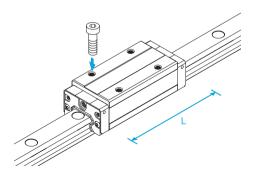
Global Standard Size Model SHS


Model SHS-LC

The LM block has the same cross-sectional shape as model SHS-C, but has a longer overall LM block length (L) and a greater rated load.

Model SHS-LV

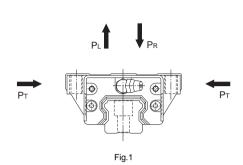
The LM block has the same cross-sectional shape as model SHS-V, but has a longer overall LM block length (L) and a greater rated load.



Model SHS-LR

The LM block has the same cross-sectional shape as model SHS-R, but has a longer overall LM block length (L) and a greater rated load.

Specification Table⇒B-10


Specification Table⇒B-8

Rated Loads in All Directions

Model SHS is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for SHS.

Equivalent Load

Р⊤

When the LM block of model SHS receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

(N)

$\mathbf{P}_{\mathsf{E}} = \mathbf{P}_{\mathsf{R}} \left(\mathbf{P}_{\mathsf{L}} \right) + \mathbf{P}_{\mathsf{T}}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N) P_L : Reverse radial load (N)

: Lateral load

Features of Each Model

Global Standard Size Model SHS

Service Life

For details, see A-100.

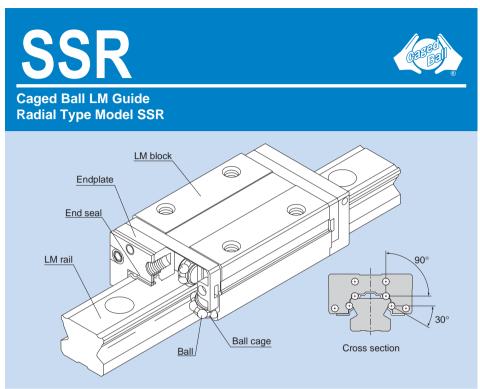
Radial Clearance Standard

For details, see A-113.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius


For details, see A-327.

Error Allowance in the Parallelism between Two Rails

For details, see A-333.

Error Allowance in Vertical Level between Two Rails

For details, see A-336.

^{*} For the ball cage, see A-130.

Structure and Features	$\triangleright \triangleright \triangleright$	A-143
Types and Features	>>>	A-144
Rated Loads in All Directions	>>>	A-145
Equivalent Load	>>>	A-145
Service Life	>>>	A-100
Radial Clearance Standard	>>>	A-113
Accuracy Standards	>>>	A-119
Shoulder Height of the Mounting Base and the Corner Radius	>>>	A-330
Error Allowance in the Parallelism between Two Rails	>>>	A-333
Error Allowance in Vertical Level between Two Rails	>>>	A-336
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	>>>	B-16
Standard Length and Maximum Length of the LM Rail	>>>	B-22
Tapped-hole LM Rail Type of Model SSR	>>>	B-23

Features of Each Model

Radial Type Model SSR

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate.

Use of the ball cage eliminates friction between balls and increases grease retention, thus to achieve low noise, high speed and long-term maintenance-free operation.

[Compact, Radial Type]

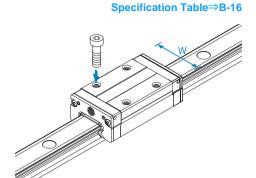
The compact design with a low sectional height and the ball contact structure at 90° make SSR an optimal model for horizontal guides.

[Superb Planar Running Accuracy]

Use of a ball contact structure at 90° in the radial direction reduces displacement in the radial direction under a radial load and achieves highly accurate, smooth straight motion.

[Self-adjustment Capability]

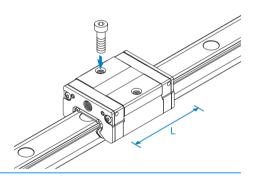
The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.


[Stainless Steel Type also Available as Standard]

A stainless steel type with its LM block, LM rail and balls all made of stainless steel, which is superbly corrosion resistant, is also available as standard.

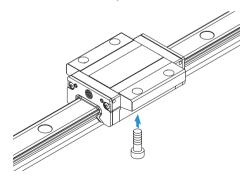
Types and Features

Model SSR-XW


With this type, the LM block has a smaller width (W) and tapped holes.

Model SSR-XV

This type has the same cross-sectional shape as SSR-XW but has a shorter overall LM block length (L).


Specification Table⇒B-18

Model SSR-XTB

Since the LM block can be mounted from the bottom, this type is optimal for applications where through holes for mounting bolts cannot be drilled on the table.

Specification Table⇒B-20

Rated Loads in All Directions

Model SSR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

Its basic dynamic load rating is represented by the symbol in the radial direction indicated in Fig.1, and the actual value is provided in the specification table for SSR. The values in the reverse radial and lateral directions are obtained from Table1 below.

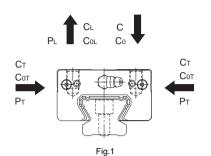


Table1 Rated Load of Model SSR in All Directions

Table I Nated Load of Wodel 331 III All Directions				
Direction	Basic dynamic load rating	Basic static load rating		
Radial direction	С	C ₀		
Reverse radial direction	C _L =0.50C	C _{0L} =0.50C ₀		
Lateral directions	C₁=0.53C	Сот=0.43Со		

Equivalent Load

When the LM block of model SSR receives a reverse radial direction and a lateral direction simultaneously, the equivalent load is obtained in the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

 P_E : Equivalent load (N)

: Reverse radial direction

: Lateral direction

 P_L : Reverse radial load (N) P_T : Lateral load (N)

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model SSR

P⊧	Х	Υ
Equivalent load in reverse radial direction	1	1.155
Equivalent load in lateral direction	0.866	1

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-113.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

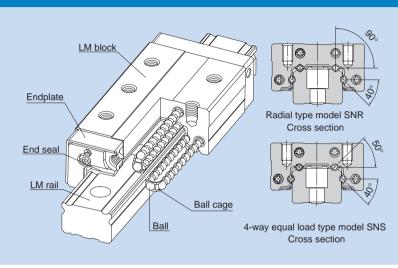
For details, see A-330.

Error Allowance in the Parallelism between Two Rails

For details, see A-333.

Error Allowance in Vertical Level between Two Rails

For details, see A-336.


Features of Each Model

Radial Type Model SSR

SNR/SNS

Caged Ball LM Guide
Ultra-heavy Load Type Models SNR/SNS

^{*} For the ball cage, see A-130.

Otwortons and Factories	
Structure and Features	▶ ▶▶ A-149
Types and Features	▶▶► A-150
Rated Loads in All Directions	▶▶▶ A-153
Equivalent Load	▶▶▶ A-153
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶▶▶ A-113
Accuracy Standards	▶ ▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-327
Error Allowance in the Parallelism between Two Rails	► A-333/A-334
Error Allowance in Vertical Level between Two Rails	► A-336/A-337
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-26
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-42

Structure and Features

Depending on the intended use, you can select either type.

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate. Use of the ball cage eliminates friction between balls and increases grease retention, thus to achieve low noise, high speed and long-term maintenance-free operation.

[High Rigidity]

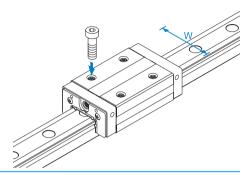
Models SNR/SNS are the most rigid types among the Caged Ball LM Guide series. Both the radial type SNR and the 4-way equal load type SNS are available for each size variation.

[Ultra-heavy Load]

Since the curvature of the raceway is approximated to the ball diameter, the ball contact area under a load is increased and the LM Guide is capable of receiving an ultra-heavy load.

[Increased Damping Effect]

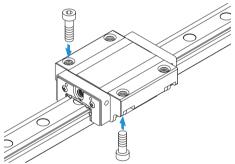
In rapid traverse where the LM block travels at high speed, no differential slip occurs and smooth motion is maintained, thus achieving highly accurate positioning. In heavy cutting where the LM block travels at low speed, favorable differential slip according to the cutting load occurs to increase frictional resistance, thus increasing the damping capacity.


Types and Features

Models SNR-R/SNS-R

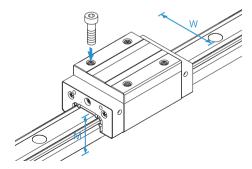
With this type, the LM block has a smaller width (W) and tapped holes.

Used in places where the space for table width is limited.


Specification Table⇒B-26/B-28

Models SNR-C/SNS-C

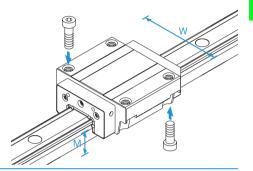
The flange of the LM block has tapped holes. Can be mounted from the top or the bottom. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒B-30/B-32

Models SNR-RH/SNS-RH (Build to Order)

Specification Table⇒B-34/B-36

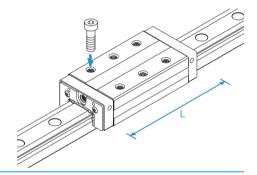
The dimensions are almost the same as that of LM Guide models SHS and HSR, and the LM block has tapped holes.



Ultra-heavy Load Type Models SNR/SNS

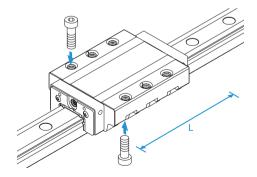
Models SNR-CH/SNS-CH (Build to Order)

Specification Table⇒B-38/B-40


The dimensions are almost the same as that of LM Guide models SHS and HSR, and the flange of the LM block has tapped holes.

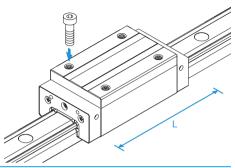
Models SNR-LR/SNS-LR

The LM block has the same cross-sectional shape as models SNR-R/SNS-R, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-26/B-28

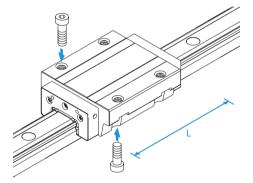
Models SNR-LC/SNS-LC

The LM block has the same cross-sectional shape as models SNR-C/SNS-C, but has a longer overall LM block length (L) and a greater rated load.

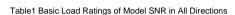

Specification Table⇒B-30/B-32

Models SNR-LRH/SNS-LRH (Build to Order)

Specification Table⇒B-34/B-36


The LM block has the same cross-sectional shape as models SNR-RH/SNS-RH, but has a longer overall LM block length (L) and a greater rated load.

Models SNR-LCH/SNS-LCH (Build to Order)


Specification Table⇒B-38/B-40

The LM block has the same cross-sectional shape as models SNR-CH/SNS-CH, but has a longer overall LM block length (L) and a greater rated load.

Rated Loads in All Directions

Model SNR/SNS is capable of receiving loads in four directions: radial, reverse radial and lateral directions. Their basic dynamic load ratings are represented by the symbols in the radial direction indicated in Fig.1, and the actual values are provided in the specification tables for SNR/SNS. The values in the reverse radial and lateral directions are obtained from Table1 and Table2 below.

	SNR		
Direction	Basic dynamic load rating	Basic static load rating	
Radial direction	С	C ₀	
Reverse radial direction	CL=0.64C	C _{0L} =0.64C ₀	
Lateral directions	C⊤=0.47C	Сот=0.38Со	

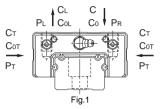


Table2 Basic Load Ratings of Model SNS in All Directions

	SNS		
Direction	Basic dynamic load rating	Basic static load rating	
Radial direction	С	C ₀	
Reverse radial direction	CL=0.84C	C _{0L} =0.84C ₀	
Lateral directions	C⊤=0.84C	Сот=0.84Со	

Equivalent Load

When the LM block of model SNR receives a reverse radial load and a lateral load simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

P_E: Equivalent load (N): Reverse radial direction

: Lateral direction

 P_{\perp} : Reverse radial load (N) P_{\top} : Lateral load (N)

X, Y: Equivalent factor (see Table3)

Table3 Equivalent Factor of Model SNR

P₅	Х	Υ
Equivalent load in reverse radial direction	1	1.678
Equivalent load in lateral direction	0.596	1

When the LM block of model SNS receives a radial load and a lateral load, or a reverse radial load and a lateral load, simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{X} \cdot \mathbf{P}_{R} (\mathbf{P}_{L}) + \mathbf{Y} \cdot \mathbf{P}_{T}$

P_E: Equivalent load (N): Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\text{R}} & : \text{Radial load} & \text{(N)} \\ P_{\text{L}} & : \text{Reverse radial load} & \text{(N)} \end{array}$

P_⊤ : Lateral load (N)

X, Y: Equivalent factor

(see Table4 and Table5)

Table4 Equivalent Factor of Model SNS (When radial and lateral loads are applied)

P₌	X	Υ
Equivalent load in the radial direction	1	0.935
Equivalent load in lateral direction	1.07	1

Table5 Equivalent Factor of Model SNS (When reverse radial load and lateral load are applied)

P₅	X	Υ
Equivalent load in reverse radial direction	1	1.02
Equivalent load in lateral direction	0.986	1

Service Life

For details, see A-100.

Radial Clearance Standard

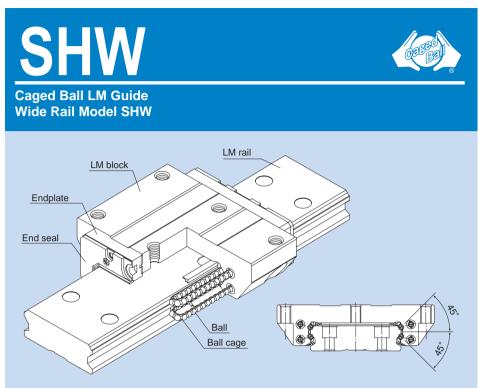
For details, see A-113.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-327.


Error Allowance in the Parallelism between Two Rails

For details, A-333 and A-334.

Error Allowance in Vertical Level between Two Rails

For details, A-336 and A-337.

ТІНК А-155 8 (800) 700-72-07 (бесплатно)

* For the ball cage, see A-130.

Structure and Features	$\triangleright \triangleright \triangleright$	A-157
Types and Features	>>>	A-158
Rated Loads in All Directions	>>>	A-158
Equivalent Load	>>>	A-159
Service Life	>>>	A-100
Radial Clearance Standard	>>>	A-113
Accuracy Standards	>>>	A-119
Shoulder Height of the Mounting Base and the Corner Radius	>>>	A-330
Error Allowance in the Parallelism between Two Rails	>>	A-334
Error Allowance in Vertical Level between Two Rails	>>>	A-337
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	>>>	B-44
Standard Length and Maximum Length of the LM Rail	>>>	B-48

Wide Rail Model SHW

Structure and Features

A wide and highly rigid LM Guide that uses ball cages to achieve low noise, long-term maintenancefree operation and high speed.

[Wide, Low Center of Gravity]

Model SHW, which has a wide LM rail and a low center of gravity, is optimal for locations requiring space saving and large Mc moment rigidity.

[4-way Equal Load]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

[Self-adjustment Capability]

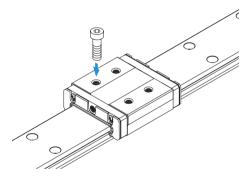
The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

[Low Dust Generation]

Use of ball cages eliminates friction between balls and retains lubricant, thus achieving low dust generation.

Specification Table⇒B-44

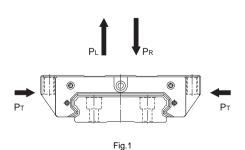
Types and Features


Model SHW-CA

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom.

Model SHW-CR

The LM block has tapped holes.


Specification Table⇒B-46

Rated Loads in All Directions

Model SHW is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for SHW.

Equivalent Load

When the LM block of model SHW receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

Service Life

For details, see A-100.

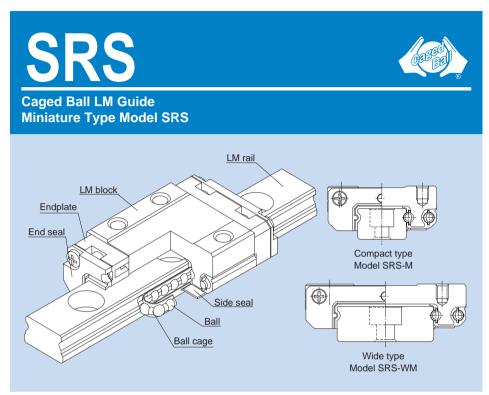
Radial Clearance Standard

For details, see A-113.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius


For details.see A-330.

Error Allowance in the Parallelism between Two Rails

For details.see A-334.

Error Allowance in Vertical Level between Two Rails

For details, see A-337.

^{*} For the ball cage, see A-130.

Structure and Features	▶ ▶▶ A-161
Types and Features	▶▶▶ A-162
Rated Loads in All Directions	▶▶▶ A-163
Equivalent Load	▶▶▶ A-163
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-113
Accuracy Standards	▶▶▶ A-126
Shoulder Height of the Mounting Base and the Corner Radius	▶▶► A-332
Error Allowance in the Parallelism between Two Rails	▶▶▶ A-334
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-337
Flatness of the LM Rail and the LM Block Mounting Surface	▶ ▶▶ A-164
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-50
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-54

Features of Each Model Miniature Type Model SRS

8 (800) 700-72-07 (бесплатно)

Structure and Features

Caged Ball LM Guide model SRS has a structure where two raceways are incorporated into the compact body, enabling the model to receive loads in all directions, and to be used in locations where a moment is applied with a single rail. In addition, use of ball cages eliminates friction between balls, thus achieving high speed, low noise, acceptable running sound, long service life, and long-term maintenance-free operation.

[Low Dust Generation]

Use of ball cages eliminates friction between balls and retains lubricant, thus achieving low dust generation. In addition, the LM block and LM rail use stainless steel, which is highly resistant to corrosion.

[4-way Equal Load Type]

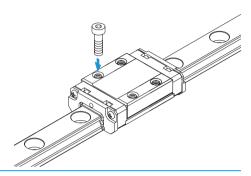
Since the right and left rows of balls under a load contact the raceway at 45°, this LM Guide is capable of receiving loads in the radial, reverse radial and lateral directions at equal values and being used in any orientations. With this well-balanced structure, this model can be used in extensive applications.

[Compact]

Since SRS has a compact structure where the rail cross section is designed to be low and that contains only two rows of balls, it can be installed in space-saving locations.

[Lightweight]

Since part of the LM block (e.g., around the ball relief hole) is made of resin and formed through insert molding, SRS is a lightweight, low inertia type of LM Guide.

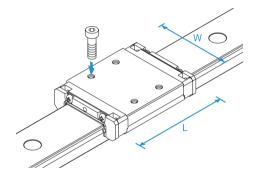

Types and Features

Model SRS-M

A standard type of SRS.

Note) In addition to model SRS-M, a full-ball type without ball cage is also available. If desiring this type, indicate type "SRS-G" when placing an order. However, since SRS-G does not have a ball cage, its dynamic load rating is smaller than SRS-M. See the table of basic load ratings for SRS-G on B-51 for details.

Specification Table⇒B-50



Model SRS-WM

Has a longer overall LM block length (L), a greater width and a larger rated load and permissible moment than SRS-M.

Note) In addition to model SRS-WM, a full-ball type without ball cage is also available.If desiring this type, indicate type "SRS-G" when placing an order.However, since SRS-G does not have a ball cage, its dynamic load rating is smaller than SRS-WM. See the table of basic load ratings for SRS-G on B-53 for details.

Specification Table⇒B-52

Rated Loads in All Directions

Model SRS is capable of receiving loads in four directions: radial, reverse radial and lateral directions

Their basic dynamic load ratings are represented by the symbols in the radial direction indicated in Fig.1, and the actual values are provided in the specification table for SRS. The values in the reverse radial and lateral directions are obtained from Table1 below.

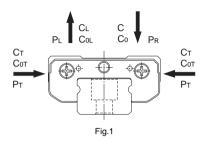


Table1 Rated Loads of Model SRS in All Directions

Table Trated Leads of Medel of to MT/ III Directions				
Direction	Basic dynamic load rating	Basic static load rating		
Radial direction	С	C ₀		
Reverse radial direction	C _L =C	C _{0L} =C ₀		
Lateral directions (7M/7WM/ 9M/9WM/20M)	C _T =1.19C	Сот=1.19Со		
Lateral directions (12M/12WM/ 15M/15WM/25M)	C⊤=C	Сот=Со		

Equivalent Load

When the LM block of model SRS receives a reverse radial load and a lateral load simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_R (P_L) + Y \cdot P_T$

PE	: Equivalent load	(N)
	: Radial direction	

: Reverse radial direction

: Lateral direction

P_{R}	: Radial load	(N)
P_{L}	: Reverse radial load	(N)
Рт	: Lateral load	(N)
X, Y	: Equivalent factor	(see Table2)

Table2 Equivalent Factor of Model SRS

Equivalent Load P _E	Model No.	Х	Υ
Radial and reverse radial	7M/7WM/9M/ 9WM/20M	1	0.839
direction	12M/12WM/15M/ 15WM/25M	1	1
Lateral	7M/7WM/9M/ 9WM/20M	1.192	1
directions	12M/12WM/15M/ 15WM/25M	1	1

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-113.

Accuracy Standards

For details, see A-126.

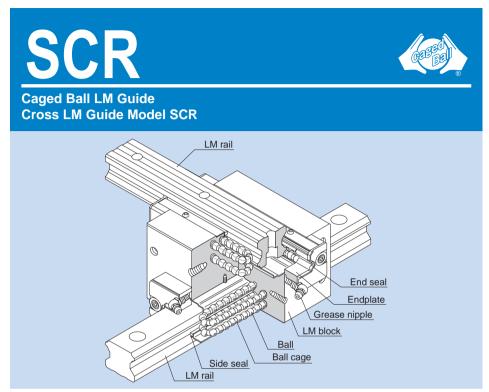
Shoulder Height of the Mounting Base and the Corner Radius

For details.see A-332.

Error Allowance in the Parallelism between Two Rails

For details, see A-334.

Error Allowance in Vertical Level between Two Rails


For details, see A-337.

Flatness of the LM Rail and the LM Block Mounting Surface

The values in Table3 apply when the clearance is a normal clearance. If the clearance is C1 clearance and two rails are used in combination, we recommend using 50% or less of the value in the table.

Note) Since SRS has Gothic-arch grooves, any accuracy error in the mounting surface may negatively affect the operation. Therefore, we recommend using SRS on a highly accurate mounting surface. Table3 Flatness of the LM Rail and the LM Block Mounting Surface Unit: mm

Model No.	Flatness error	
SRS 7M	0.025/200	
SRS 7WM	0.025/200	
SRS 9M	0.035/200	
SRS 9WM	0.035/200	
SRS 12M	0.050/200	
SRS 12WM	0.050/200	
SRS 15M	0.060/200	
SRS 15WM	0.060/200	
SRS 20M	0.070/200	
SRS 25M	0.070/200	

^{*} For the ball cage, see A-130.

Structure and Features	▶ ▶▶ A-167
Types and Features	▶▶► A-168
Rated Loads in All Directions	▶▶► A-169
Equivalent Load	▶ ▶▶ A-169
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-113
Accuracy Standards	▶▶▶ A-122
Shoulder Height of the Mounting Base and the Corner Radius	▶▶► A-327
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-56
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-58
Tapped-hole LM Rail Type of Model SCR	▶▶▶ B-59

Cı

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate.

This model is an integral type of Caged Ball LM Guide that squares an internal structure similar to model SHS, which has a proven track record and is highly reliable, with another and uses two LM rails in combination. Since an orthogonal LM system can be achieved with model SCR alone, a conventionally required saddle is no longer necessary, the structure for X-Y motion can be simplified and the whole system can be downsized.

[4-way Equal Load]

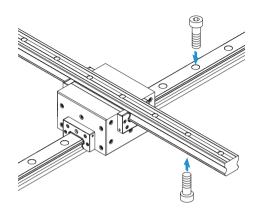
Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

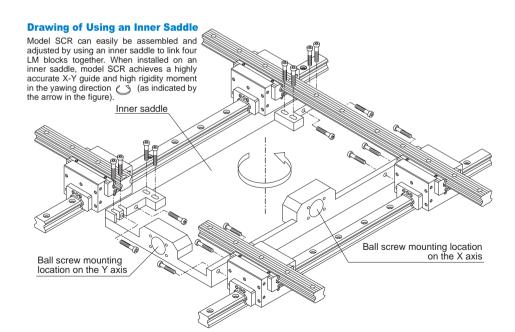
[High Rigidity]

Since balls are arranged in four rows in a well-balanced manner, this model is stiff against a moment, and smooth straight motion is ensured even a preload is applied to increase the rigidity.

Since the rigidity of the LM block is higher than that of a combination of two LM blocks of the conventional type secured together back-to-back with bolts, this model is optimal for building an X-Y table that requires a high rigidity.

[Compact]


This model is an integral type of Caged Ball LM Guide that squares an internal structure similar to model SHS, which has a proven track record and is highly reliable, with another and uses two LM rails in combination. Since an orthogonal LM Guide can be achieved with model SCR alone, a conventionally required saddle is no longer necessary, the structure for X-Y motion can be simplified and the whole system can be downsized.


Types and Features

Model SCR

Specification Table⇒**B-56**

This model is a standard type.



Rated Loads in All Directions

Model SCR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings are defined with a LM rail and a LM block, and uniform in the four directions (radial, reverse radial and lateral directions). Their actual values are provided in the specification table for SCR.

Equivalent Load

When the LM block of model SCR receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

 P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

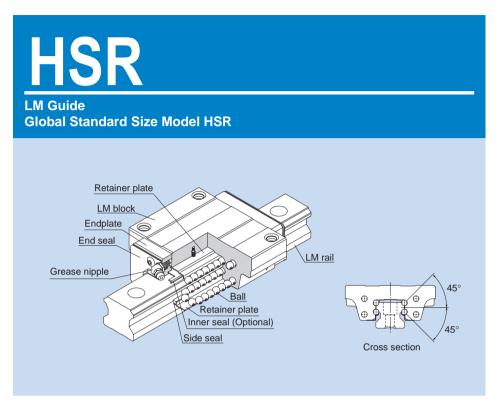
: Lateral direction

 $\begin{array}{lll} P_{\text{R}} & : \mbox{ Radial load} & (\mbox{N}) \\ P_{\text{L}} & : \mbox{ Reverse radial load} & (\mbox{N}) \\ P_{\text{T}} & : \mbox{ Lateral load} & (\mbox{N}) \end{array}$

Service Life

For details, see A-100.

Radial Clearance Standard


For details, see A-113.

Accuracy Standards

For details, see A-122.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-327.

Type	► A-172
Types ▶▶	
Rated Loads in All Directions	► A-176
Equivalent Load	► A-176
Service Life	► A-100
Radial Clearance Standard	► A-114
Accuracy Standards	► A-119
Shoulder Height of the Mounting Base and the Corner Radius	► A-328
Error Allowance in the Parallelism between Two Rails	► A-333
Error Allowance in Vertical Level between Two Rails	► A-336
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	► B-62
Standard Length and Maximum Length of the LM Rail	► B-82
Tapped-hole LM Rail Type of Model HSR	► B-83

Features of Each Model Global Standard Size Model HSR

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Since retainer plates hold the balls, they do not fall off even if the LM rail is pulled out (except models HSR 8, 10 and 12).

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations. In addition, the LM block can receive a well-balanced preload, increasing the rigidity in the four directions while maintaining a constant, low friction coefficient. With the low sectional height and the high rigidity design of the LM block, this model achieves highly accurate and stable straight motion.

[4-way Equal Load Type]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

[High Rigidity Type]

Since balls are arranged in four rows in a well-balanced manner, a large preload can be applied and the rigidity in four directions can easily be increased.

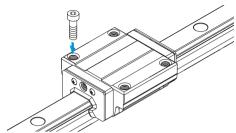
[Self-adjustment Capability]

The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

[High Durability]

Even under a preload or excessive biased load, differential slip of balls does not occur. As a result, smooth motion, high wear resistance, and long-term maintenance of accuracy are achieved.

[Stainless Steel Type also Available]


A special type which LM block, LM rail and balls are made of stainless steel is also available.

Types

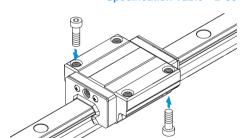
Model HSR-A

The flange of its LM block has tapped holes.


Specification Table⇒B-62

Model HSR-B

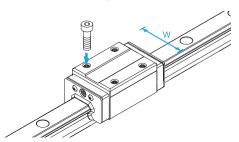
The flange of the LM block has through holes. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒B-64

Model HSR-R Grade Ct

The flange of its LM block has tapped holes. Can be mounted from the top or the bottom.

Specification Table⇒B-66



Model HSR-R

Having a smaller LM block width (W) and tapped holes, this model is optimal for compact design.

Low-priced LM rails and LM blocks are individually stocked. We also have Ct grade model HSR-R available with a short delivery time.

Specification Table⇒B-70

Global Standard Size Model HSR

Specification Table⇒B-74

Model HSR-YR

When using two units of LM Guide facing each other, the previous model required much time in machining the table and had difficulty achieving the desired accuracy and adjusting the clearance. Since model HSR-YR has tapped holes on the side of the LM block, a simpler structure is gained and reduced man-hour and increase in accuracy can be achieved.

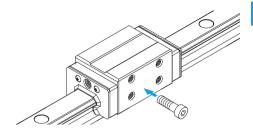


Fig.1 Conventional Structure

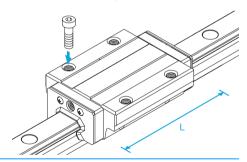
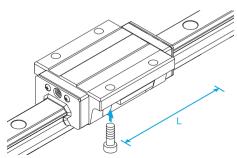



Fig.2 Mounting Structure for Model HSR-YR

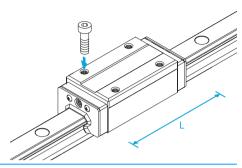
Model HSR-LA

The LM block has the same cross-sectional shape as model HSR-A, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-62

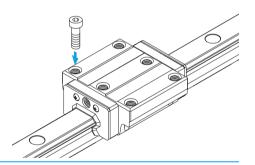
Model HSR-LB

The LM block has the same cross-sectional shape as model HSR-B, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-64

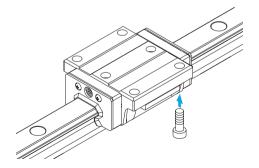
Model HSR-LR

The LM block has the same cross-sectional shape as model HSR-R, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-70

Model HSR-CA

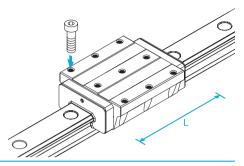
Has six tapped holes on the LM block.


Specification Table⇒B-76

Model HSR-CB

The LM block has six through holes. Used in places where the table cannot have through holes for mounting bolts.

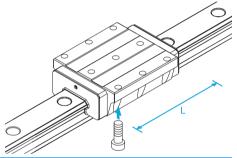
Specification Table⇒B-78



Global Standard Size Model HSR

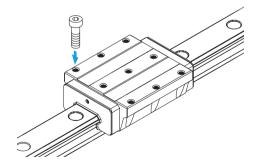
Model HSR-HA

The LM block has the same cross-sectional shape as model HSR-CA, but has a longer overall LM block length (L) and a greater rated load.

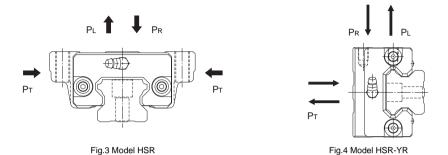

Specification Table⇒B-76

Model HSR-HB

The LM block has the same cross sectional shape as model HSR-CB, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-78

Models HSR 100/120/150 HA/HB/HR


Large types of model HSR that can be used in large-scale machine tools and building structures.

Specification Table⇒B-80

Rated Loads in All Directions

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HSR.

Equivalent Load

When the LM block of model HSR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

PE	$= \mathbf{P}_{R} \left(\mathbf{P}_{L} \right) + \mathbf{P}_{T}$	
PE	: Equivalent load	(N)
	: Radial direction	
	: Reverse radial direction	
	: Lateral direction	
P_R	: Radial load	(N)
P_L	: Reverse radial load	(N)
P_T	: Lateral load	(N)

Features of Each Model Global Standard Size Model HSR

Service Life

For details, see A-100.

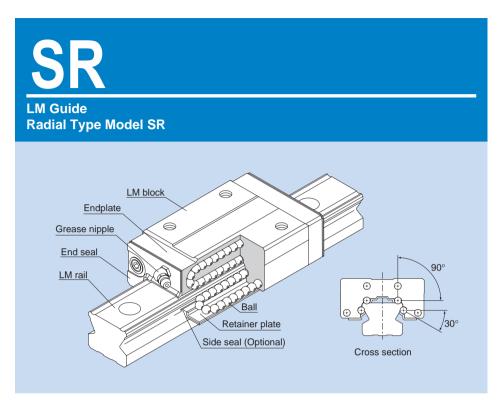
Radial Clearance Standard

For details, see A-114.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius


For details, see A-328.

Error Allowance in the Parallelism between Two Rails

For details, see A-333.

Error Allowance in Vertical Level between Two Rails

For details, see A-336.

Structure and Features	▶ ▶▶ A-179
Types and Features	▶ ▶▶ A-180
Characteristics of Model SR	▶ ▶▶ A-182
Rated Loads in All Directions	▶ ▶▶ A-184
Equivalent Load	▶ ▶▶ A-184
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶▶▶ A-114
Accuracy Standards	▶▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶ ▶▶ A-326
Error Allowance in the Parallelism between Two Rails	▶ ▶▶ A-333
Error Allowance in Vertical Level between Two Rails	▶ ▶▶ A-336
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-86
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ B-90
Tapped-hole LM Rail Type of Model SR	▶ ▶▶ B-91

Radial Type Model SR

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since a retainer plate holds the balls, they will not fall off even if the LM block is removed from the LM rail. With the low sectional height and the high rigidity design of the LM block, this model achieves highly accurate and stable straight motion.

[Compact, Heavy Load]

Since it is a compact designed model that has a low sectional height and a ball contact structure rigid in the radial direction, this model is optimal for horizontal guide units.

[Mounting accuracy can easily be achieved]

Since this model is a self-adjusting type capable of easily absorbing an accuracy error in parallelism and level between two rails, highly accurate and smooth motion can be achieved.

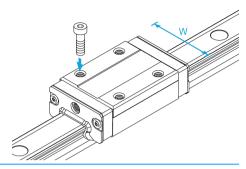
[Low Noise]

The endplate installed at each end of the LM block is designed to ensure the smooth and low-noise circulation of the balls at the turning areas.

[High Durability]

Even under a preload or excessive biased load, differential slip of balls is minimal. As a result, high wear resistance and long-term maintenance of accuracy are achieved.

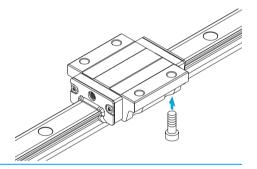
[Stainless Steel Type also Available]


A special type which LM block, LM rail and balls are made of stainless steel is also available.

Types and Features

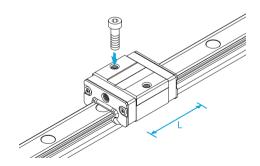
Model SR-W

With this type, the LM block has a smaller width (W) and tapped holes.


Specification Table⇒B-86

Model SR-TB

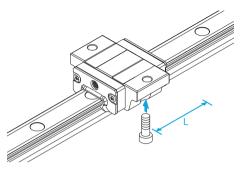
The LM block has the same height as model SR-W and can be mounted from the bottom.


Specification Table⇒B-88

Model SR-V

A space-saving type whose LM block has the same cross-sectional shape as model SR-W, but has a smaller overall LM block length (L).

Specification Table⇒B-86

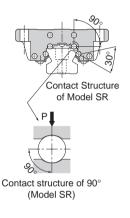


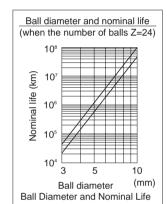
Radial Type Model SR

Model SR-SB

A space-saving type whose LM block has the same cross-sectional shape as model SR-TB, but has a smaller overall LM block length (L).

Specification Table⇒B-88




Characteristics of Model SR

When compared to models having a contact angle of 45°, model SR shows excellent characteristics as indicated below. Using these characteristics, you can design and manufacture highly accurate and highly rigid machines or equipment.

Difference in Rated Load and Service Life

Since SR has a contact angle of 90°, its rated load and service life are different from those with a contact angle of 45°. When comparing model SR with a model that has a contact angle of 45° and when the same radial load is applied to the two models with the same ball diameter as shown in the figure below, the load applied to SR is 70% of the other model. As a result, the service life of SR is more than twice that of the other model.

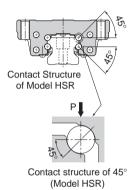
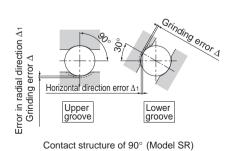



Fig.1

Difference in Accuracy

If a machining error (grinding error) occurs in the LM rail or LM block, it will affect the running accuracy. Assuming that there is a machining error of Δ on the raceway, it results in an error in the radial direction, and the error with the contact angle of 45° (model HSR) is 1.4 times greater than that of the contact angle of 90° (model SR). As for the machining error resulting in horizontal direction error, the error with the contact angle of 45° is 1.22 times greater than the contact angle of 30° .

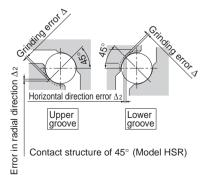


Fig.2 Machining Error and Accuracy

Radial Type Model SR

Difference in Rigidity

The 90° contact angle adopted by model SR has a difference with the 45° contact angle also in rigidity. When the same radial load "P" is applied, the displacement in the radial direction with model SR is only 56% of that with the contact angle of 45°. Accordingly, where high rigidity in the radial direction is required, model SR is more advantageous. The figure below shows the difference in radial load and displacement.

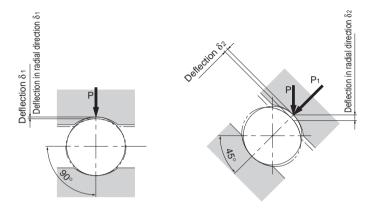


Fig.3 Deflection under a Radial Load

Load and deflection when contact angles are not the same (Da=6.35mm)

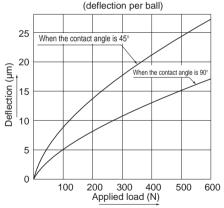


Fig.4 Radial Load and Deflection

Conclusion

As suggested above, model SR, which has a contact angle of 90° in the radial direction, is optimal for locations where the radial load is large, high rigidity is required or high running accuracy in the vertical and horizontal directions is required.

However, if the reverse radial load, the lateral load or the moment is large, we recommend model HSR, which has a contact angle of 45° (4-way equal load).

Rated Loads in All Directions

Model SR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings indicate the values in the radial directions in Fig.5, and their actual values are provided in the specification table for SR. The values in the reverse radial and lateral directions are obtained from Table1 below.

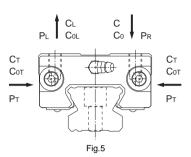


Table1 Rated Loads in All Directions with Model SR

Mod		Direction	Basic dynamic load rating	Basic static load rating
		Radial direction	С	C ₀
15 to	-	Reverse radial direction	CL=0.62C	C _{0L} =0.50C ₀
		Lateral directions	C _⊤ =0.56C	Сот=0.43Со
		Radial direction	С	C ₀
SF 85 to	-	Reverse radial direction	CL=0.78C	C ₀ L=0.71C ₀
		Lateral directions	C₁=0.48C	Сот=0.35Со

Equivalent Load

When the LM block of model SR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathsf{E}} = \mathbf{X} \cdot \mathbf{P}_{\mathsf{L}} + \mathbf{Y} \cdot \mathbf{P}_{\mathsf{T}}$

P_E : Equivalent load (N)

: Reverse radial direction

: Lateral direction

 P_L : Reverse radial load (N) P_T : Lateral load (N)

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model SR

Tablez Equivalent Factor of Model Of					
•	Model No.	P∈	Х	Y	
	SR 15 to 70	Equivalent load in reverse radial direction	1	1.155	
		Equivalent load in lateral direction	0.866	1	
	SR 85 to 150	Equivalent load in reverse radial direction	1	2	
		Equivalent load in lateral direction	0.5	1	

Features of Each Model Radial Type Model SR

Service Life

For details, see A-100.

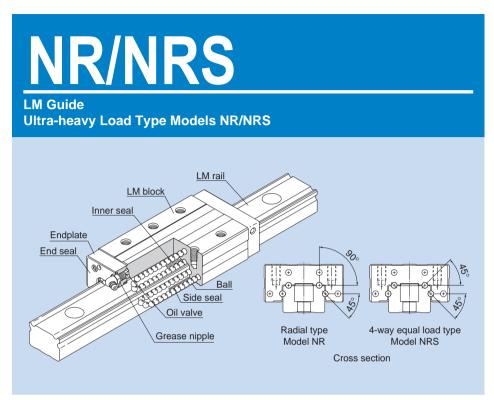
Radial Clearance Standard

For details, see A-114.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius


For details, see A-326.

Error Allowance in the Parallelism between Two Rails

For details, see A-333.

Error Allowance in Vertical Level between Two Rails

For details, see A-336.

Structure and Features	▶ ▶▶ A-187
Types and Features	▶ ▶▶ A-188
Characteristics of Models NR and NRS	▶ ▶▶ A-190
Rated Loads in All Directions	▶ ▶▶ A-192
Equivalent Load	▶▶▶ A-192
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶▶► A-113
Accuracy Standards	▶ ▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-327
Error Allowance in the Parallelism between Two Rails ▶▶▶	A-333/A-334
Error Allowance in Vertical Level between Two Rails	A-336/A-337
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-94
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-106

Ultra-heavy Load Type Models NR/NRS

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. The raceways are cut into deep grooves that have a radius closer to that of the balls than in the conventional design, using special equipment and an extremely precise cutting technique. This design allows high rigidity, high vibration/impact resistance and high damping capacity, all of which are required for machine tools, thus making these models capable of bearing ultra-heavy loads.

[Improved Damping Capacity]

While the machine tool (equipped with NR or NRS) is not cutting a workpiece during operation, the LM Guide travels normally and smoothly. While the machine tool is cutting the workpiece, the cutting force is applied to the LM Guide to increase and the contact area between the balls and the raceway. allowing an appropriate mixture of rolling and sliding motions to be achieved. Accordingly, the friction resistance is increased and the damping capacity is improved.

Since the absolute slip during the rolling and sliding motion is insignificant, it causes little wear and does not affect the service life.

[Highly Rational LM Guide]

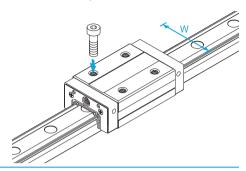
The excessively large differential slip occurring in a Gothic-arch groove does not happen with these models. They smoothly travel and achieve high positioning accuracy during fast feeding. During the cutting operation, appropriate slip occurs according to the cutting load, the rolling resistance is increased and the damping capacity is increased. Thus, models NR and NRS are highly rational LM Guides.

[High Rigidity]

To increase the rigidity of the LM block and the LM rail, which may deteriorate the overall rigidity of the LM Guide in the reverse radial and lateral directions, THK made full use of FEM to achieve optimal design within the limited dimensional range.

For both the radial type model NR and the 4-way equal load type model NRS, THK offers two types with the same dimensions and different characteristics. It allows you to select the desired type according to the application.

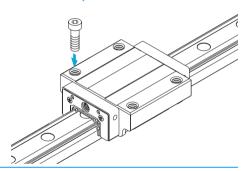
[Ultra-heavy Load]


Since the curvature of the raceway is approximated to the ball diameter, the ball contact area under a load is increased and the LM Guide is capable of receiving an ultra-heavy load.

Types and Features

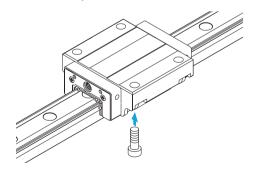
Models NR-R/NRS-R

With this type, the LM block has a smaller width (W) and tapped holes. Used in places where the space for table width is limited.


Specification Table⇒B-94/B-96

Models NR-A/NRS-A

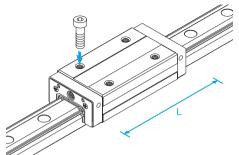
The flange of its LM block has tapped holes.


Specification Table⇒B-98/B-100

Models NR-B/NRS-B

The flange of the LM block has through holes. Used in places where the table cannot have through holes for mounting bolts.

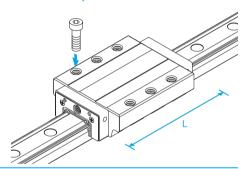
Specification Table⇒B-102/B-104



Ultra-heavy Load Type Models NR/NRS

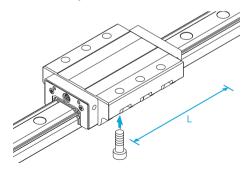
Models NR-LR/NRS-LR

The LM block has the same cross-sectional shape as models NR-R/NRS-R, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-94/B-96

Models NR-LA/NRS-LA

The LM block has the same cross-sectional shape as models NR-A/NRS-A, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-98/B-100

Models NR-LB/NRS-LB

The LM block has the same cross-sectional shape as models NR-B/NRS-B, but has a longer overall LM block length (L) and a greater rated load.

Specification Table⇒B-102/B-104

Characteristics of Models NR and NRS

[Increased Rigidity in Major Load Directions]

The structure with a contact angle of 90° used in model NR differs from that with a 45° contact angle also in rigidity. Under the same radial load P, the displacement in the radial direction with model NR having a contact angle of 90° is 44% less than the 45° .

Fig.2 shows the difference in radial load and displacement. Accordingly, where high rigidity in the radial direction is required, model NR is more advantageous.

[Increased Rigidity in the Lateral and Reverseradial Directions]

Since with LM Guide model NR, the distance "H" between the rail bottom and the lower-groove balls (balls receiving lateral loads) is short, the ratio between the rail width "W" and the distance "H" is small, and the distance "T" between the LM rail mounting bolt seat and the LM rail bottom is short. Accordingly, the deformation of the LM rail under a lateral load is minimal, and the rigidity in the lateral directions is increased.

Since the dimension "B" of the LM block is short and the thickness "A" is large, the lateral extension of the LM block under a reverse radial or lateral load is minimized. This structure allows the rigidity in the reverse radial direction to be increased.

In comparison to the old model with the same model number, the ball diameter of NR is smaller and the number of effective balls is approximately 1.3 times greater, thus increasing the static rigidity.

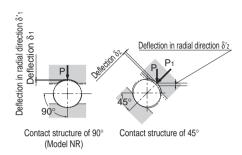


Fig.1 Deflection under a Radial Load

Load and deflection when contact angles are not the same (Da=6.35mm)

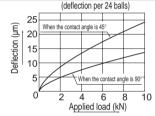


Fig.2 Radial Load and Deflection (normal clearance, no preload)

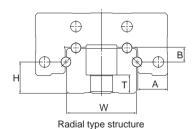


Fig.3 Cross Section of Model NR

Ultra-heavy Load Type Models NR/NRS

[Comparison of Contact Surface and Internal Stress between Different Contact Structures]

As shown in Fig.4, the contact area and the internal stress of a ball greatly vary depending on the shape of contact surface.

With the conventional roller guide, the effective length is shorter than the apparent value due to the retention of the rollers. Additionally, the change of stress distribution in the contact section caused by a mounting error significantly affects the differential slip.

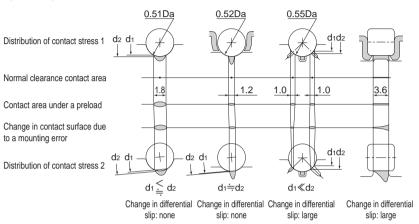


Fig.4 Comparison of Contact Surface (ϕ 6.350 ball, ϕ 6 x 6 ℓ roller)

Rated Loads in All Directions

Models NR/NRS are capable of receiving loads in all four directions: radial, reverse radial and lateral directions

The basic load ratings of model NR are indicated by the values in the radial directions in Fig.5, and their actual values are provided in the specification table for NR/NRS. The values in the reverse radial and lateral directions are obtained from table 1 below.

The basic load ratings of model NRS are equal in all the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for NR/ NRS.

Table1 Rated Loads in All Directions with Model NR

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direc- tion	C _L =0.78C	C _{0L} =0.71C ₀
Lateral directions	C⊤=0.48C	Сот=0.45Со

Equivalent Load

When the LM block of model NR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

: Equivalent load (N) : Reverse radial direction

: Lateral direction

: Reverse radial load

P (N) : Lateral load (N)

X, Y: Equivalent factor (see Table2) Table2 Equivalent Factor of Model NR

P _E	Х	Y
Equivalent load in reverse radial direction	1	2
Equivalent load in lateral direction	0.5	1

When the LM block of model NRS receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{P}_{\mathrm{R}} \left(\mathbf{P}_{\mathrm{L}} \right) + \mathbf{P}_{\mathrm{T}}$

: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N) : Reverse radial load (N) : Lateral load (N)

Features of Each Model Ultra-heavy Load Type Models NR/NRS

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-113.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-327.

Error Allowance in the Parallelism between Two Rails

For details, A-333 and A-334.

Error Allowance in Vertical Level between Two Rails

For details, A-336 and A-337.

Structure and Features	▶ ▶▶ A-195
Types and Features	▶ ▶▶ A-196
Rated Loads in All Directions	▶▶▶ A-197
Equivalent Load	▶ ⊳► A-197
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-114
Accuracy Standards	▶ ▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-330
Error Allowance in the Parallelism between Two Rails	▶►► A-334
Error Allowance in Vertical Level between Two Rails	▶ ▶▶ A-337
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-108
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-112

Wide Rail Model HRW

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Since retainer plates hold the balls, they do not fall off even if the LM rail is pulled out. (except models HRW 12 and 14LR).

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations. In addition, the LM block can receive a well-balanced preload, increasing the rigidity in four directions while maintaining a constant, low friction coefficient. In a low center of gravity structure with a large rail width and a low overall height, this model can be used in places where space saving is required or high rigidity against a moment is required even in a single axis configuration.

[Compact, Heavy Load]

Since the number of effective balls is large, this model is highly rigid in all directions. It can adequately receive a moment even in a single rail configuration.

Additionally, since the second moment of inertia of the rail is large, the rigidity in the lateral directions is also high. Accordingly, it does not need reinforcement such as a side support.

[Self-adjustment Capability]

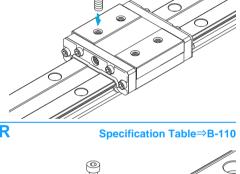
The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

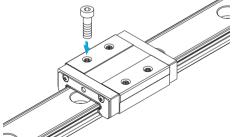
Specification Table⇒B-108

Types and Features

Model HRW-CA

The flange of this LM block has tapped holes. Can be mounted from the top or the bottom.


Model HRW-CR


The LM block has tapped holes.

Miniature Type Model HRW-LR

The LM block has tapped holes.

Wide Rail Model HRW

Rated Loads in All Directions

Model HRW is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of model HRW 17 to 60 are equal in all the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HRW.

The basic load ratings of models HRW 12 and 14 indicate the values in the radial directions in Fig.1, and their actual values are provided in the specification table for HRW. The values in the reverse radial and lateral directions are obtained from Table1 below.

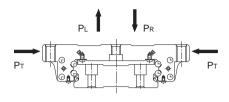


Fig.1

Table1 Rated Loads in All Directions with Models HRW 12 and 14

Table I Nated Edads III / III Birections with Medels I II (W 12 and 14			
Direction	Basic dynamic load rating	Basic static load rating	
Radial direction	С	C ₀	
Reverse radial direc- tion	C₁=0.78C	C _{0L} =0.71C ₀	
Lateral directions	C _T =0.48C	С₀т=0.35С₀	

Equivalent Load

When the LM block of models HRW 17 to 60 receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

P_R : Radial load (N)

P_L : Reverse radial load (N)

 $P_{\text{\tiny T}}$: Lateral load (N)

When the LM block of models HRW 12 and 14 receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

 $P_{\scriptscriptstyle E}$: Equivalent load (N)

: Reverse radial direction

: Lateral direction

P_L : Reverse radial load (N)

P_⊤ : Lateral load (N)

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Models HRW12 and 14

P₅	Х	Υ
Equivalent load in reverse radial direction	1	2
Equivalent load in lateral direction	0.5	1

\sim \sim	714	\sim	
- 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ife

For details, see A-100.

Radial Clearance Standard

For details, see A-114.

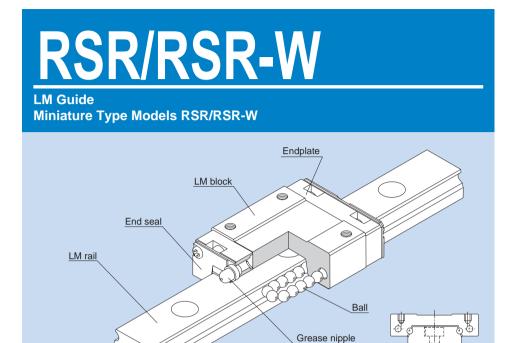
Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-330.

Error Allowance in the Parallelism between Two Rails


For details, see A-334.

Error Allowance in Vertical Level between Two Rails

For details, see A-337.

Features of Each Model Wide Rail Model HRW

Cross section

Structure and Features	▶▶▶ A-201
Types and Features	▶►► A-202
Comparison of Model RSR-W with Other Model Numbers	▶►► A-204
Rated Loads in All Directions	▶▶► A-205
Equivalent Load	▶▶▶ A-205
Service Life	▶▶► A-100
Radial Clearance Standard	▶▶▶ A-114
Accuracy Standards	▶▶▶ A-126
Shoulder Height of the Mounting Base and the Corner Radius	▶►► A-332
Error Allowance in the Parallelism between Two Rails	▶►► A-334
Error Allowance in Vertical Level between Two Rails	▶▶► A-337
Accuracy of the Mounting Surface	▶▶► A-206
Flatness of the Mounting Surface	▶▶► A-335
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-114
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-120

Miniature Type Models RSR/RSR-W

Structure and Features

With models RSR and RSR-W, balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Balls circulate in a compact structure and perform infinite straight motion with no limit in stroke. The LM block is designed to have a shape with high rigidity in a limited space, and in combination with large-diameter balls, demonstrates high rigidity in all directions.

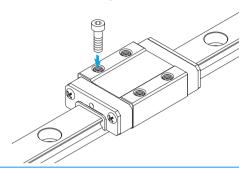
[Ultra Compact]

The absence of cage displacement, a problem that cross-roller guides and types of ball slides with finite stroke tend to cause, make these models highly reliable LM systems.

[Capable of Receiving Loads in All Directions]

These models are capable of receiving loads in all directions, and a single-rail guide can adequately operate under a small moment load. Model RSR-W, in particular, has a greater number of effective balls and a broader LM rail to increase its rigidity against a moment. Thus, it achieves a more compact structure and more durable straight motion than a pair of linear bushes in parallel use.

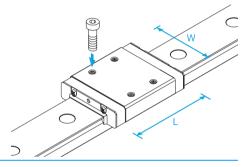
[Stainless Steel Type also Available]


A special type where LM block, LM rail and balls are made of stainless steel is also available.

Types and Features

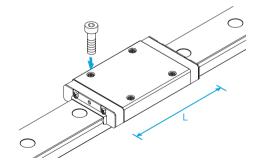
Models RSR/RSR-K/RSR-V

This model is a standard type.


Specification Table⇒B-116

Models RSR-W/WV

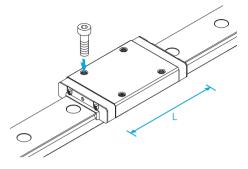
These models have greater overall LM block lengths (L), broader widths (W) and greater rated loads and permissible moments than standard types.


Specification Table⇒B-118

Model RSR-N

It has a longer overall LM block length (L) and a greater rated load than standard types.

Specification Table⇒B-114



Miniature Type Models RSR/RSR-W

Model RSR-WN

It has a longer overall LM block length (L), a greater rated load than standard types. Achieves the greatest load capacity among the miniature type LM Guide models.

Specification Table⇒B-118

Comparison of Model RSR-W with Other Model Numbers

[Locations where a Pair of Linear Bushes are Used]

- Unlike the linear bushes, model RSR-W can be used in a single-rail configuration and allows space saving.
- Since model RSR-W has more load-bearing balls per row and wider LM block and LM rail, thus to achieve high rigidity against an overhung load.
- Accuracy can be achieved simply by mounting the LM rail using bolts. Therefore, the assembly time can be shortened.

Example of comparing model RSR12W with model LM 10 in use

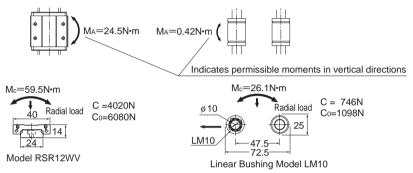
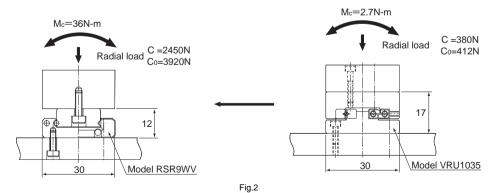



Fig.1

[Locations where a Cross-roller Table is Used]

- Does not show cage displacement even with vertical mount, and capable of performing infinite straight motion.
- Eliminates the need for difficult clearance adjustment and achieves long-term, smooth motion over a long period of time.
- Since the LM block width is large, the model can be used as a miniature table without any modification.

Example of comparing model RSR9WV with model VRM1035 in use

Miniature Type Models RSR/RSR-W

Rated Loads in All Directions

Model RSR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of models RSR3 to 9 are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for RSR.

The basic load ratings of models RSR12 to 20 indicate the values in the radial direction in Fig.3, and their actual values are provided in the specification table for RSR. The values in the reverse radial and lateral directions are obtained from Table1 below.

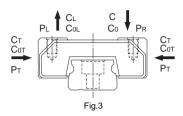


Table1 Basic Load Ratings of Models RSR12 to 20 in All Directions

	-	
Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C₀
Reverse radial direction	CL=0.78C	C _{0L} =0.70C ₀
Lateral directions	C⊤=0.78C	Сот=0.71Со

Equivalent Load

When the LM block of models RSR3 to 9 receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{P}_{\mathrm{R}} \left(\mathbf{P}_{\mathrm{L}} \right) + \mathbf{P}_{\mathrm{T}}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

When the LM block of model RSR12 to 20 receives loads in the radial and lateral directions, or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{X} \cdot \mathbf{P}_{R} (\mathbf{P}_{L}) + \mathbf{Y} \cdot \mathbf{P}_{T}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

P_R: Radial load (N)

PL : Reverse radial load (N)

 P_{T} : Lateral load (N)

X, Y: Equivalent factor

(see Table2 and Table3)

Table2 Equivalent Factor of Models RSR12 to 20 (When radial and lateral loads are applied)

P _E	X	Y
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Models RSR12 to 20 (When reverse radial and lateral loads are applied)

PE	Х	Y
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-114.

Accuracy Standards

For details, see A-126.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A-332.

Error Allowance in the Parallelism between Two Rails

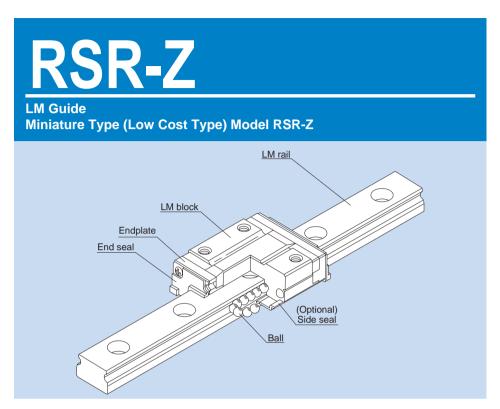
For details.see A-334.

Error Allowance in Vertical Level between Two Rails

For details, see A-337.

Accuracy of the Mounting Surface

Model RSR uses Gothic arch grooves in the ball raceways. When two rails of RSR are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Permissible Error of the Mounting Surface on A-333.


When using this model in locations where it is difficult to obtain satisfactory accuracy of the mounting surface, we recommend using types RSR···A (semi standard) whose ball raceways have circular-arc grooves. (avoid using these types in a single-rail configuration).

For specific accuracy of the mounting surface for types RSR···A, Permissible Error of the Mounting Surface is on A-333.

Flatness of the Mounting Surface

For details, see A-335.

Miniature Type Models RSR/RSR-W

Structure and Features	▶ ▶ A-209
Types and Features	▶▶▶ A-210
Rated Loads in All Directions	▶▶▶ A-211
Equivalent Load	▶▶▶ A-211
Service Life	▶▶▶ A-100
Radial Clearance Standard	▶▶▶ A-114
Accuracy Standards	▶▶▶ A-126
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-332
Error Allowance in the Parallelism between Two Rails	▶▶▶ A-334
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-337
Accuracy of the Mounting Surface	▶▶▶ A-212
Flatness of the Mounting Surface	▶▶▶ A-335
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-122
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-126
<u></u>	

Miniature Type (Low Cost Type) Model RSR-Z

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Balls of model RSR-Z circulate in a compact structure and perform infinite straight motion with no limit in stroke.

Also, it has the same dimensions as models RSR/RSR-W, but achieves a lighter weight and a lower price.

[Lightweight]

Since part of the LM block body uses a resin material, the block mass is reduced by up to 28% from the conventional type model RSR-V. This makes RSR-Z a low-inertia type.

[Smooth Motion]

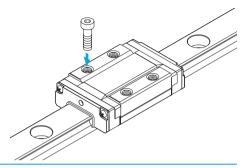
The unique structure of the endplate allows the balls to circulate smoothly and infinitely.

[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

[Low Noise]

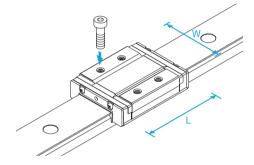
Since the unloaded ball path is made of resin, there is no metal to metal contact and low noise is achieved.


Fig.1 Noise Levels of Models RSR12Z and RSR12V

Types and Features

Model RSR-Z

This model is a standard type.


Specification Table⇒B-122

Models RSR-WZ

It has a longer overall LM block length (L), a broader width (W) and greater rated load and permissible moment than RSR-Z.

Specification Table⇒B-124

Miniature Type (Low Cost Type) Model RSR-Z

Rated Loads in All Directions

Model RSR-Z is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of models RSR7Z/WZ and 9Z/WZ are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for RSR-Z.

The basic load ratings of models RSR12Z/WZ and 15Z/WZ indicate the values in the radial direction in Fig.2, and their actual values are provided in the specification table for RSR-Z. The values in the reverse radial and lateral directions are obtained from Table1.

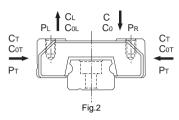


Table1 Basic Load Ratings of Models RSR12Z/WZ and 15Z/WZ in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radialdirection	С	C₀
Reverse radial direction	CL=0.78C	Col=0.70Co
Lateraldirections	C⊤=0.78C	Сот=0.71Со

Equivalent Load

When the LM block of models RSR7Z/WZ and 9Z/WZ receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

When the LM block of model RSR12Z/WZ and 15Z/WZ receives loads in the radial and lateral directions, or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{X} \cdot \mathbf{P}_{R} (\mathbf{P}_{L}) + \mathbf{Y} \cdot \mathbf{P}_{T}$

P_E : Equivalent load (N) : Radial direction

: Reverse radial direction

: Lateral direction

P_R : Radial load (N)

PL: Reverse radial load (N)

 P_{T} : Lateral load (N)

X, Y: Equivalent factor

(see Table2 and Table3)

Table2 Equivalent Factor of Models RSR12Z/WZ and 15Z/WZ (when radial and lateral loads are applied)

P₅	Х	Y
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Models RSR12Z/WZ and 15Z/WZ (when reverse radial and lateral loads are applied)

(which reverse radial and lateral loads are applied)		
PE	Х	Y
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Se	rvic	e L	.ife

For details.see A-100.

Radial Clearance Standard

For details, see A-114.

Accuracy Standards

For details, see A-126.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A-332.

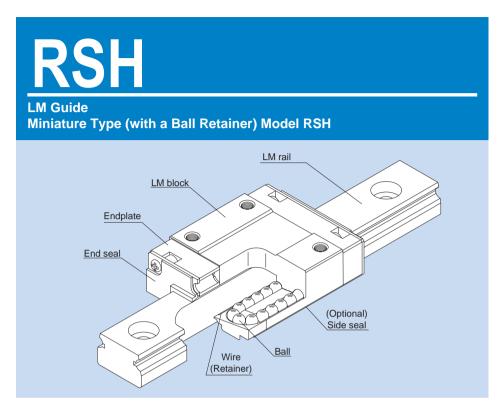
Error Allowance in the Parallelism between Two Rails

For details.see A-334.

Error Allowance in Vertical Level between Two Rails

For details, see A-337.

Accuracy of the Mounting Surface


Model RSR-Z uses Gothic arch grooves in the ball raceways. When two rails are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Permissible Error of the Mounting Surface on A-333.

Flatness of the Mounting Surface

For details, see A-335.

Miniature Type (Low Cost Type) Model RSR-Z

M Guide

Structure and Features	▶ ▶▶ A-215
Types and Features	▶▶▶ A-215
Rated Loads in All Directions	▶▶▶ A-216
Equivalent Load	▶▶► A-216
Service Life	▶ ▶ A-100
Radial Clearance Standard	▶▶▶ A-114
Accuracy Standards	▶▶► A-126
Shoulder Height of the Mounting Base and the Corner Radius	▶▶► A-332
Error Allowance in the Parallelism between Two Rails	▶►► A-334
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-337
Accuracy of the Mounting Surface	▶▶► A-217
Flatness of the Mounting Surface	▶▶▶ A-335
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-128
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ B-130

Miniature Type (with a Ball Retainer) Model RSH

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since a retainer holds the balls, they will not fall off even if the LM block is removed from the LM rail.

With the Miniature Type LM Guide Equipped with a Ball Retainer model RSH, balls circulate in a compact structure and perform infinite straight motion with no limit in stroke. The LM block is designed to have a shape with high rigidity in a limited space, and in combination with large-diameter balls, demonstrates high rigidity in all directions.

[Miniature Size]

This model is a highly reliable, ultra compact LM Guide that responds to weight saving and space saving.

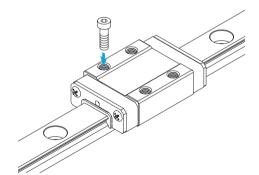
[Capable of Receiving Loads in All Directions]

This model is capable of receiving loads in all directions, and has a high load capacity because of large-diameter balls incorporated in two rows of raceways.

[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

[Equipped with a Ball Retainer]


The LM block contains a retainer capable of preventing balls from falling off. Since the balls will not fall even if the LM block is removed from the LM rail, you can use this LM Guide at ease.

Types and Features

Model RSH

This model is a standard type.

Specification Table⇒B-128

Rated Loads in All Directions

Model RSH is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of models RSH7 and 9 are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for RSH.

The basic load ratings of model RSH12 indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for RSH. The values in the reverse radial and lateral directions are obtained from Table1 below.

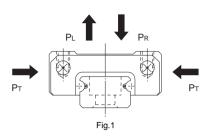


Table1 Basic Load Ratings of Model RSH12 in All Directions

	•	
Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direction	CL=0.78C	C _{0L} =0.70C ₀
Lateral directions	C⊤=0.78C	Сот=0.71Со

Equivalent Load

When the LM block of models RSH7 and 9 receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{P}_{R} (\mathbf{P}_{L}) + \mathbf{P}_{T}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N) P_L : Reverse radial load (N) P_T : Lateral load (N)

When the LM block of model RSH12 receives loads in the radial and lateral directions, or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_R (P_L) + Y \cdot P_T$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N)

PL : Reverse radial load (N)

 P_{T} : Lateral load (N)

X, Y: Equivalent factor

(see Table2 andTable3)

Table2 Equivalent Factor of Model RSH12 (when radial and lateral loads are applied)

PE	X	Y
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Model RSH12 (when reverse radial and lateral loads are applied)

PE	X	Υ
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Miniature Type (with a Ball Retainer) Model RSH

Service Life

For details.see A-100.

Radial Clearance Standard

For details, see A-114.

Accuracy Standards

For details, see A-126.

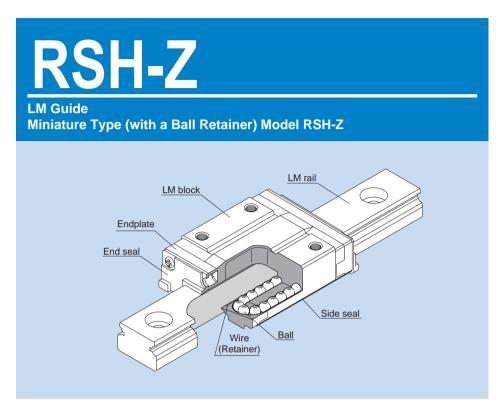
Shoulder Height of the Mounting Base and the Corner Radius

For details.see A-332.

Error Allowance in the Parallelism between Two Rails

For details.see A-334.

Error Allowance in Vertical Level between Two Rails


For details, see A-337.

Accuracy of the Mounting Surface

Model RSH uses Gothic arch grooves in the ball raceways. When two rails are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Permissible Error of the Mounting Surface on A-333.

Flatness of the Mounting Surface

For details.see A-335.

Structure and Features	▶ ▶ A-219
Types and Features	▶ ▶▶ A-220
Rated Loads in All Directions	▶▶▶ A-221
Equivalent Load	▶▶▶ A-221
Service Life	▶▶▶ A-100
Radial Clearance Standard	▶▶▶ A-114
Accuracy Standards	▶▶▶ A-126
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-332
Error Allowance in the Parallelism between Two Rails	▶▶▶ A-334
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-337
Accuracy of the Mounting Surface	▶▶▶ A-222
Flatness of the Mounting Surface	▶ ▶▶ A-335
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶► B-132
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-136

Miniature Type (with a Ball Retainer) Model RSH-Z

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since a retainer holds the balls, they will not fall off even if the LM block is removed from the LM rail.

With model RSH-Z, balls circulate in a compact structure and perform infinite straight motion with no limit in stroke.

Also, it has the same dimensions as the conventional model, but achieves a lower price.

[Equipped with a Ball Retainer]

Model RSH-Z has a retainer capable of preventing balls from falling off. Since the balls will not fall even if the LM block is removed from the LM rail, you can use this LM Guide at ease.

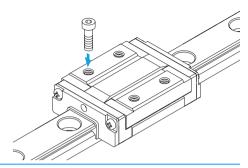
[Lightweight]

Since part of the LM block body uses a resin material, the block mass is reduced by up to 30% from the conventional type. This makes RSH-Z a low-inertia type.

[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

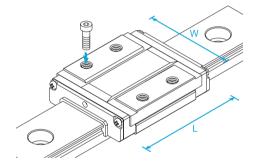
[Low Noise]


Since the unloaded ball path is made of resin, there is no metal to metal contact and low noise is achieved.

Types and Features

Model RSH-Z

This model is a standard type.


Specification Table⇒B-132

Model RSH-WZ

This model has a greater overall LM block length (L), broader width (W) and greater rated load and permissible moment than model RSH-Z.

Specification Table⇒B-134

Miniature Type (with a Ball Retainer) Model RSH-Z

Rated Loads in All Directions

Model RSH-Z is capable of receiving loads in four directions; radial, reverse radial and lateral directions

The basic load ratings of models RSH7Z/WZ and 9Z/WZ are uniform in the four directions (radial, reverse radial and lateral directions). and their actual values are provided in the specification table for RSH-Z.

The basic load ratings of models RSH12Z/WZ and 15Z/WZ indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for RSH-Z. The values in the reverse radial and lateral directions are obtained from Table1 below.

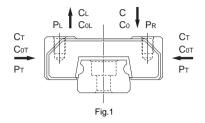


Table1 Basic Load Ratings of Models RSH12Z/WZ and 15Z/WZ in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direction	CL=0.78C	Col=0.70Co
Lateral directions	C _T =0.78C	Сот=0.71Со

Equivalent Load

When the LM block of models RSH7Z/WZ and 9Z/WZ receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N) Pı : Reverse radial load (N) : Lateral load (N)

When the LM block of models RSH12Z/WZ and 15Z/WZ receives loads in the radial and lateral directions, or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_R (P_L) + Y \cdot P_T$

: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

: Radial load P_{R} (N) Pι : Reverse radial load (N)

: Lateral load (N)

X, Y: Equivalent factor

(see Table2 andTable3)

Table2 Equivalent Factor of Models RSH12Z/WZ and 15Z/WZ (when radial and lateral loads are applied)

PE	Х	Υ
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Models RSH12Z/WZ and 15Z/WZ (when reverse radial and lateral loads are applied)

,		,
PE	Х	Υ
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-114.

Accuracy Standards

For details, see A-126.

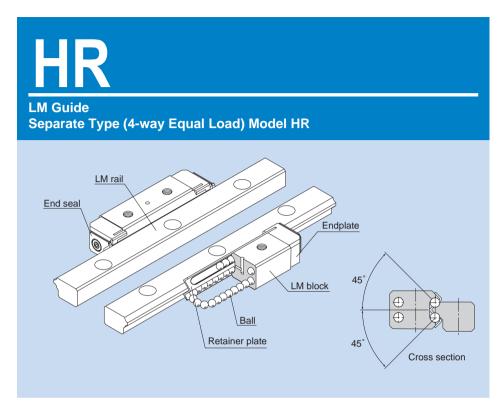
Shoulder Height of the Mounting Base and the Corner Radius

For details.see A-332.

Error Allowance in the Parallelism between Two Rails

For details.see A-334.

Error Allowance in Vertical Level between Two Rails


For details, see A-337.

Accuracy of the Mounting Surface

Models RSH-Z and WZ uses Gothic arch grooves in the ball raceways. When two rails are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Permissible Error of the Mounting Surface on A-333.

Flatness of the Mounting Surface

For details, see A-335.

Structure and Features	▶ ▶▶ A-225
Types and Features	▶ ▶ A-226
Rated Loads in All Directions	▶▶▶ A-227
Equivalent Load	▶▶▶ A-227
Service Life	▶ ▶ A-100
Example of Clearance Adjustment	▶▶▶ A-228
Accuracy Standards	▶ ▶ A-123
Shoulder Height of the Mounting Base and the Corner Radius	▶►► A-331
Error Allowance in the Parallelism between Two Rails	▶►► A-334
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-337
Comparison of Model Numbers with Cross-roller Guides	▶ ▶ A-229
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶ ▶ B-138
Standard Length and Maximum Length of the LM Rail	▶ ▶ B-142
Accessories	▶ ▶ B-143

Separate Type (4-way Equal Load) Model HR

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off.

Because of the angular contact structure where two rows of balls rolling on the LM rail each contact the raceway at 45°, the same load can be applied in four directions (radial, reverse radial and lateral directions) if a set of LM rails and LM block is mounted on the same plane (i.e., when two LM rails are combined with an LM block on the same plane). Furthermore, since the sectional height is low, a compact and stable linear guide mechanism is achieved.

This structure makes clearance adjustment relatively easy, and is highly capable of absorbing a mounting error.

[Easy Installation]

Model HR is easier to adjust a clearance and achieve more accuracy than cross-roller guides.

[Self-adjustment Capability]

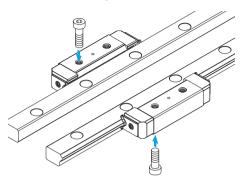
Even if the parallelism or the level between the two rails is poorly established, the self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed and smooth straight motion to be achieved even under a preload.

[4-way Equal Load Type]

When the two rails are mounted in parallel, each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in various orientations and in applications.

[Sectional Dimensions Approximate to Cross-roller Guides]

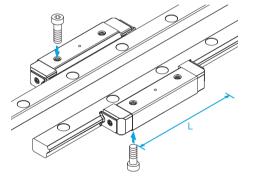
Since model HR is an infinite motion type whose retainer plate does not move, it is not associated with cage displacement that occurs with cross-roller guides. In addition, the sectional shape of model HR is approximate to that of cross-roller guides, therefore, its components are interchangeable with that of cross-roller guides.


[Stainless Steel Type also Available]

A special type whose LM block, LM rail and balls are made of stainless steel is also available.

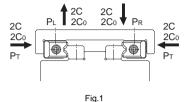
Model HR - Heavy-load Type

The LM blocks can be mounted from the top and the bottom.


Specification Table⇒B-138

Model HR-T-Ultra-heavy Load Type

Has the same cross-sectional shape as model HR, but has a greater overall LM block length (L) and a higher load rating.


Specification Table⇒B-140

Rated Loads in All Directions

When installed, one set of model HR is capable of receiving loads in all four directions: radial, reverse radial and lateral directions.

The basic load ratings of an installed set of model HR are equal in all four directions (radial, reverse radial and lateral directions). The basic load ratings in the specification table for model HR indicate the values in the radial direction per LM block as shown in Fig.1.

Equivalent Load

When the LM block of model HR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

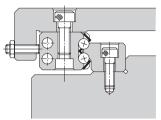
$$P_E = P_R (P_L) + \frac{1}{2} P_T$$

 P_{E} : Equivalent load (N)

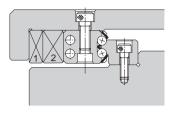
: Radial direction

: Reverse radial direction

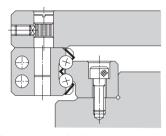
: Lateral direction


 P_R : Radial load (N) P_{L} : Reverse radial load (N) : Lateral load (N)

Service Life


For details, see A-100.

Example of Clearance Adjustment


Design the clearance adjustment bolt so that it presses the center of the side face of the LM block.

 Using an adjustment screw
 Normally, an adjustment screw is used to press the LM block.

Using tapered gibs
 When high accuracy and high rigidity are required, use tapered gibs 1) and 2).

Using an eccentric pin
 A type using an eccentric pin to adjust the clearance is also available.

Accuracy Standards

For details, see A-123.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-331.

Error Allowance in the Parallelism between Two Rails

For details, see A-334.

Error Allowance in Vertical Level between Two Rails

For details, see A-337.

Separate Type (4-way Equal Load) Model HR

Comparison of Model Numbers with Cross-roller Guides

Each type of LM Guide model HR has sectional dimensions approximate to that of the corresponding cross roller guide model.

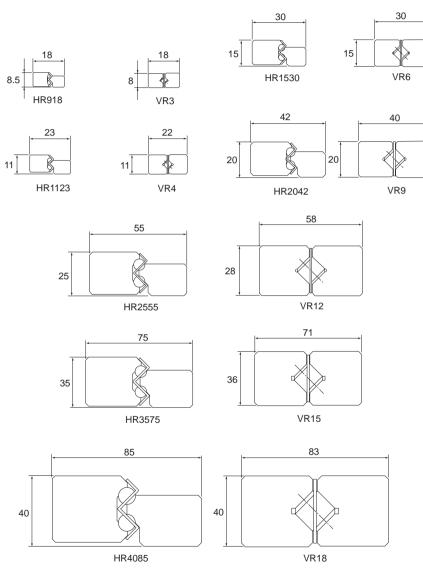
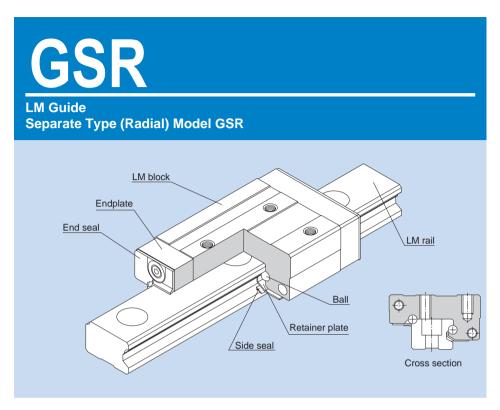



Fig.2

Structure and Features	▶▶▶ A-231
Types and Features	▶▶▶ A-232
Rated Loads in All Directions	▶▶▶ A-233
Equivalent Load	▶▶▶ A-233
Service Life	▶▶▶ A-100
Example of Clearance Adjustment	▶▶▶ A-234
Accuracy Standards	▶▶▶ A-124
Shoulder Height of the Mounting Base and the Corner Radius	▶ ▶▶ A-331
Error Allowance in the Parallelism between Two Rails	▶▶▶ A-334
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-337
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-146
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-148
Tapped-hole LM Rail Type of Model GSR	▶▶▶ B-148

Separate Type (Radial) Model GSR

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off.

As the top face of the LM block is inclined, a clearance is eliminated and an appropriate preload is applied simply by securing the LM block with mounting bolts.

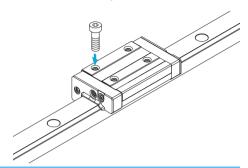
Model GSR has a special contact structure using circular-arc grooves. This increases self-adjusting capability and makes GSR an optimal model for places associated with difficulty establishing high accuracy and for general industrial machinery.

[Interchangeability]

Both the LM block and LM rail are interchangeable and can be stored separately. Therefore, it is possible to store a long-size LM rail and cut it to a desired length before using it.

[Compact]

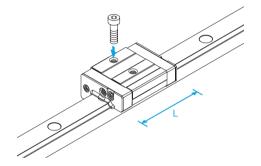
Since model GSR has a low center of gravity structure with a low overall height, the machine can be downsized.


[Capable of Receiving a Load in any Direction]

The ball contact angle is designed so that this model can receive a load in any direction. As a result, it can be used in places where a reverse radial load, lateral load or a moment in any direction is applied.

Model GSR-T

This model is a standard type.


Specification Table⇒B-146

Model GSR-V

A space-saving type that has the same cross-sectional shape as GSR-T, but has a shorter overall LM block length (L).

Specification Table⇒B-146

Separate Type (Radial) Model GSR

Rated Loads in All Directions

Model GSR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for GSR. The values in the radial direction, tensile lateral direction and compressive lateral direction are obtained from Table1.

Note) Not available for a single-axis configuration.

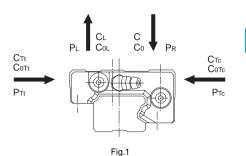


Table 1 Basic Load Ratings of Model GSR in All Directions

	J	
Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direc- tion	C _L =0.93C	C _{0L} =0.90C ₀
Tensile lat- eral direction	C₁=0.84C	Cott=0.78Co
Compressive lateral direc- tion	Ст.=0.93С	Сотс=0.90Со

Equivalent Load

When the LM block of model GSR receives loads in the radial, tensile lateral, reverse radial and compressive lateral directions simultaneously, the equivalent load is obtained from the equation below.

$$P_E = X \cdot P_R + Y \cdot P_{Tt}$$

$$P_E = P_L + P_{Tc}$$

: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Tensile lateral direction

: Compressive lateral direction

: Radial load P_R (N)

Pι : Reverse radial load (N)

: Tensile lateral load (N)

: Compressive lateral direction load

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model GSR (when radial and tensile lateral loads are applied)

PE	X	Υ
Equivalent lo radial dire	1	1.28
Equivalent load	0.781	1

sale@technobearing.ru

Service Life

For details, see A-100.

Example of Clearance Adjustment

By providing a shoulder maybe on the side face of each LM block and pressing either LM block with a bolt, a preload is applied and the rigidity is increased.

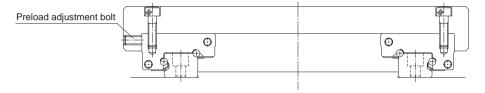


Fig.2 Example of Adjusting a Preload with a Push Bolt

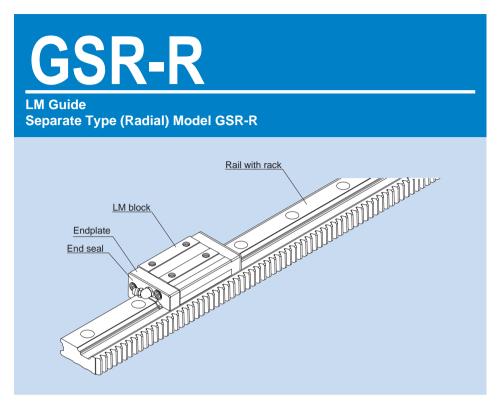
Accuracy Standards

For details.see A-124.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A-331.

Error Allowance in the Parallelism between Two Rails


For details, see A-334.

Error Allowance in Vertical Level between Two Rails

For details, see A-337.

Separate Type (Radial) Model GSR

.M Guide

Structure and Features	▶ ▶▶ A-237
Types and Features	▶▶▶ A-238
Rated Loads in All Directions	▶▶▶ A-238
Equivalent Load	▶▶▶ A-239
Service Life	▶ ▶▶ A-100
Accuracy Standards	▶▶▶ A-125
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-331
Error Allowance in the Parallelism between Two Rails	▶▶▶ A-334
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-337
Rack and Pinion	▶▶▶ A-240
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-150
Standard Length of the LM Rail	▶ ▶▶ B-152

Separate Type (Radial) Model GSR-R

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off.

As the top face of the LM block is inclined, a clearance is eliminated and an appropriate preload is applied simply by securing the LM block with mounting bolts.

Model GSR-R is based on model GSR, but has rack teeth on the LM rail. This facilitates the design and assembly of drive mechanisms.

[Reduced Machining and Assembly Costs]

The single-piece structure integrating the LM rail (linear guide) and rack (drive) reduces labor and time for machining the rack mounting surface and assembling and adjusting the guide system, thus to achieve significant cost reduction.

[Easy Designing]

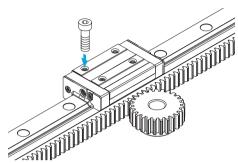
The travel distance per turn of the pinion is specified by the integer value. This makes it easy to calculate the travel distance per pulse when the LM Guide is used in combination with a stepping motor or servomotor.

[Space Saving]

Since the rail has a rack, the machine size can be reduced.

[Long Stroke]

The end faces of the LM rail are machined for jointed use. To obtain a long stroke, simply joint LM rails of the standard length.

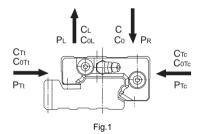

[High Durability]

The rack tooth has a width equal to the LM rail height, the rack uses high-grade steel with proven performance and the tooth surface are heat-treated, thereby to ensure high durability.

Model GSR-R (Rail with Rack)

Since the thrust load on the pinion shaft can be kept low due to rack-pinion meshing, it is easy to design systems with pinion shaft bearings and tables that are not so rigid.

Specification Table⇒B-150


Rated Loads in All Directions

Model GSR-R is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for GSR-R. The values in the radial direction, tensile lateral direction and compressive lateral direction are obtained from Table1.

Table1 Basic Load Ratings of Model GSR-R in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	Co
Reverse radial direction	CL=0.93C	C _{0L} =0.90C ₀
Tensile lateral direction	C₁=0.84C	Cort=0.78Co
Compressive lateral direction	Ст _с =0.93С	Сотс=0.90Со

Separate Type (Radial) Model GSR-R

Equivalent Load

When the LM block of model GSR-R receives loads in the radial, tensile lateral, reverse radial and compressive lateral directions simultaneously, the equivalent load is obtained from the equation below.

 $P_E = X \cdot P_R + Y \cdot P_{Tt}$ $P_E = P_L + P_{Tc}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction : Tensile lateral direction

: Compressive lateral direction

 P_R : Radial load (N) P_L : Reverse radial load (N)

 P_{Tt} : Tensile lateral load (N)

: Compressive lateral direction load

(N)

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model GSR-R (when radial and tensile lateral loads are applied)

P₅	X	Y
Equivalent load in the radial direction	1	1.28
Equivalent load in tensile lateral direction	0.781	1

Service Life

For details, see A-100.

Accuracy Standards

For details, see A-125.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-331.

Error Allowance in the Parallelism between Two Rails

For details, see A-334.

Error Allowance in Vertical Level between Two Rails

For details.see A-337.

Rack and Pinion

[Joining Two or More Rails]

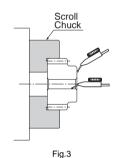
The end faces of the rail with rack are machined so that a clearance is left after assembly in order to facilitate the assembly.

Use of a special jig as shown in Fig.2 will make the connection easier.

(THK also offers the rack-aligning jig.)

[Reworking the Pinion Hole]

Only the teeth of the reworkable pinion-holediameter type (type C) are heat-treated. The hole and keyway can therefore be reworked by the user to the desired diameter and shape.


When reworking the pinion hole, be sure to take the following into account.

The material of the reworkable hole diameter type (type C): S45C

- (1) When chucking the teeth of a reworkable hole diameter type, use a jaw scroll chuck or something like it to maintain the tooth profile.
- (2) The pinion is produced using the center of the hole as a reference point. The center of the hole should therefore be used as a reference point when the pinion is aligned. When checking the pinion runout, refer to the boss sides.
- (3) Keep the reworked hole diameter within roughly 60 to 70% of the boss diameter.

Rack-aligning jig

Fig.2 Rack Connection Method

[Lubricating the Rack and Pinion]

To ensure smooth sliding on tooth surfaces and prevent wear, the teeth should be provided with a lubricant.

Note) Use a lubricant of the same type as that contained in the LM Guide.

Separate Type (Radial) Model GSR-R

[Checking Strength]

The strength of the assembled rack and pinion must be checked in advance.

- (1) Calculate the maximum thrust acting on the pinion.
- (2) Divide the permissible power transmission capacity of the pinion to be used (Table3) by an overload factor (Table4).
- (3) By comparing the thrust acting on the pinion obtained in step 1 with the pinion power transmission capacity obtained in step 2, make sure the applied thrust does not exceed the permissible power transmission capacity.

[Example of calculation]

Model GSR-R is used in a horizontal conveyance system receiving a medium impact (assuming external load to be zero).

Conditions

Subject model No. (pinion) GP6-20A Mass (table + work) m=100kgv=1 m/s Speed Acceleration/deceleration time T₁ =0.1 s

Consideration

(1) Calculating the maximum thrust Calculated the thrust during acceleration/ deceleration.

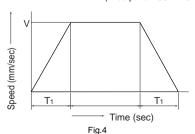
$$Fmax = m \cdot \frac{V}{T_1} = 1.00kN$$

(2) Permissible power transmission capacity of the pinion

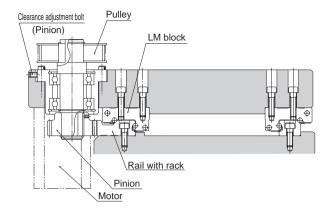
(3) Comparison between the maximum thrust and the permissible power transmission capacity of the pinion

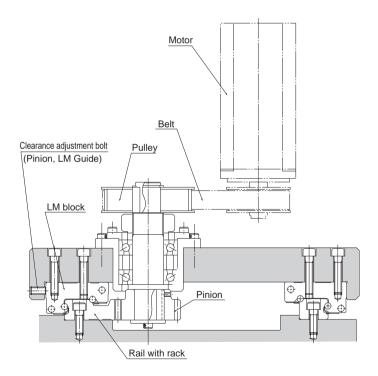
Fmax<Pmax

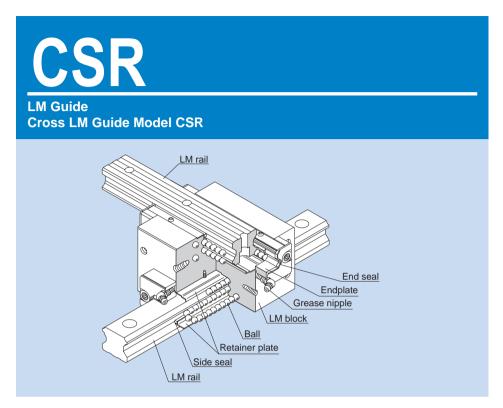
Therefore, it is judged that the subject model number can be used.


Table3 Permissible Power transmission Capacity Unit: kN

Model No.	Permissible Power transmission Capacity	Supported model
GP 6-20A	2.33	
GP 6-20C	2.05	GSR 25-R
GP 6-25A	2.73	GSIN 23-IN
GP 6-25C	2.23	
GP 8-20A	3.58	
GP 8-20C	3.15	GSR 30-R
GP 8-25A	4.19	G3K 30-K
GP 8-25C	3.42	
GP10-20A	5.19	
GP10-20C	4.57	GSR 35-R
GP10-25A	6.06	GOIX 30-IX
GP10-25C	4.96	


Table4 Overload Factor


Table 4 Overload Table				
Impact from the	Impact from the driven machine			
prime mover	Uniform load	Medium impact	Large impact	
Uniform load (electric motor, tur- bine, hydraulic motor, etc.)	1.0	1.25	1.75	


(Excerpt from JGMA401-01)

[Example of Assembling Model GSR-R with the Table]

Structure and Features	▶ ▶▶ A-245
Types and Features	▶▶▶ A-246
Rated Loads in All Directions	▶►► A-246
Equivalent Load	▶▶▶ A-247
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-114
Accuracy Standards	▶▶▶ A-122
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-326
Error Allowance in the Parallelism between Two Rails	▶ ▶ A-333
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-336
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-154
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-156
Tapped-hole LM Rail Type of Model CSR	▶▶▶ B-157

Cross LM Guide Model CSR

Features of Each Model

Structure and Features

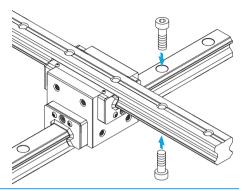
Balls roll in four rows of raceways precision-ground on a LM rail and a LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off even if the LM rail is pulled out.

This model is an integral type of LM Guide that squares an internal structure similar to model HSR, which has a proven track record and is highly reliable, with another and uses two LM rails in combination. It is machined with high precision so that the perpendicularity of the hexahedron of the LM block is within 2 μ m per 100 mm in error. The two rails are also machined with high precision in relative straightness. As a result, extremely high accuracy in orthogonality is achieved. Since an orthogonal LM system can be achieved with model CSR alone, a conventionally required saddle is no longer necessary, the structure for X-Y motion can be simplified and the whole system can be downsized.

[4-way Equal Load Type]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.

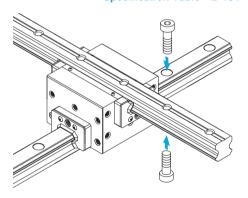
[High Rigidity]


Since balls are arranged in four rows in a well-balanced manner, this model is stiff against a moment, and smooth straight motion is ensured even a preload is applied to increase the rigidity.

The rigidity of the LM blocks is 50% higher than that of a combination of two HSR LM blocks secured together back-to-back with bolts. Thus, CSR is an optimal LM Guide for building an X-Y table that requires high rigidity.

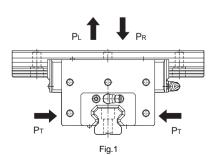
Model CSR-S

This model is a standard type.


Specification Table⇒B-154

Model CSR

It has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-154

Rated Loads in All Directions

Model CSR is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are defined with an LM rail and two LM blocks, and uniform in the four directions (radial, reverse radial and lateral directions). Their actual values are provided in the specification table for CSR.

Equivalent Load

When the LM block of model CSR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathrm{E}} = \mathbf{P}_{\mathrm{R}} \left(\mathbf{P}_{\mathrm{L}} \right) + \mathbf{P}_{\mathrm{T}}$

P_E: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N) P_L : Reverse radial load (N) P_T : Lateral load (N)

Service Life

For details, see A-100.

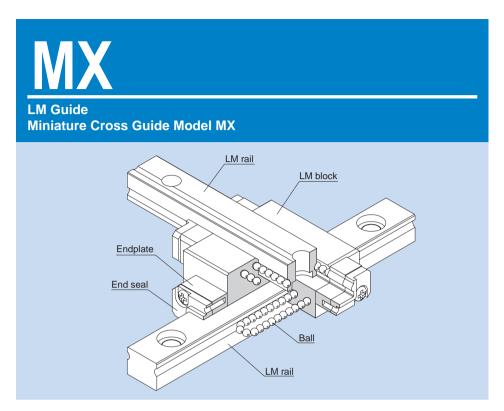
Radial Clearance Standard

For details.see A-114.

Accuracy Standards

For details, see A-122.

Shoulder Height of the Mounting Base and the Corner Radius


For details, see A-326.

Error Allowance in the Parallelism between Two Rails

For details, see A-333.

Error Allowance in Vertical Level between Two Rails

For details, see A-336.

▶ ▶▶ A-249
▶▶▶ A-250
▶▶▶ A-250
▶▶▶ A-250
▶▶▶ A-100
▶ ▶▶ A-115
▶▶▶ A-127
▶▶▶ A-327
▶▶▶ B-160
▶▶▶ B-162

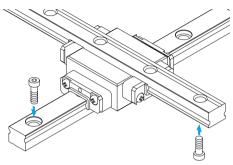
Miniature Cross Guide Model MX

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. This model is an integral type of LM Guide that squares a unit of miniature LM Guide model RSR with another and uses two LM rails in combination. Since an orthogonal LM system with an extremely low height can be achieved with model MX alone, a conventionally required saddle is no longer necessary and the whole system can be downsized.

[4-way Equal Load Type]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.


[Tapped-hole LM Rail Type]

There are two types of the LM rail: one designed to be mounted from the top with bolts, and a semistandard type whose bottom face has tapped holes, allowing the rail to be mounted from the bottom.

Model MX

MX is divided into two types: RSR5M cross type and RSR7WM cross type.

Specification Table⇒**B-160**

Rated Loads in All Directions

Model MX is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are defined with an LM rail and an LM block, and uniform in the four directions (radial, reverse radial and lateral directions). Their actual values are provided in the specification table for MX.

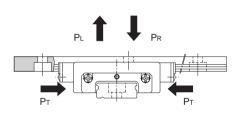


Fig.1

Equivalent Load

When the LM block of model MX receives loads in the radial, reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathsf{E}} = \mathbf{P}_{\mathsf{R}} \left(\mathbf{P}_{\mathsf{L}} \right) + \mathbf{P}_{\mathsf{T}}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

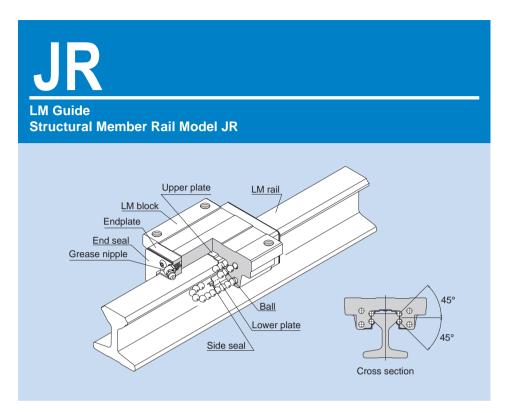
 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

Miniature Cross Guide Model MX

Service Life

For details, see A-100.

Radial Clearance Standard


For details, see A-115.

Accuracy Standards

For details, see A-127.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-327.

Structure and Features	▶▶▶ A-253
Second Moment of Inertia of the LM Rail	▶▶▶ A-253
Types and Features	▶▶▶ A-254
Rated Loads in All Directions	▶▶▶ A-255
Equivalent Load	▶▶▶ A-255
Service Life	▶▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-115
Accuracy Standards	▶▶▶ A-121
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-326
Error Allowance in the Parallelism between Two Rails	▶▶▶ A-333
Error Allowance in Vertical Level between Two Rails	▶►► A-336
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-164
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ B-166

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off even if the LM rail is pulled out.

Model JR uses the same LM block as model HSR, which has a proven track record and is highly reliable. The LM rail has a sectional shape with high flexural rigidity, and therefore can be used as a structural member.

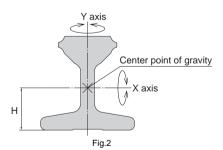
Unlike the conventional LM Guide type, whose LM rail was secured onto the base with bolts when installed, model JR's LM rail is integrated with the mounting base, and the top of the LM rail has the same structure as LM Guide model HSR. The lower part of the LM rail has a hardness of HRC25 or less, making it easy to cut the rail and enabling the rail to be welded.

When welding the rail, we recommend using welding rods compliant with JIS D 5816. (suggested manufacturer and model number: Kobelco LB-52).

[4-way Equal Load Type]


Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.

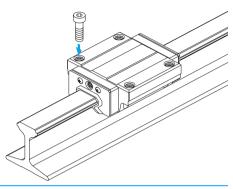
[Can be Mounted Even Under Rough Conditions]


Since the central part of the LM rail is slightly thinner than the ends, even if the parallelism between two rails is poor the LM rail is capable of absorbing the error by bending inward or outward.

[Sectional Shape with High Flexural Rigidity]

Since the LM rail has a sectional shape with high flexural rigidity, it can also be used as a structural member. In addition, even when the LM rail is partially fastened or supported in cantilever, the distortion is minimal.

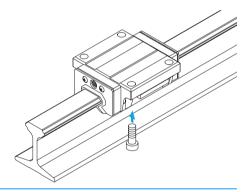
Second Moment of Inertia of the LM Rail



	Geometrical moment of inertia I [×10⁵ mm⁴]		Modulus of section Z [×104 mm3]		Height of gravitational center
	About X axis	About Y axis	About X axis	About Y axis	H [mm]
JR 25	1.90	0.51	0.69	0.21	19.5
JR 35	4.26	1.32	1.43	0.49	24.3
JR 45	12.1	3.66	3.31	1.04	33.1
JR 55	27.6	6.54	5.89	1.40	43.3

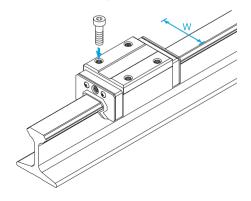
Model JR-A

The flange of its LM block has tapped holes.


Specification Table⇒B-164

Model JR-B

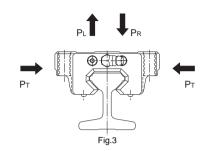
The flange of the LM block has through holes. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒B-164

Model JR-R

With this type, the LM block has a smaller width (W) and tapped holes. Used in places where the space for table width is limited.

Specification Table⇒B-164



Structural Member Rail Model JR

Rated Loads in All Directions

Model JR is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for JR.

Equivalent Load

When the LM block of model JR receives loads in the radial, reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathsf{E}} = \mathbf{P}_{\mathsf{R}} \left(\mathbf{P}_{\mathsf{L}} \right) + \mathbf{P}_{\mathsf{T}}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{R} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

②technobearing.ru www.technobearing.ru 8 ((80
--	-----

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-115.

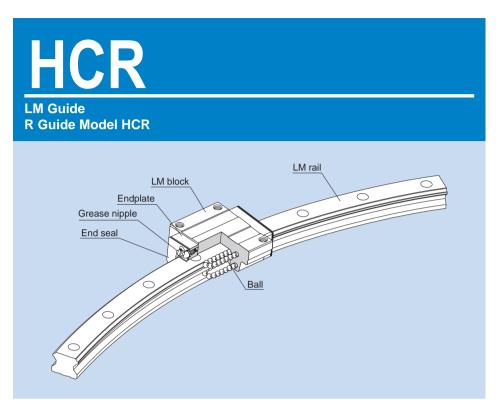
Accuracy Standards

For details, see A-121.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-326.

Error Allowance in the Parallelism between Two Rails


For details, see A-333.

Error Allowance in Vertical Level between Two Rails

For details, see A-336.

Features of Each Model
Structural Member Rail Model JR

www.technobearing.ru 8 (800) 700-72-07 (бесплатно)

Structure and Features	▶ ▶ A-259
Types and Features	▶▶▶ A-260
Rated Loads in All Directions	▶▶▶ A-260
Equivalent Load	▶▶▶ A-260
Service Life	▶▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-115
Accuracy Standards	▶▶▶ A-121
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-328
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-168

R Guide Model HCR

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

With a structure that is basically the same as four-way equal load type LM Guide model HSR, which has a proven track record, this R Guide is a new concept product that allows highly accurate circular motion.

[Freedom of Design]

Multiple LM blocks can individually move on the same rail. By arranging LM blocks on the load points, efficient structural design is achieved.

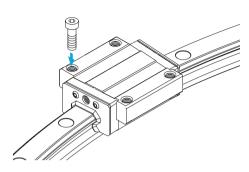
[Shortened Assembly Time]

This model allows clearance-free, highly accurate circular motion as opposed to sliding guides or cam followers. You can easily assemble this model simply by mounting the LM rail and LM blocks with bolts.

[Allows Circular Motion of 5m or Longer]

It allows circular motion of 5 m or longer, which is impossible with swivel bearings.

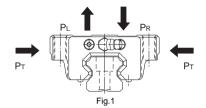
In addition, use of this model makes it easy to assemble, disassemble and reassemble equipment that circularly moves.


[Capable of Receiving Loads in All Directions]

This model is capable of receiving loads in all directions since it has a structure that is basically the same as model HSR.

Model HCR

Specification Table⇒B-168


The flange of its LM block has tapped holes.

Rated Loads in All Directions

Model HCR is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HCR.

Equivalent Load

When the LM block of model HCR receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

PE : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N) : Reverse radial load (N) (N)

: Lateral load

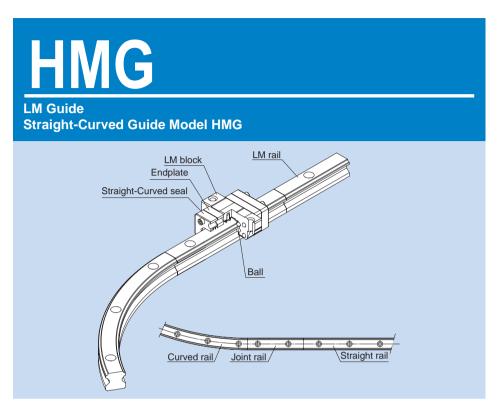
R Guide Model HCR

Features of Each Model

Service Life

For details, see A-100.

Radial Clearance Standard


For details, see A-115.

Accuracy Standards

For details, see A-121.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-328.

Structure and Features	▶ ▶▶ A-263
Types and Features	▶▶▶ A-265
Rated Loads in All Directions	▶▶▶ A-265
Equivalent Load	▶▶▶ A-265
Service Life	▶►► A-100
Radial Clearance Standard	▶▶▶ A-115
Accuracy Standards	▶▶▶ A-121
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-328
Examples of Table Mechanisms	▶▶▶ A-267
Dimensional Drawing, Dimensional Table	▶▶▶ B-172
Jointed LM rail, example of model number coding	▶▶▶ B-174

Straight-Curved Guide Model HMG

Structure and Features

The Straight-Curved Guide HMG is a new straight-curved guide that allows the same type of LM blocks to continuously move on straight and curved rails by combining the technologies of the LM Guide HSR and the R Guide HCR. It achieves drastic cost reduction through improvement of work efficiency at the assembly and conveyance lines and the inspection equipment and simplification of the structure by eliminating a lift and a table.

[Freedom of Design]

It allows free combinations of straight and curved shapes.

Since LM blocks can smoothly transit between the straight and curved sections, various combinations of straight and curved rails can be joined into various shapes such as O, U, L and S shapes. In addition, HMG allows a large table to be mounted and a heavy object to be carried through combinations of multiple blocks on a single rail or 2 or more LM rails. Thus, it provides great freedom of design.

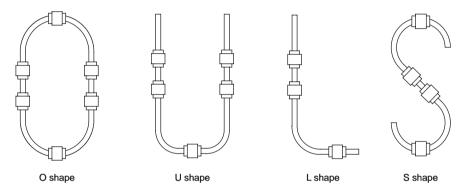


Fig.1 Examples of Joining Rails into Different Shapes

[Shortened Transportation Time]

Unlike the shuttle method, using HMG units in a circulating system allows workpieces to be placed while other workpieces are being inspected or mounted, thus to significantly improve process time. Increasing the number of tables can further shorten process time.

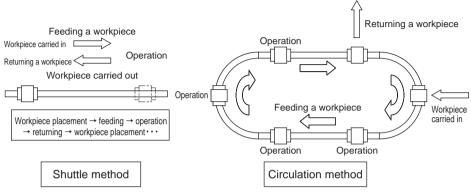


Fig.2 Improved process time

[Cost Reduction through a Simplified Mechanism]

Combination of straight and curved rails eliminates a lift and a turntable conventionally used for changing directions in the conveyance and production lines. Therefore, use of HMG simplifies the mechanism and eliminates a large number of parts, allowing the cost to be reduced. Additionally, man-hours in designing can also be reduced.

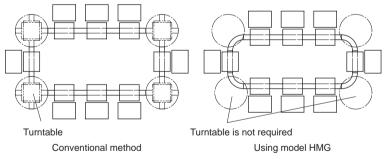
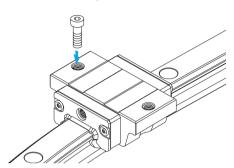


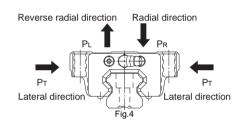
Fig.3


Straight-Curved Guide Model HMG

Types and Features

Model HMG

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom.


Specification Table⇒B-172

Rated Loads in All Directions

Model HMG is capable of receiving loads in all four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HMG.

Equivalent Load

When the LM block of model HMG receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathsf{E}} = \mathbf{P}_{\mathsf{R}} \left(\mathbf{P}_{\mathsf{L}} \right) + \mathbf{P}_{\mathsf{T}}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_R & : \mbox{ Radial load} & (\mbox{N}) \\ P_L & : \mbox{ Reverse radial load} & (\mbox{N}) \\ P_T & : \mbox{ Lateral load} & (\mbox{N}) \end{array}$

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-115.

Accuracy Standards

For details, see A-121.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-328.

Straight-Curved Guide Model HMG

Examples of Table Mechanisms

The Straight-Curved Guide HMG requires a rotating mechanism or a slide mechanism for the table to rotate the curved sections when 2 or more rails are used or when 2 or more LM blocks are connected on a single rail. Refer to Fig.5 for examples of such mechanisms.

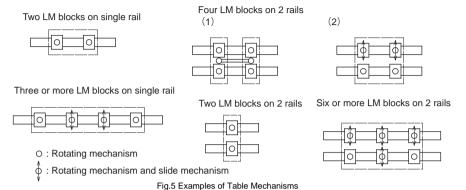
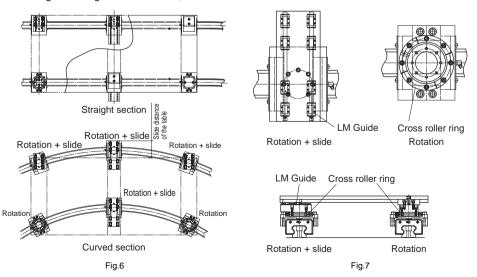
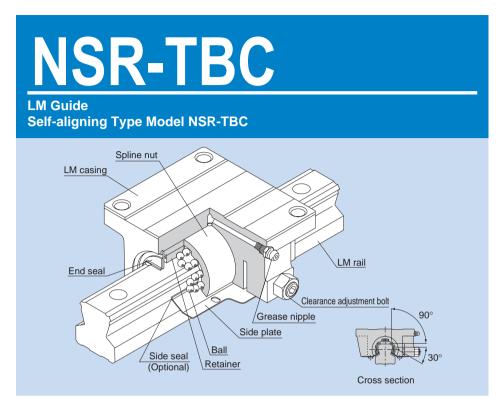




Fig.6 shows examples of designing a table when units are used on multiple axes. HMG requires a rotating mechanism and a slide mechanism since the table is decentered when an LM block transits from a straight section to a curved section. The amount of decentering differs according to the radius of the curved section and the LM block span. Therefore, it is necessary to design the system in accordance with the corresponding specifications.

Fig.7 shows detail drawings of the slide and rotating mechanisms. In the figure, LM Guides are used in the slide mechanism and Cross-Roller Rings in the rotating mechanism to achieve smooth sliding and rotating motions.

For driving the Straight-Curved Guide, belt drives and chain drives are available.

Structure and Features	▶ ▶▶ A-269
Types and Features	▶▶▶ A-269
Rated Loads in All Directions	▶▶▶ A-270
Equivalent Load	▶ ▶▶ A-270
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-115
Accuracy Standards	▶ ▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-326
Error Allowance in the Parallelism between Two Rails	▶►► A-334
Error Allowance in Vertical Level between Two Rails	▶ ▶▶ A-337
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-178
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ B-180

Self-aligning Type Model NSR-TBC

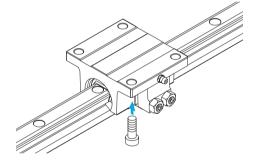
Structure and Features

Model NSR-TBC is the only LM Guide whose casing consists of two pieces instead of a single-piece LM block. The rigid, cast iron casing contains a cylindrical spline nut that is partially cut at an angle of 120°. This enables the model to self-aligning on the fitting surface with the casing, thus to permit rough installation.

[Capable of Receiving Loads in All Directions]

NSR-TBC has four rows of balls. The balls are arranged in two rows on each shoulder of the LM rail, and can receive loads in all four directions: upward, downward and lateral directions. Due to the self-aligning structure, however, a rotational moment (M_c) cannot be applied in a single-rail configuration.

[Easy Installation and Accuracy Establishment]


Model NSR-TBC is highly capable of performing self-adjustment and self-alignment. As a result, even if two rails are not mounted with accuracy, the LM casing absorbs the error and it does not affect the traveling performance. Accordingly, the machine performance will not be deteriorated.

Types and Features

Model NSR-TBC

The flange of the LM casing has through holes, allowing the LM Guide to be mounted from the bottom.

Specification Table⇒B-178

Rated Loads in All Directions

Model NSR-TBC is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for NSR-TBC. The values in the reverse radial and lateral directions are obtained from Table1 below

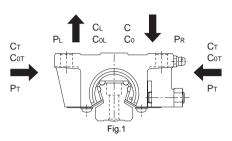


Table1 Basic Load Ratings of Model NSR-TBC in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C₀
Reverse radial direction	CL=0.62C	C _{0L} =0.50C ₀
Lateral directions	C _T =0.56C	Сот=0.43Со

Equivalent Load

When the LM casing of model NSR-TBC receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

PE : Equivalent load (N)

: Reverse radial direction

: Lateral direction

Рι : Reverse radial load (N) : Lateral load (N) X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model NSR-TBC

PE	Х	Υ
Equivalent load in reverse radial direction	1	1.155
Equivalent load in lateral direction	0.866	1

Features of Each Model Self-aligning Type Model NSR-TBC

Service Life

For details, see A-100.

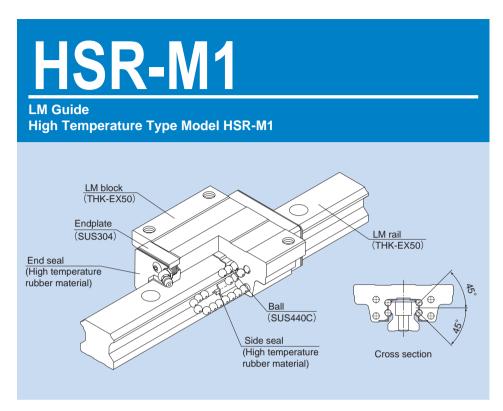
Radial Clearance Standard

For details, see A-115.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius


For details, see A-326.

Error Allowance in the Parallelism between Two Rails

For details, see A-334.

Error Allowance in Vertical Level between Two Rails

For details, see A-337.

Structure and Features	▶▶▶ A-273
Types and Features	▶▶▶ A-275
Rated Loads in All Directions	▶▶▶ A-277
Equivalent Load	▶▶▶ A-277
Service Life	▶▶► A-100
Radial Clearance Standard	▶▶▶ A-114
Accuracy Standards	▶▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-328
Error Allowance in the Parallelism between Two Rails	▶▶▶ A-333
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-336
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-182
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-190

High Temperature Type Model HSR-M1

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.

The high temperature type LM Guide is capable of being used at service temperature up to 150 $^{\circ}$ C thanks to THK's unique technologies in material, heat treatment and lubrication.

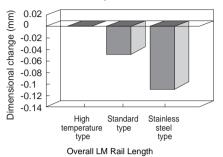
[Maximum Service Temperature: 150°C]

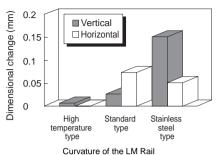
Use of stainless steel in the endplates and high temperature rubber in the end seals achieves the maximum service temperature of 150° C.

[Dimensional Stability]

Since it is dimensionally stabilized, it demonstrates superb dimensional stability after being heated or cooled (note that it shows linear expansion at high temperature).

[Highly Corrosion Resistant]

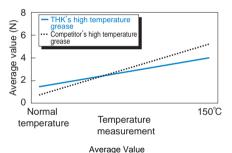

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

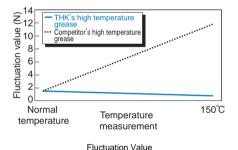

[High Temperature Grease]

This model uses high temperature grease that shows little grease-based fluctuation in rolling resistance even if temperature changes from low to high levels.

Dimensional Stability Data

Since this model has been treated for dimensional stability, its dimensional change after being cooled or heated is only minimal.




Note1) The above data on overall length and curvature indicate dimensional change when the LM rail is cooled to normal temperature after being heated at 150°C for 100 hours.

Note2) The samples consist of high temperature, standard and stainless steel types of model HSR25 + 580L.

Rolling Resistance Data in Relation to Grease

Use a high temperature grease with which the rolling resistance of the LM system little fluctuates even temperature changes from a normal to high range.

•

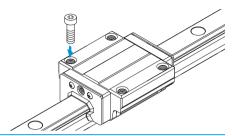
For the measurements above, model HSR25M1R1C1 is used.

Thermal Characteristics of LM Rail and LM Block Materials

Specific heat capacity: 0.481 J/(g·K)

Thermal conductivity: 20.67 W/(m·K)

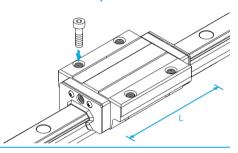
Average coefficient of linear expansion: 11.8×10-6/°C


High Temperature Type Model HSR-M1

Types and Features

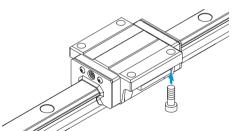
Model HSR-M1A

The flange of its LM block has tapped holes.


Specification Table⇒B-182

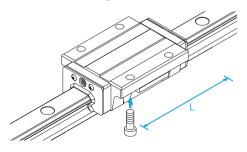
Model HSR-M1LA

The LM block has the same cross-sectional shape as model HSR-M1A, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-182

Model HSR-M1B

The flange of the LM block has through holes. Used in places where the table cannot have through holes for mounting bolts.

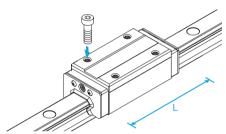

Specification Table⇒B-184

Model HSR-M1LB

The LM block has the same sectional shape as model HSR-M1B, but has a longer overall LM block length (L) and a greater rated load.

Specification Table⇒B-184

Specification Table⇒B-186


Model HSR-M1R

With this type, the LM block has a smaller width (W) and tapped holes. Used in places where the space for table width is limited.

Model HSR-M1LR

The LM block has the same sectional shape as model HSR-M1R, but has a longer overall LM block length (L) and a greater rated load.

Specification Table⇒**B-186**

Model HSR-M1YR

When using two units of LM Guide facing each other, the previous model required much time in machining the table and had difficulty achieving the desired accuracy and adjusting the clearance. Since model HSR-M1YR has tapped holes on the side of the LM block, a simpler structure is gained and significant man-hour cutting and accuracy increase can be achieved.

Specification Table⇒B-188

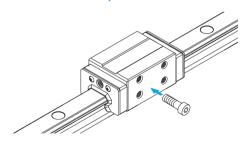


Fig.1 Conventional Structure

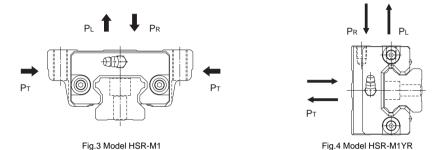


Fig.2 Mounting Structure for Model HSR-M1YR

Rated Loads in All Directions

Model HSR-M1 is capable of receiving loads in four directions: radial, reverse radial and lateral direc-

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HSR-M1.

Equivalent Load

When the LM block of model HSR-M1 receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

PE	$= \mathbf{P}_{R} \left(\mathbf{P}_{L} \right) + \mathbf{P}_{T}$	
P_E	: Equivalent load	(N)
	: Radial direction	
	: Reverse radial direction	
	: Lateral direction	
P_{R}	: Radial load	(N)
P∟	: Reverse radial load	(N)
Р⊤	: Lateral load	(N)

For details, see A-100.

Radial Clearance Standard

For details, see A-114.

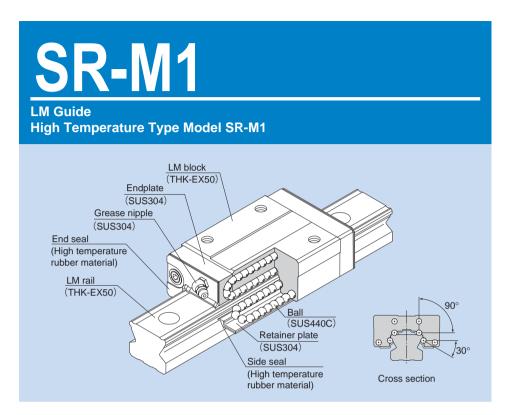
Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-328.

Error Allowance in the Parallelism between Two Rails


For details, see A-333.

Error Allowance in Vertical Level between Two Rails

For details, see A-336.

High Temperature Type Model HSR-M1

Features of Each Model

Structure and Features	▶ ▶▶ A-281
Thermal Characteristics of LM Rail and LM Block Materials	▶▶▶ A-281
Types and Features	▶ ▶▶ A-282
Rated Loads in All Directions	▶ ▶▶ A-283
Equivalent Load	▶ ▶▶ A-283
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-114
Accuracy Standards	▶ ▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-326
Error Allowance in the Parallelism between Two Rails	▶ ▶▶ A-333
Error Allowance in Vertical Level between Two Rails	▶►► A-336
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-196
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ B-196

High Temperature Type Model SR-M1

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Since it is a compactly designed model that has a low sectional height and a ball contact structure rigid in the radial direction, this model is optimal for horizontal guide units.

High temperature type LM Guide model SR-M1 is capable of being used at service temperature up to 150°C thanks to THK's unique technologies in material, heat treatment and lubrication.

[Maximum Service Temperature: 150°C]

Use of stainless steel in the endplates and high temperature rubber in the end seals achieves the maximum service temperature of 150°C.

[Dimensional Stability]

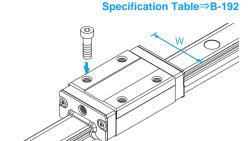
Since it is dimensionally stabilized, it demonstrates superb dimensional stability after being heated or cooled (note that it shows linear expansion at high temperature).

[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

[High Temperature Grease]

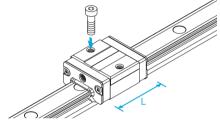
This model uses high temperature grease that shows little grease-based fluctuation in rolling resistance even if temperature changes from low to high levels.


Thermal Characteristics of LM Rail and LM Block Materials

- Specific heat capacity: 0.481 J/(g·K)
- Thermal conductivity: 20.67 W/(m·K)
- Average coefficient of linear expansion: 11.8 × 10⁻⁶/°C

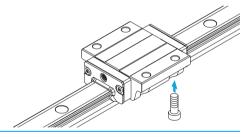
Types and Features

Model SR-M1W


With this type, the LM block has a smaller width (W) and tapped holes.

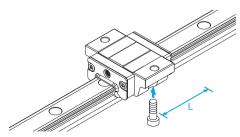
Model SR-M1V

A space-saving type whose LM block has the same cross-sectional shape as model SR-M1W, but has a smaller overall LM block length (L).



Model SR-M1TB

The LM block has the same height as model SR-M1W and can be mounted from the bottom.


Specification Table⇒B-194

Model SR- M1SB

A space-saving type whose LM block has the same sectional shape as model SR-M1TB, but has a smaller overall LM block length (L).

Specification Table⇒B-194

High Temperature Type Model SR-M1

Rated Loads in All Directions

Model SR-M1 is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings indicate the values in the radial directions in Fig.1, and their actual values are provided in the specification table for SR-M1. The values in the reverse radial and lateral directions are obtained from Table 1 below

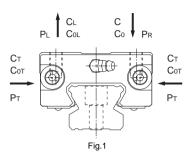


Table1 Rated Loads in All Directions with Model SR-M1

Model No.	Direction	Basic dynamic load rating	Basic static load rating
	Radial direction	С	C ₀
SR-M1 15 to 35	Reverse radial direction	CL=0.62C	C _{0L} =0.50C ₀
	Lateral directions	C _⊤ =0.56C	Сот=0.43Со

Equivalent Load

When the LM block of model SR-M1 receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

P_E: Equivalent load (N): Reverse radial direction

: Reverse radial direction

: Lateral direction

 P_{\perp} : Reverse radial load (N) P_{\top} : Lateral load (N)

 P_T : Lateral load (N) X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model SR-M1

Model No.	PE	Х	Y
SR-M1	Equivalent load in reverse radial direction	1	1.155
15 to 35	Equivalent load in lateral direction	0.866	1

_				•
50	P\/			10
JE	ıvı	ice	_	

For details, see A-100.

Radial Clearance Standard

For details, see A-114.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

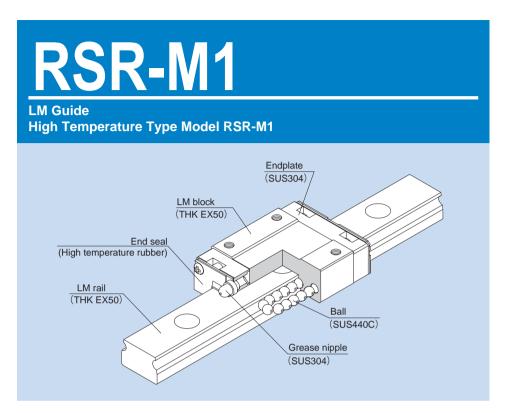
For details, see A-326.

Error Allowance in the Parallelism between Two Rails

For details, see A-333.

Error Allowance in Vertical Level between Two Rails

For details, see A-336.


www.technobearing.ru

8 (800) 700-72-07 (бесплатно)

Features of Each Model

High Temperature Type Model SR-M1

LM Guide

Structure and Features	▶▶▶ A-287
Thermal Characteristics of LM Rail and LM Block Materials	▶▶▶ A-287
Types and Features	▶ ▶▶ A-288
Rated Loads in All Directions	▶ ▶▶ A-289
Equivalent Load	▶ ▶▶ A-289
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-114
Accuracy Standards	▶ ▶▶ A-126
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-332
Error Allowance in the Parallelism between Two Rails	▶►► A-334
Error Allowance in Vertical Level between Two Rails	▶▶▶ A-337
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-192
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ B-196

High Temperature Type Model RSR-M1

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

High temperature type miniature LM Guide model RSR-M1 is capable of being used at service temperature up to 150°C thanks to THK's unique technologies in material, heat treatment and lubrication.

[Maximum Service Temperature: 150°C]

Use of stainless steel in the endplates and high temperature rubber in the end seals achieves the maximum service temperature of 150°C.

[Dimensional Stability]

Since it is dimensionally stabilized, it demonstrates superb dimensional stability after being heated or cooled (note that it shows linear expansion at high temperature).

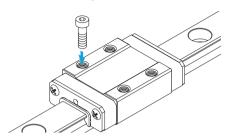
[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

[High Temperature Grease]

This model uses high temperature grease that shows little grease-based fluctuation in rolling resistance even if temperature changes from low to high levels.

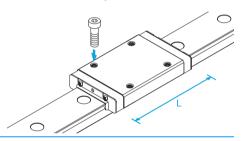
Thermal Characteristics of LM Rail and LM Block Materials


- Specific heat capacity: 0.481 J/(g·K)
- Thermal conductivity: 20.67 W/(m·K)
- Average coefficient of linear expansion: 11.8×10-6/℃

Types and Features

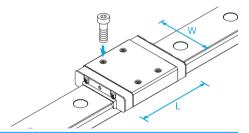
Models RSR-M1, RSR-M1K, M1V

This model is a standard type.


Specification Table⇒B-198

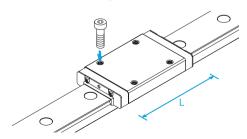
Model RSR-M1N

It has a longer overall LM block length (L) and a greater rated load than standard types.


Specification Table⇒B-198

Models RSR-M1W, M1WV

These models have greater overall LM block lengths (L), broader widths (W) and greater rated loads and permissible moments than standard types.


Specification Table⇒B-200

Model RSR-M1WN

It has a longer overall LM block length (L), a greater rated load than standard types. Achieves the greatest load capacity among the high temperature type miniature LM Guide models

Specification Table⇒B-200

Rated Loads in All Directions

Model RSR-M1 is capable of receiving loads in four directions; radial, reverse radial and lateral directions

The basic load ratings of models RSR9M1/M1W are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for RSR-M1.

The basic load ratings of models RSR12M1 to 20M1 indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for RSR-M1. The values in the reverse radial and lateral directions are obtained from Table1 below.

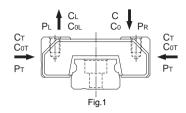


Table1 Basic Load Ratings of Models RSR12M1 to 20M1 in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C₀
Reverse radial direction	CL=0.78C	C ₀ L=0.70C ₀
Lateral directions	C₁=0.78C	Сот=0.71Со

Equivalent Load

When the LM block of models RSR9M1/M1W receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathsf{E}} = \mathbf{P}_{\mathsf{R}} \left(\mathbf{P}_{\mathsf{L}} \right) + \mathbf{P}_{\mathsf{T}}$

: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N) P. : Reverse radial load (N) : Lateral load (N)

When the LM block of models RSR12M1 to 20M1 receives loads in the radial and lateral directions. or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_R (P_L) + Y \cdot P_T$

: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

: Radial load (N)

: Reverse radial load (N)

: Lateral load (N)

X, Y: Equivalent factor

(see Table2 and Table3)

Table2 Equivalent Factor of Models RSR12M1 to 20M1(when radial and lateral loads are applied)

P₅	Х	Υ
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Models RSR12M1 to 20M1 (when reverse radial and lateral loads are applied)

P∈	Х	Y
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-114.

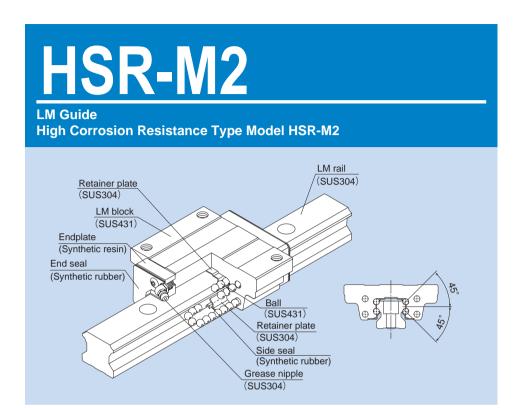
Accuracy Standards

For details, see A-126.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-332.

Error Allowance in the Parallelism between Two Rails


For details, see A-334.

Error Allowance in Vertical Level between Two Rails

For details, see A-337.

High Temperature Type Model RSR-M1

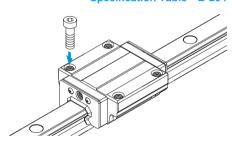
sale@technobearing.ru

Structure and Features	▶ ▶▶ A-293
Types and Features	▶▶▶ A-293
Rated Loads in All Directions	▶▶▶ A-293
Equivalent Load	▶▶▶ A-293
Service Life	▶▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-115
Accuracy Standards	▶ ▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-328
Error Allowance in the Parallelism between Two Rails	▶▶▶ A-333
Error Allowance in Vertical Level between Two Rails	▶►► A-336
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-204
Standard Length and Maximum Length of the LM Rail	▶ ▶ B-206

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

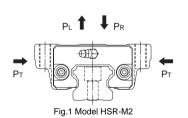
Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.


The LM rail. LM block and balls are made of highly corrosion resistant stainless steel and the other metal parts are made of stainless steel, allowing superb corrosion resistance to be achieved. As a result, the need for surface treatment is eliminated.

Types and Features

Model HSR-M2A

The flange of its LM block has tapped holes.


Specification Table⇒B-204

Rated Loads in All Directions

Model HSR-M2 is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HSR-M2.

Equivalent Load

When the LM block of model HSR-M2 receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E: Equivalent load (N) : Radial load (N) : Radial direction : Reverse radial load (N) : Reverse radial direction : Lateral load (N)

: Lateral direction

sale@lecillobealing.ru	www.technobeaning

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-115.

Accuracy Standards

For details, see A-119.

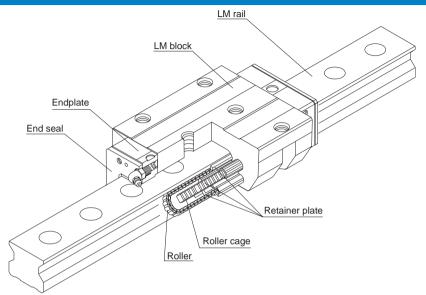
Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-328.

Error Allowance in the Parallelism between Two Rails

For details, see A-333.

Error Allowance in Vertical Level between Two Rails


For details, see A-336.

High Corrosion Resistance Type Model HSR-M2

Features of Each Model

www.technobearing.ru 8 (800) 700-72-07 (бесплатно)

Structure and Features of the Caged Roller LM Guide

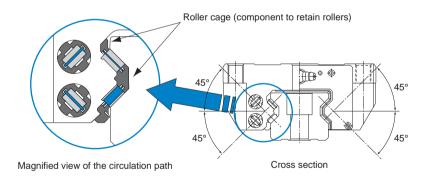
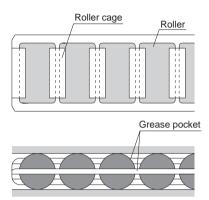


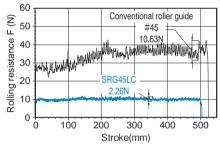
Fig.1 Structural Drawing of the Caged Roller LM Guide Model SRG


Caged Roller LM Guide is a roller guide that achieves low-friction, smooth motion and long-term maintenance-free operation by using a roller cage. In addition, to ensure ultra-high rigidity, rollers with low elastic deformation are used as the rolling elements and the roller diameter and the roller length are optimized.

Furthermore, the lines of rollers are placed at a contact angle of 45° so that the same rated load is applied in the four (radial, reverse and lateral) directions.

Structure and Features of the Caged Roller LM Guide

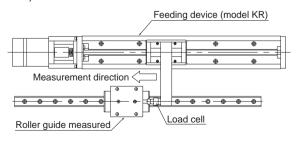
Advantages of the Caged Roller Technology


- (1) Evenly spaced and aligned rollers circulate, preventing the rollers from skewing, minimizing rolling resistance fluctuations and achieving smooth and stable motion.
- (2) The absence of friction between rollers allows grease to be retained in grease pockets and achieves long-term maintenance-free operation.
- (3) The absence of friction between rollers achieves low heat generation and superbly high speed.
- (4) The absence of roller-to-roller collision ensures low noise and acceptable running

[Smooth Motion]

Rolling Resistance Data

Evenly spaced and aligned rollers circulate, minimizing rolling resistance fluctuations and achieving smooth and stable motion.



Result of Measuring Rolling Resistance Fluctuations

[Conditions]

Feeding speed: 10mm/s

Applied load: no load (one block)

Rolling Resistance Measuring Machine

[Long-term Maintenance-free Operation]

High-speed Durability Test Data

Use of a roller cage eliminates friction between rollers, minimizes heat generation and increases grease retention, thus to achieve long-term maintenance-free operation.

[Conditions]


Model No.: SRG45LC


Magnitude of preload: clearance C0

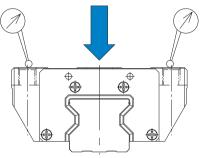
Speed: 180m/min Acceleration: 1.5G Stroke: 2300mm

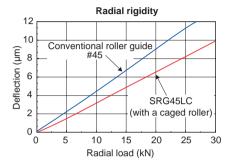
Lubrication: Initial lubrication only

(THKAFB-LF Grease)

Test result: No anomaly observed after running 15,000 km

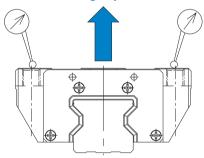
Result of High-speed Durability Test

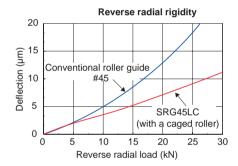

[Ultra-high Rigidity]

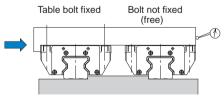

High Rigidity Evaluation Data

[Preload] SRG : radial clearance C0

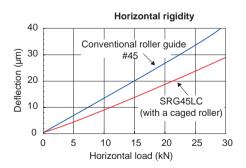
Conventional type: radial clearance equivalent to C0

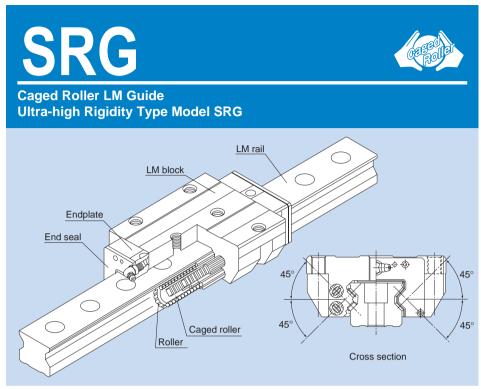

Radial rigidity




Structure and Features of the Caged Roller LM Guide

Reverse radial rigidity





Horizontal rigidity

Rigidity is measured with the two axes placed in parallel and one of the axes not fixed with a bolt in order not to apply a moment.

^{*} For the caged roller, see A-296.

Structure and Features	▶▶▶ A-301
Types and Features	▶▶▶ A-302
Rated Loads in All Directions	▶▶▶ A-304
Equivalent Load	▶▶▶ A-304
Service Life	▶ ▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-115
Accuracy Standards	▶▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-329
Error Allowance of the Mounting Surface	▶▶► A-305
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-208
Standard Length and Maximum Length of the LM Rail	▶▶▶ B-212

Features of Each Model

Ultra-high Rigidity Type Model SRG

Structure and Features

SRN is an ultra-high rigidity Roller Guide that uses roller cages to allow low-friction, smooth motion and achieve long-term maintenance-free operation.

[Ultra-high Rigidity]

A higher rigidity is achieved by using highly rigid rollers as the rolling elements and having the overall roller length more than 1.5 times greater than the roller diameter.

[4-way Equal Load]

Since each row of rollers is arranged at a contact angle of 45° so that the LM block receives an equal load rating in all four directions (radial, reverse radial and lateral directions), high rigidity is ensured in all directions.

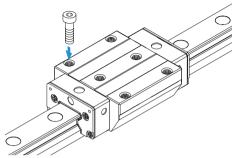
[Smooth Motion through Skewing Prevention]

The roller cage allows rollers to form an evenly spaced line while circulating, thus preventing the rollers from skewing as the block enters an loaded area. As a result, fluctuation of the rolling resistance is minimized, and stable, smooth motion is achieved.

[Long-term Maintenance-free Operation]

Use of roller cages eliminates friction between rollers and increases grease retention, enabling long-term maintenance-free operation to be achieved.

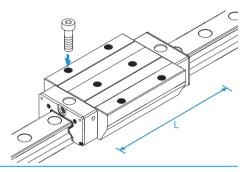
[Global Standard Size]


SRG is designed to have dimensions almost the same as that of Full Ball LM Guide model HSR, which THK as a pioneer of the linear motion system has developed and is practically a global standard size.

Types and Features

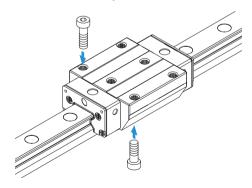
Models SRG-15A, 20A

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom.


Specification Table⇒B-208

Model SRG-20L

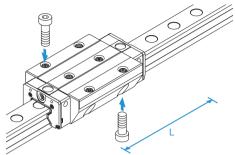
The LM block has the same cross-sectional shape as model SRG-A, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-208

Model SRG-C

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom. Used in places where the table cannot have through holes for mounting bolts.

Specification Table⇒B-208

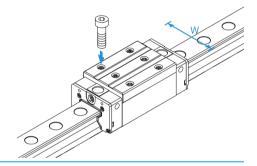

Features of Each Model

Ultra-high Rigidity Type Model SRG

Model SRG-LC

The LM block has the same cross-sectional shape as model SRG-C, but has a longer overall LM block length (L) and a greater rated load.

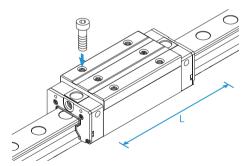
Specification Table⇒B-208



Model SRG-R

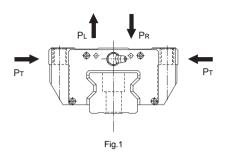
With this type, the LM block has a smaller width (W) and tapped holes.

Used in places where the space for table width is limited.


Specification Table⇒B-210

Model SRG-R

The LM block has the same cross-sectional shape as model SRG-R, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B-210

Rated Loads in All Directions

Model SRG is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for SRG.

Equivalent Load

When the LM block of model SRG receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N) P_L : Reverse radial load (N) P_T : Lateral load (N)

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-115.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-329.

Ultra-high Rigidity Type Model SRG

Error Allowance of the Mounting Surface

Caged Roller LM Guide model SRG is highly rigid since it uses rollers as its rolling elements, and the roller cage prevents the rollers from skewing. However, the mounting surface needs to be finished with high accuracy. If the error on the mounting surface is large, it will affect the rolling resistance and the service life. The following shows the maximum permissible value (limit value) according to the radial clearance.

Table1 Error Allowance in Parallelism (P) between Two Rails

Unit: mm

Radial clearance	Normal	C1	C0
Model No.	Nomai	C1	CO
SRG 15	0.005	0.003	0.003
SRG 20	0.008	0.006	0.004
SRG 25	0.009	0.007	0.005
SRG 30	0.011	0.008	0.006
SRG 35	0.014	0.010	0.007
SRG 45	0.017	0.013	0.009
SRG 55	0.021	0.014	0.011
SRG 65	0.027	0.018	0.014

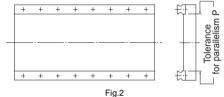


Table2 Error Allowance in Level (X) between the Rails

Unit: mm

Radial clearance	Normal	C1	C0
Permissible error on the mounting surface X	0.00030 a	0.00021 a	0.00011 a

X₂

0.000036 b

 $X=X_1+X_2$ X1: Level difference on the rail mounting surface X2: Level difference on the block mounting surface

Example of calculation

Rail span

when a = 500 mm

Error allowance of the mounting surface

 $X = 0.0003 \times 500$ = 0.15

Permissible error on the mounting surface

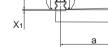


Fig.3

Table3 Error Allowance in Level (Y) in the Axial Direction

Unit: mm

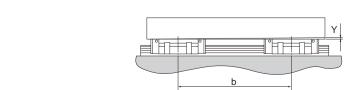


Fig.4

^{*} For the caged roller, see A-296.

Structure and Features	▶ ▶▶ A-307
Types and Features	▶ ▶▶ A-308
Rated Loads in All Directions	▶▶► A-309
Equivalent Load	▶ ▶ A-309
Service Life	▶▶▶ A-100
Radial Clearance Standard	▶ ▶▶ A-115
Accuracy Standards	▶▶▶ A-119
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-329
Error Allowance of the Mounting Surface	▶▶► A-310
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-214
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ B-218

Features of Each Model

Ultra-high Rigidity Type (Low Center of Gravity) Model SRN

Structure and Features

SRN is an ultra-high rigidity Roller Guide that uses roller cages to allow low-friction, smooth motion and achieve long-term maintenance-free operation.

[Ultra-high Rigidity]

A higher rigidity is achieved by using highly rigid rollers as the rolling elements and having the overall roller length more than 1.5 times greater than the roller diameter.

[4-way Equal Load]

Since each row of rollers is arranged at a contact angle of 45° so that the LM block receives an equal load rating in all four directions (radial, reverse radial and lateral directions), high rigidity is ensured in all directions.

[Smooth Motion through Skewing Prevention]

The roller cage allows rollers to form an evenly spaced line while circulating, thus preventing the rollers from skewing as the block enters an loaded area. As a result, fluctuation of the rolling resistance is minimized, and stable, smooth motion is achieved.

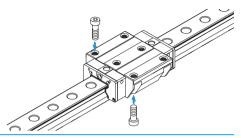
[Long-term Maintenance-free Operation]

Use of roller cages eliminates friction between rollers and increases grease retention, enabling long-term maintenance-free operation to be achieved.

[Global Standard Size]

SRG is designed to have dimensions almost the same as that of Full Ball LM Guide model HSR, which THK as a pioneer of the linear motion system has developed and is practically a global standard size.

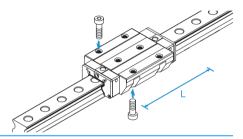
[Thin, Low Center of Gravity]


Since the overall height is lower than Caged Roller LM Guide model SRG, this model is optimal for compact design.

Types and Features

Model SRN-C

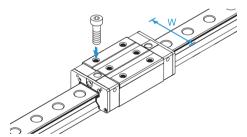
The flange of the LM block has tapped holes. Can be mounted from the top or the bottom. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒B-214

Model SRN-LC

The LM block has the same cross-sectional shape as model SRN-C, but has a longer overall LM block length (L) and a greater rated load.

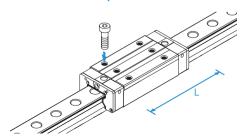
Specification Table⇒B-214



Model SRN-R

is limited.

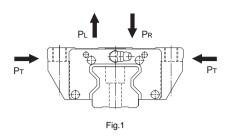
With this type, the LM block has a smaller width (W) and tapped holes.
Used in places where the space for table width


Specification Table⇒B-216

Model SRN-LR

The LM block has the same cross-sectional shape as model SRN-R, but has a longer overall LM block length (L) and a greater rated load.

Specification Table⇒B-216



Ultra-high Rigidity Type (Low Center of Gravity) Model SRN

Rated Loads in All Directions

Model SRN is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for SRN.

Equivalent Load

When the LM block of model SRN receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

: Radial load (N) Рι : Reverse radial load (N) : Lateral load (N)

Service Life

For details, see A-100.

Radial Clearance Standard

For details, see A-115.

Accuracy Standards

For details, see A-119.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A-329.

Error Allowance of the Mounting Surface

Caged Roller LM Guide model SRN is highly rigid since it uses rollers as its rolling elements, and the roller cage prevents the rollers from skewing. However, the mounting surface needs to be finished with high accuracy. If the error on the mounting surface is large, it will affect the rolling resistance and the service life. The following shows the maximum permissible value (limit value) according to the radial clearance.

Table1 Error Allowance in Parallelism (P) between Two Rails

Unit: mm

Radial clearance	Normal	C1	C0
Model No.	Noma	C1	CO
SRN 35	0.014	0.010	0.007
SRN 45	0.017	0.013	0.009
SRN 55	0.021	0.014	0.011
SRN 65	0.027	0.018	0.014

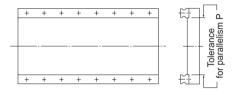


Fig.2

Table2 Error Allowance in Level (X) between the Rails

Unit: mm

Radial clearance	Normal	C1	C0
Permissible error on the mounting surface X	0.00030 a	0.00021 a	0.00011 a

 $X=X_1+X_2$ X1: Level difference on the rail mounting surface

X2: Level difference on the block mounting surface

Example of calculation

when a = 500 mmRail span

Error allowance of the mounting surface

 $X = 0.0003 \times 500$ = 0.15

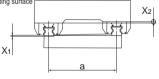


Fig.3

Table3 Error Allowance in Level (Y) in the Axial Direction

Unit: mm

Permissible error on the mounting surface 0.000036 b

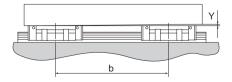
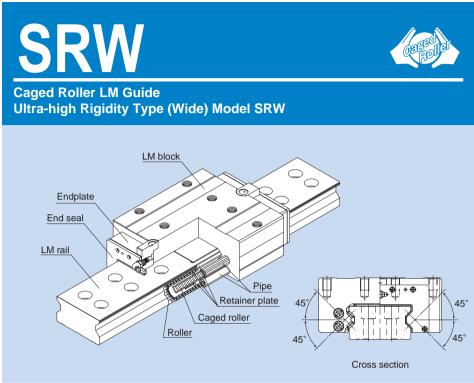



Fig.4

Features of Each Model Ultra-high Rigidity Type (Low Center of Gravity) Model SRN

^{*} For the caged roller, see A-296.

Structure and Features	▶ ▶ A-313
Types and Features	▶▶▶ A-314
Rated Loads in All Directions	▶▶▶ A-314
Equivalent Load	▶ ▶▶ A-315
Service Life	▶▶▶ A-100
Radial Clearance	▶ ▶▶ A-115
Accuracy Standards	▶▶▶ A-128
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A-329
Permissible Error of the Mounting Surface	▶▶▶ A-316
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶ ▶▶ B-220
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ B-222

Features of Each Model

Ultra-high Rigidity Type (Wide) Model SRW

Structure and Features

Based on Caged Roller LM Guide model SRG, this model has a wider rail and two rows of LM rail mounting holes to achieve high mounting strength and mounting stability. SRW is an ultra-high rigidity Roller Guide that uses roller cages to allow low-friction, smooth motion and achieve long-term maintenance-free operation.

[Ultra-high Rigidity]

Since it has a wide rail and can be secured on the table using two rows of mounting bolts, the mounting strength is significantly increased. In addition, since the crosswise raceway distance (L) is large, model SRW is structurally strong against a moment load (Mc moment) in the rolling direction.

Furthermore, model SRW uses rollers that show little elastic deformation as its rolling elements, and the overall length of each roller is 1.5 times greater than the diameter, thus to increase the rigidity.

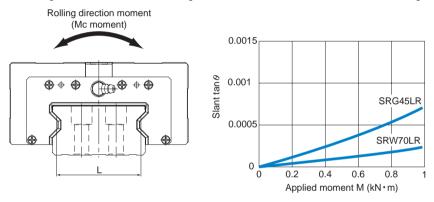
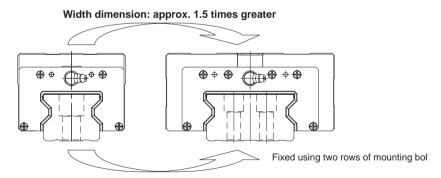
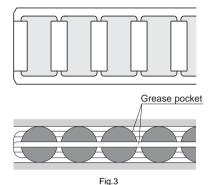


Fig.1 Result of Comparison between Models SRW and SRG in Moment Rigidity in the Rolling Direction (Mc Moment)



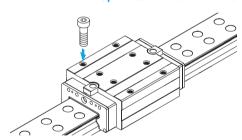

Fig.2 Comparison between Models SRW and SRG in Cross Section

[Smoothness Achieved through Skewing Prevention]

The roller cage allows rollers to form an evenly spaced line while circulating, thus preventing the rollers from skewing as the block enters an loaded area. As a result, fluctuation of the rolling resistance is minimized, and stable, smooth motion is achieved.

[Long-term Maintenance-free Operation]

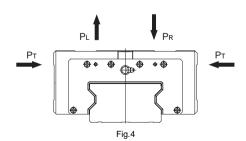
Use of the roller cage eliminates friction between rollers and enables the lubricant to be retained in grease pockets formed between adjacent rollers. As the rollers circulate, the grease pocket serves to provide the required amount of lubricant to the contact curvature of the spacer and the roller, thus to achieve long-term maintenance-free operation.



Types and Features

Model SRW-LR

The LM block has tapped holes.


Specification Table⇒B-220

Rated Loads in All Directions

Model SRW is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table.

Features of Each Model

Ultra-high Rigidity Type (Wide) Model SRW

Equivalent Load

When the LM block of model SRW receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

: Radial load (N) : Reverse radial load (N) : Lateral load (N)

Service Life

For details, see A-100.

Radial Clearance

For details.see A-115.

Accuracy Standards

For details, see A-128.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A-329.

Permissible Error of the Mounting Surface

Caged Roller LM Guide model SRW is highly rigid since it uses rollers as its rolling elements, and the roller cage prevents the rollers from skewing. However, the mounting surface needs to be finished with high accuracy. If the error on the mounting surface is large, it will affect the rolling resistance and the service life. The following shows the maximum permissible value (limit value) according to the radial clearance.

Table1 Error in Parallelism (P) between Two Rails

Unit: mm

Radial clearance	Normal	C1	C0	
Model No.	INOITHAL	O1	00	
SRW 70	0.013	0.009	0.007	
SRW 85	0.016	0.011	0.008	
SRW 100	0.020	0.014	0.011	

Table2 Error in Level (X) between Two Rails

Unit: mm

			O
Radial clearance	Normal	C1	C0
Accuracy of the mounting surface X	0.00020a	0.00014a	0.000072a

 $X=X_1+X_2$

X₁: Level difference on the rail mounting surface

X₂: Level difference on the block mounting surface

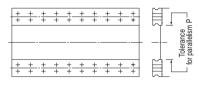
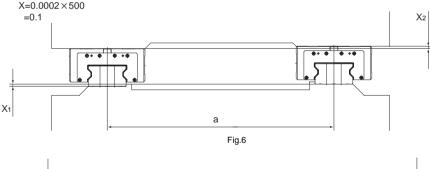


Fig.5

Table3 Error in Level (Y) in the Axial Direction

Unit: mm


Accuracy of the mounting surface	0.000036 b

Example of calculation

When the rail span:

a=500mm

Accuracy of the mounting surface

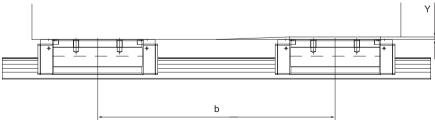
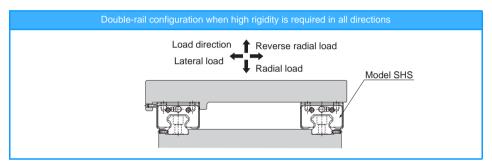
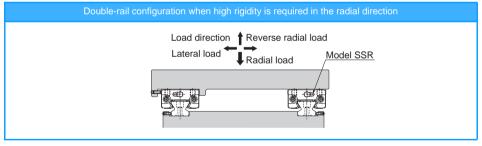
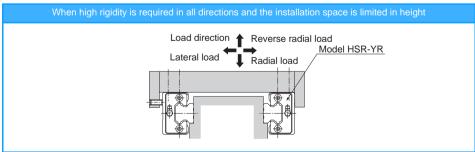


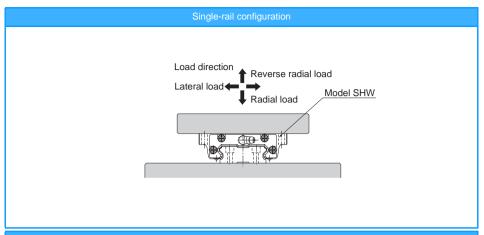
Fig.7

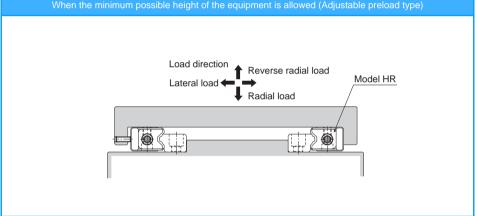

Ultra-high Rigidity Type (Wide) Model SRW

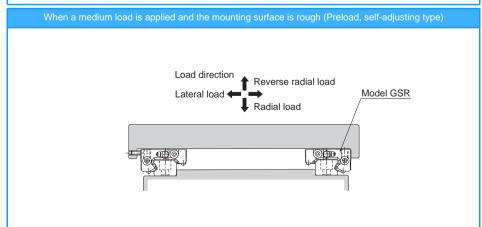

Designing the Guide System

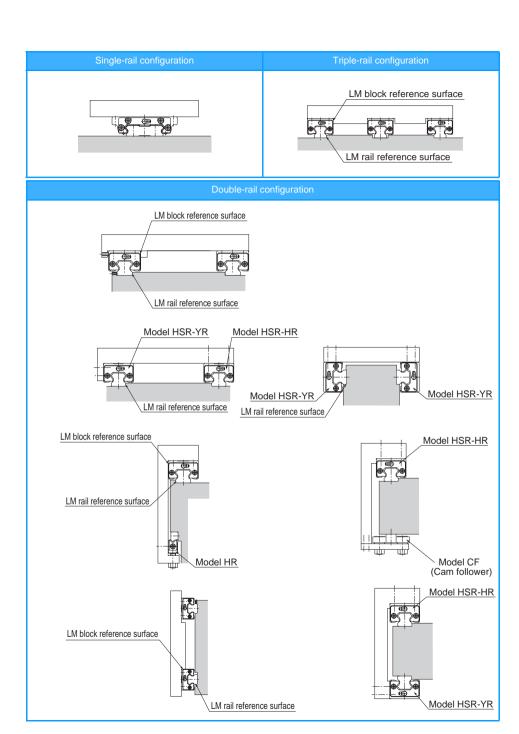

THK offers various types of LM Guides in order to meet diversified conditions. Supporting ordinary horizontal mount, vertical mount, inverted mount, slant mount, wall mount and single-axis mount, the wide array of LM Guide types makes it easy to achieve a linear guide system with a long service life and high rigidity while minimizing the required space for installation.

Examples of Arrangements of the Guide System

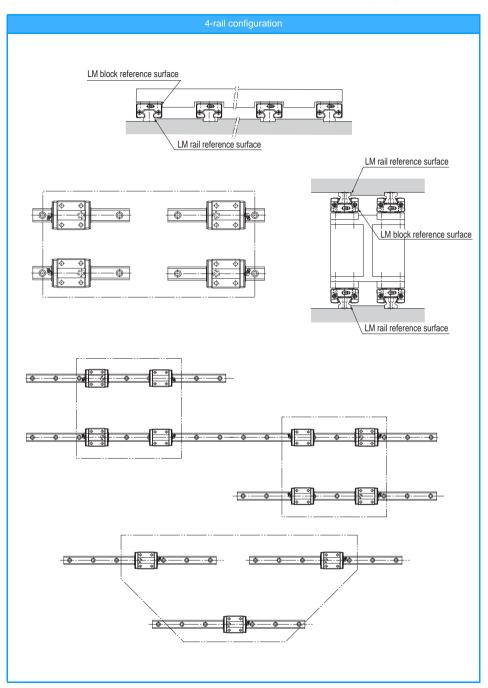

The following are representative guide systems and arrangements when installing the LM Guide. (For indication of the reference surface, see A-338.)



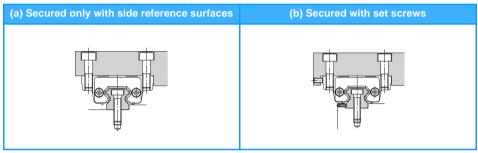


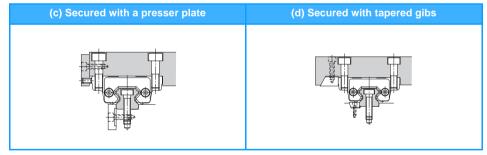


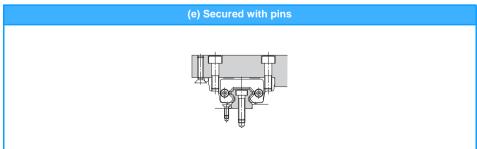
Designing the Guide System



Designing the Guide System

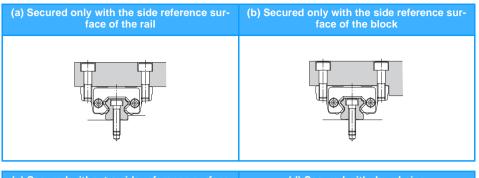

www.technobearing.ru

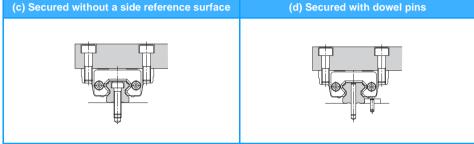

Method for Securing an LM Guide to Meet the Conditions


LM Guides are categorized into groups of types by mounting space and structure: a group of types to be mounted with bolts from the top, and another of types to be mounted from the bottom. LM rails are also divided into types secured with bolts and those secured with clamps (model JR). This wide array of types allows you to make a choice according to the application.

There are several ways of mounting the LM Guide as shown in Table1. When the machine is subject to vibrations that may cause the LM rail(s) or LM blocks to loosen, we recommend the securing method indicated by Fig.1 on A-323. (If 2 or more rails are used in parallel, only the LM block on the master rail should be secured in the crosswise direction.) If this method is not applicable for a structural reason, hammer in knock pins to secure the LM block(s) as shown in Table2 on A-323 When using knock pins, machine the top/bottom surfaces of the LM rail by 2 to 3 mm using a carbide end mill before drilling the holes since the surfaces are hardened.

Table1 Major Securing Methods on the Master-rail Side





Designing the Guide System

Table2 Major Securing Methods on the Subsidiary-rail Side

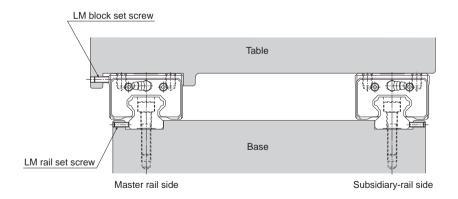
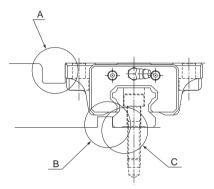



Fig.1 When the Machine Receives Vibrations or Impact

Designing a Mounting Surface

Designing a Mounting Surface

If particularly high accuracy is required for the machine to which an LM Guide is to be mounted, it is necessary to mount the LM rail with high accuracy. To achieve the desired accuracy, be sure to design the mounting surface while taking the following points into account.

[Corner Shape]

If the corner on the surface on which the LM rail or LM block is to be mounted is machined to be shaped R, which is greater than the chamfer dimension of the LM rail or LM block, then the rail or the block may not closely contact its reference surface. Therefore, when designing a mounting surface, it is important to carefully read the description on the "corner shape" of the subject model . (Fig.2)

[Perpendicularity with the Reference Surface]

If the perpendicularity between the base mounting surface for the LM rail or the LM block and the reference surface is not accurate, the rail or the block may not closely contact the reference surface. Therefore, it is important to take into account an error of the perpendicularity between the mounting surface and the reference surface. (Fig.3)

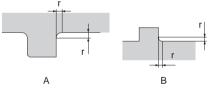


Fig.2

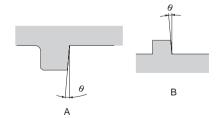


Fig.3

Designing a Mounting Surface

[Dimensions of the Reference Surface]

When designing the reference surface, be sure to take into account the height and the thickness of the datum area. If the datum area is too high, it may interfere with the LM block. If it is too low, the LM rail or the LM block may not closely contact the reference-surface depending on the chamfer of the rail or the block. Additionally, if the datum area is too thin, the desired accuracy may not be obtained due to poor rigidity of the datum area when a lateral load is applied or when performing positioning using a lateral mounting bolt. (Fig.4)

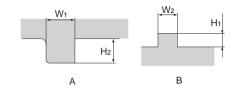


Fig.4

[Dimensional Tolerance between the Reference Surface and the Mounting Hole]

If the dimensional tolerance between the reference surface of the LM rail or the LM block and the mounting hole is too large, the rail or the block may not closely contact the reference surface when mounted on the base.

Normally, the tolerance should be within ± 0.1 mm depending on the model. (Fig.5)

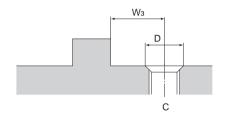


Fig.5

[Chamfer of the Tapped Mounting Hole]

To mount the LM rail, the mounting surface needs to be tapped and the tapped hole has to be chamfered. If the chamfer of the tapped hole is too large or too small, it may affect the accuracy. (Fig.6)

Guidelines for the chamfer dimension:

Chamfer diameter D = nominal diameter of the bolt + pitch

Example: Chamfer diameter D with M6 (pitch):

$$D = 6 + 1 = 7$$

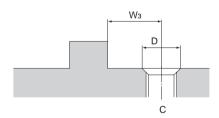
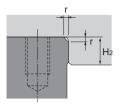



Fig.6

Shoulder Height of the Mounting Base and the Corner Radius

Normally, the mounting base for the LM rail and the LM block has a reference-surface on the side face of the shoulder of the base in order to allow easy installation and highly accurate positioning. The height of the datum shoulder varies with model numbers. See A-326 to A-332 for details. The corner of the mounting shoulder must be machined to have a recess, or machined to be smaller than the corner radius "r," to prevent interference with the chamfer of the LM rail or the LM block. The corner radius varies with model numbers. See A-326 to A-332 for details.

Shoulder for the LM Rail

Shoulder for the LM Block (LM casing)

Fig.7

[Model SR, SR-M1]

Unit: mm

[Model CSR]

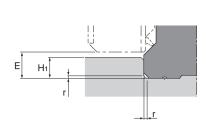
Unit: mm

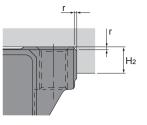
Model No.	Corner radius		Maximum shoulder height for the LM block	_
	r(max)	H₁	H ₂	Е
15	0.5	3.8	4	4.5
20	0.5	5	5	6
25	1	5.5	5	7
30	1	8	6	9.5
35	1	9	6	11.5
45	1	10	8	12.5
55	1.5	11	8	13.5
70	1.5	12	10	15
85	1.2	8	12	18.5
100	1.2	10	15	19
120	1.2	12	20	15
150	1.2	12	20	22

[Model JR]

Unit: mm

Model No.	Corner radius	the LM block
INO.	r(max)	H₂
25	1	5
35	1	6
45	1	8
55	1.5	10


Model No.	r(max)	Shoulder height for the LM rail H ₁	E
15	0.5	3	3.5
20	0.5	3.5	4
25	1	5	5.5
30	1	5	7
35	1	6	7.5
45	1	8	10


[Model NSR-TBC]

Unit: mm

Model No.	Corner radius r(max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂	E
20	1	5	5	5.5
25	1	6	6	6.5
30	1	7	6	9
40	1	7	8	10.5
50	1	7	8	8
70	1	7	10	9.5

Designing a Mounting Surface

Shoulder for the LM Rail

Shoulder for the LM Block

Fig.8

[Model SHS]

Unit: mm

[Model SCR]

Unit: mm

Unit: mm

Model No.	Corner radius r(max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	E
15	0.5	2.5	4	3
20	0.5	3.5	5	4.6
25	1	5	5	5.8
30	1	5	5	7
35	1	6	6	7.5
45	1	7.5	8	8.9
55	1.5	10	10	12.7
65	1.5	15	10	19

Model No.	Corner radius r(max)	Shoulder height for the LM rail H ₁	E
15	0.5	2.5	3
20	0.5	3.5	4.6
25	1	5	5.8
30	1	5	7
35	1	6	7.5
45	1	7.5	8.9
65	1.5	15	19

[Models SNR/SNS, SNR/SNS-H and NR/NRS]

[Model MX]

OTHE. ITHII

17

20

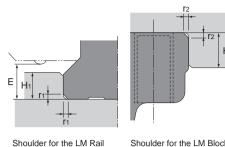
Model No.	Corner radius r(max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	E
25X	1.5	5	5	5.5
30	1	5	5	7
35	1	6	6	9
45	1	8	8	11.5
55	1.5	10	10	14
65	1.5	10	10	15
75	1.5	12	12	15

14

16

14

16


Model No.	Corner radius for the LM rail r(max)	Shoulder height for the LM rail	E
5	0.1	1.2	1.5
7W	0.1	1.7	2

85

100

1.5

2

Shoulder for the LM Block

Fig.9

[Model HSR, HSR-M1 and HSR-M2]

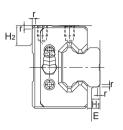
Unit: mm

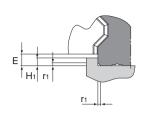
Model No.	Corner radius for the LM rail	Corner radius for the LM block	Shoulder height for the LM rail	Shoulder height for the LM block	
	r₁(max)	r ₂ (max)	H₁	H ₂	Е
8	0.3	0.5	1.6	6	2.1
10	0.3	0.5	1.7	5	2.2
12	0.8	0.5	2.6	4	3.1
15	0.5	0.5	3	4	4.7
20	0.5	0.5	3.5	5	4
25	1	1	5	5	5.5
30	1	1	5	5	7
35	1	1	6	6	7.5
45	1	1	8	8	10
55	1.5	1.5	10	10	13
65	1.5	1.5	10	10	14
85	1.5	1.5	12	14	16
100	2	2	16	16	20.5
120	2.5	2.5	17	18	20
150	2.5	2.5	20	20	22.5

[Models HCR and HMG]

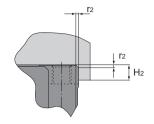
Unit: mm

Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)		Maximum shoulder height for the LM block H ₂	E
12	0.8	0.5	2.6	6	3.1
15	0.5	0.5	3	4	3.5
25	1	1	5	5	5.5
35	1	1	6	6	7.5
45	1	1	8	8	10
65	1.5	1.5	10	10	14




Fig.10

[Model HSR-YR]


Unit: mm

				Offic. Hilli
Model No.	Corner radius r(max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	E
15	0.5	3	4	3.5
20	0.5	3.5	5	4
25	1	5	5	5.5
30	1	5	5	7
35	1	6	6	7.5
45	1	8	8	10
55	1.5	10	10	13
65	1.5	10	10	14

Designing a Mounting Surface

Shoulder for the LM Rail

Shoulder for the LM Block

Fig.11

[Model SRG]

Unit: mm

[Model SRN]

Unit: mm

Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂	E
15	0.5	0.5	2.5	4	3.0
20	0.5	0.5	3.5	5	4.6
25	1	1	4	5	4.5
30	1	1	4.5	5	5
35	1	1	5	6	6
45	1.5	1.5	6	8	8
55	1.5	1.5	8	10	10
65	1.5	2	9	10	11.5

Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂	E
35	1	1	5	6	6
45	1.5	1.5	6	8	7
55	1.5	1.5	8	10	10
65	1.5	2	8	10	10

[Model SRW]

Unit: mm

Model No.	the LM rail	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail		Е
70	1.5	1.5	6	8	8
85	1.5	1.5	8	10	10
100	1.5	2	9	10	11.5

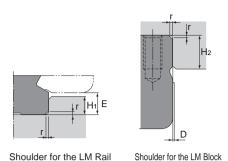
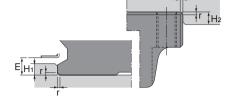



Fig.12

Shoulder for the LM Rail

Shoulder for the LM Block

Fig.13

[Model SSR]

Unit	: mm

		CHIM	000	HRW
IIVIOO	eis.	эпии	and	HR VV

Unit: mm

Model No.	Corner radius r(max)	Shoulder height for the LM rail H ₁	Maximum shoulder height for the LM block H ₂	E	D
15 X	0.5	3.8	5.5	4.5	0.3
20 X	0.5	5	7.5	6	0.3
25 X	1	5.5	8	6.8	0.4
30 X	1	8	11.5	9.5	0.4
35 X	1	9	16	11.5	0.4

Note) When closely contacting the LM block with the datum shoulder, the resin layer may stick out from the overall width of the LM block by the dimension D. To avoid this, machine the datum shoulder to have a recess or limit the datum shoulder's height below the dimension

Model No.	Corner radius	Shoulder height for the LM rail	Shoulder height for the LM block	
	r(max)	H₁	H ₂	Е
12	0.5	1.5	4	2
14	0.5	1.5	5	2
17	0.4	2	4	2.5
21	0.4	2.5	5	3
27	0.4	2.5	5	3
35	0.8	3.5	5	4
50	0.8	3	6	3.4
60	1	5	8	6.5

www.technobearing.ru 8 (800) 700-72-07 (бесплатно)

Point of Design

Designing a Mounting Surface

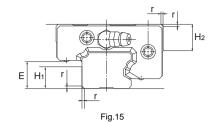


Fig.14

[Model HR]

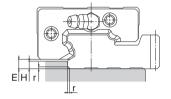
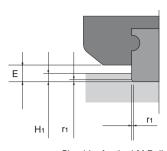
Unit: mm

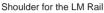
Model No.	Corner radius r(max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂
918	0.3	5	6
1123	0.5	6	7
1530	0.5	8	10
2042	0.5	11	15
2555	1	13	18
3065	1	16	20
3575	1	18	26
4085	1.5	21	30
50105	1.5	26	32
60125	1.5	31	40

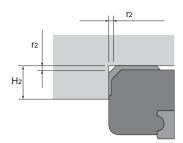
[Model GSR]

Unit: mm

Model No.	Corner radius r(max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	E
15	0.6	7	7	8
20	0.8	9	8	10.4
25	0.8	11	11	13.2
30	1.2	11	13	15
35	1.2	13	14	17.5


Fig.16


[Model GSR-R]

Unit: mm

Model No.	Corner radius r(max)	Shoulder height for the LM rail H	E
25	0.8	4	4.5
30	1.2	4	4.5
35	1.2	4.5	5.5

Shoulder for the LM Block

Fig.17

[Model SRS]

Unit: mm

[Model RSR, RSR-M1 and RSH]

Unit: mm

Model No.	Corner radius for the LM rail $r_1(max)$	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂	E
7 M	0.1	0.2	0.9	3.3	1.3
7 WM	0.1	0.1	1.4	3.8	1.8
9 M	0.1	0.3	0.5	4.9	0.9
9 WM	0.1	0.5	2.5	4.9	2.9
12 M	0.3	0.2	1.5	5.7	2
12 WM	0.3	0.3	2.5	5.7	3
15 M	0.3	0.4	2.2	6.5	2.7
15 WM	0.3	0.3	2.2	6.5	2.7
20 M	0.3	0.5	3	8.7	3.4
25 M	0.5	0.5	4.5	10.5	5

[Models RSR-Z and RSH-Z]

Unit: mm

Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	E
7 Z	0.1	0.5	1.2	3	1.5
9 Z	0.3	0.5	1.9	3	2.2
12 Z	0.3	0.3	2.1	4	2.4
15 Z	0.3	0.3	2.5	5	3.4
7 WZ	0.1	0.1	1.7	3	2
9 WZ	0.1	0.1	2.5	3	2.9
12 WZ	0.3	0.3	3	4	3.4
15 WZ	0.3	0.3	3	5	3.4

Model No.	Corner radius for the LM rail	Corner radius for the LM block	Shoulder height for the LM rail	Shoulder height for the LM block	
	r₁(max)	r ₂ (max)	H₁	H ₂	Е
3	0.1	0.3	8.0	1.2	1
5	0.1	0.3	1.2	2	1.5
7	0.1	0.5	1.2	3	1.5
9	0.3	0.5	1.9	3	2.2
12	0.3	0.3	1.4	4	3
15	0.3	0.3	2.3	5	4
20	0.5	0.5	5.5	5	7.5
3 W	0.1	0.3	0.7	2	1
5 W	0.1	0.3	1.2	2	1.5
7 W	0.1	0.1	1.7	3	2
9 W	0.1	0.1	3.9	3	4.2
12 W	0.3	0.3	3.7	4	4
14 W	0.3	0.3	3.2	5	3.5
15 W	0.3	0.3	3.7	5	4

Designing a Mounting Surface

Permissible Error of the Mounting Surface

The LM Guide allows smooth straight motion through its self-aligning capability even when there is a slight distortion or error on the mounting surface.

[Error Allowance in the Parallelism between Two Rails]

The following tables show error allowances in parallelism between two rails that will not affect the service life in normal operation.

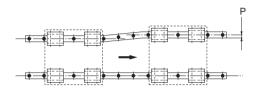


Fig.18 Error Allowance in Parallelism (P) between Two Rails

[Models SHS, HSR, CSR, HSR-M1, and HSR-M2]

Unit: μ m

[Model SSR, SR, SR-M1]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
8	_	10	13
10	_	12	16
12	_	15	20
15	_	18	25
20	18	20	25
25	20	22	30
30	27	30	40
35	30	35	50
45	35	40	60
55	45	50	70
65	55	60	80
85	70	75	90
100	85	90	100
120	100	110	120
150	115	130	140

[Model JR]

Unit: µm

Model No.	_
25	100
35	200
45	300
55	400

Model No.	Clearance C0	Clearance C1	Normal clearance
15	_	25	35
20	25	30	40
25	30	35	50
30	35	40	60
35	45	50	70
45	55	60	80
55	65	70	100
70	65	80	110
85	80	90	120
100	90	100	130
120	100	110	140
150	110	120	150

[Models SNR, SNR-H and NR]

Unit: μm

			•
Model No.	Clearance C0	Clearance C1	Normal clearance
25	14	15	21
30	19	21	28
35	21	25	35
45	25	28	42
55	32	35	49
65	39	42	56
75	44	47	60
85	49	53	63
100	60	63	70

dammv

[Models SNS, SNS-H and NRS]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
25	10	11	15
30	14	15	20
35	15	18	25
45	18	20	30
55	23	25	35
65	28	30	40
75	31	34	43
85	35	38	45
100	43	45	50

[Models SHW and HRW]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
12	_	10	13
14	_	12	16
17	_	15	20
21	_	18	25
27	_	20	25
35	20	22	30
50	27	30	40
60	30	35	50

[Models SRS, RSR, RSR-W, RSR-Z, RSH, RSH-Z and RSR-M1]

Unit: µm

Model	Gothic-arch groove		Circular-arc groove
No.	Clearance C1	Normal clearance	Normal clearance
3	_	2	_
5	_	2	_
7	_	3	_
9	3	4	11
12	5	9	15
14	6	10	_
15	6	10	18
20	8	13	25
25	10	15	30

[Model HR]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
918	_	7	10
1123	_	8	14
1530	_	12	18
2042	14	15	20
2555	20	24	35
3065	22	26	38
3575	24	28	42
4085	30	35	50
50105	38	42	55
60125	50	55	65

[Models GSR and GSR-R]

Unit: µm

Model No.	_
15	30
20	40
25	50
30	60
35	70

[Model NSR-TBC]

Unit: µm

Model No.	Clearance C1	Normal clearance
20	40	50
25	50	70
30	60	80
40	70	90
50	80	110
70	90	130

Point of Design

Designing a Mounting Surface

[Flatness of the Mounting Surface]

The following tables show errors in flatness of the mounting surface with models SRS, RSR, RSR-W and RSH that will not affect their service lives in normal operation. Note that if the flatness of the mounting surface is poorly established for models other than those above, it may affect the service life.

[Model SRS]

Unit: mm

Model No.	Flatness error
7 M	0.025/200
7 WM	0.025/200
9 M	0.035/200
9 WM	0.035/200
12 M	0.050/200
12 WM	0.050/200
15 M	0.060/200
15 WM	0.060/200
20 M	0.070/200
25 M	0.070/200

[Models RSR, RSR-W, RSR-Z, RSH and RSH-Z]

Unit: mm

Model No.	Flatness error
3	0.012/200
5	0.015/200
7	0.025/200
9	0.035/200
12	0.050/200
15	0.060/200
20	0.110/200
7 A	0.100/200
9 A	0.160/200
12 A	0.200/200
15 A	0.250/200
20 A	0.300/200

Note1) With the mounting surface, multiple accuracies are combined in many cases. Therefore, we recommend using 70% or less of the values above.

Note2) The above figures apply to normal clearances. When using two or more rails with clearance C1, we recommend using 50% or less of the values above.

[Error Allowance in Vertical Level between Two Rails]

The values in the tables on A-336 and A-337 represent error allowances in vertical level between two rails per axis-to-axis distance of 500 mm and are proportionate to axis-to-axis distances (200 mm for model RSR).

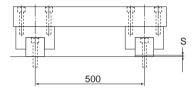


Fig.19 Error Allowance in Vertical Level (S) between Two Rails

[Models SHS, HSR, CSR, HSR-M1, and HSR-M2]

Model Clearance Clearance

Unit: µm

No.	Clearance C0	Clearance C1	clearance
8	_	11	40
10	_	16	50
12	_	20	65
15	_	85	130
20	50	85	130
25	70	85	130
30	90	110	170
35	120	150	210
45	140	170	250
55	170	210	300
65	200	250	350
85	240	290	400

330

370

410

[Model SSR, SR, SR-M1]

280

320

360

100

120

150

Unit: u.m

450

500

550

			Orne. prin
Model No.	Clearance C0	Clearance C1	Normal clearance
15	_	100	180
20	80	100	180
25	100	120	200
30	120	150	240
35	170	210	300
45	200	240	360
55	250	300	420
70	300	350	480
85	350	420	540
100	400	480	600
120	450	540	720
150	500	600	780

[Models SNR, SNR-H and NR]

Unit: μ m

Model No.	Clearance C0	Clearance C1	Normal clearance
25	35	43	65
30	45	55	85
35	60	75	105
45	70	85	125
55	85	105	150
65	100	125	175
75	110	135	188
85	120	145	200
100	140	165	225

[Model JR]

Unit: µm

Model No.	_
25	400
35	500
45	800
55	1000

damm

Point of Design

Designing a Mounting Surface

[Models SNS, SNS-H and NRS]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
25	49	60	91
30	63	77	119
35	84	105	147
45	98	119	175
55	119	147	210
65	140	175	245
75	154	189	263
85	168	203	280
100	196	231	315

[Models SRS, RSR, RSR-W, RSR-Z, RSH, RSH-Z and RSR-M1]

Unit: u.m

			Offit. µ111
Model	Gothic-arch groove		Circular-arc groove
No.	Clearance C1	Normal clearance	Normal clearance
3	_	15	_
5	_	20	_
7	_	25	_
9	6	35	160
12	12	50	200
14	20	60	_
15	20	60	250
20	30	70	300
25	40	80	350

[Models SHW and HRW]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
12	_	11	40
14	_	16	50
17	1	20	65
21	_	85	130
27	_	85	130
35	70	85	130
50	90	110	170
60	120	150	210

[Model HR]

Unit: μ m

Model No.	Clearance C0	Clearance C1	Normal clearance
918	_	15	45
1123	_	20	50
1530	_	60	90
2042	50	60	90
2555	85	100	150
3065	95	110	165
3575	100	120	175
4085	120	150	210
50105	140	175	245
60125	170	200	280

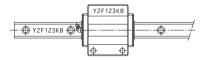
[Models GSR and GSR-R]

Unit: μ m

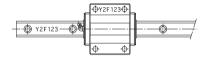
Model No.	_
15	240
20	300
25	360
30	420
35	480

[Model NSR-TBC]

Unit: µm


Model No.	Clearance C1	Normal clearance
20	210	300
25	240	360
30	270	420
40	360	540
50	420	600
70	480	660

Marking on the Master LM Guide and Combined Use


[Marking on the Master LM Guide]

All LM rails mounted on the same plane are marked with the same serial number. Of those LM rails, the one marked with "KB" after the serial number is the master LM rail. The LM block on the master LM rail has its reference surface finished to a designated accuracy, allowing it to serve as the positioning reference for the table. (See Fig.20.)

LM Guides of normal grade are not marked with "KB." Therefore, any one of the LM rails having the same serial number can be used as the master LM rail.

Master LM Guide

Subsidiary LM Guide

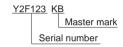
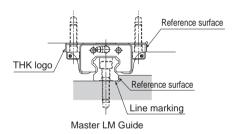
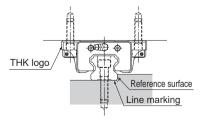




Fig.20 Master LM Guide and Subsidiary LM Guide

[Markings on the Reference Surface]

In the LM Guide, the reference surface of the LM block is opposite the surface marked with the THK logo, and that of the LM rail is on the surface marked with a line (see Fig.21). If it is necessary to reverse the reference surface of the LM rail and block, or if the grease nipple must be oriented in the opposite direction, specify it.

Subsidiary LM Guide

Fig.21 Markings on the Reference Surface

Point of Design

Designing a Mounting Surface

[Serial Number Marking and Combined Use of an LM Rail and LM Blocks]

An LM rail and LM block(s) used in combination must have the same serial number. When removing an LM block from the LM rail and reinstalling the LM block, make sure that they have the same serial number and the numbers are oriented in the same direction. (Fig.22)

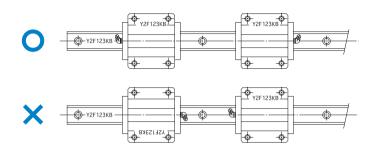


Fig.22 Serial Number Marking and Combined Use of an LM Rail and LM Blocks

[Use of Jointed Rails]

When a long LM rail is ordered, two or more rails will be jointed together to the desired length. When jointing rails, make sure that the joint match marks shown in Fig.23 are correctly positioned. When two LM Guides with connected rails are to be arranged in parallel to each other, the two LM Guides will be manufactured so that the two LM Guides are axisymmetrically aligned.

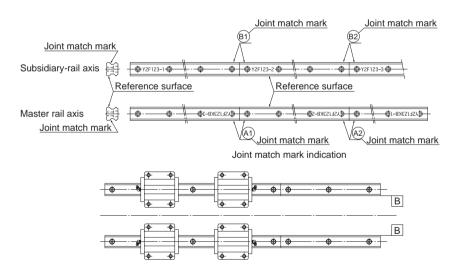


Fig.23 Use of Jointed Rails

Mounting Procedure and Maintenance LM Guide

Mounting the LM Guide

Mounting Procedure

Example of Mounting the LM Guide When an Impact Load is Applied to the Machine and therefore Rigidity and High Accuracy are Required

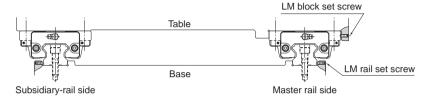


Fig.1 When an Impact Load is Applied to the Machine

Mounting the LM Rail(s)

(1) Be sure to remove burr, dent and dust from the mounting surface of the machine to which the LM Guide is to be mounted before installing the LM Guide. (Fig.2)

Note) Since the LM Guide is coated with anti-rust oil, remove it from the reference surface by wiping the surface with washing oil before using the guide. Once the anti-rust oil has been removed, the reference surface is prone to getting rusted. We recommend applying low-viscosity spindle

(2) Gently place the LM rail onto the base, and temporarily secure the bolts to the extent that the LM rail lightly contacts the mounting surface (align the line-marked side of the LM rail with the side reference-surface of the base). (Fig.3)

> Note) The bolts for securing the LM Guide must be clean. When placing the bolts into the mounting holes of the LM rail, check if the bolt holes are displaced.(Fig.4) Forcibly tightening the bolt into a displaced hole may deteriorate the accuracy.

Fig.2 Checking the Mounting Surface

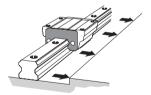


Fig.3 Aligning the LM Rail with the Reference-Surface

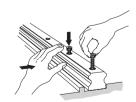


Fig.4 Checking with the Bolt for an Allowance

Mounting Procedure and Maintenance

Mounting the LM Guide

- (3) Secure the set screws for the LM rail in order with a tightening force just enough to have the rail closely contact the side mounting surface. (Fig.5)
- (4) Tighten the mounting bolts at the designated torque using a torque wrench. (See Fig.6, and Table1 and Table2 on A-350.)
 - Note) To achieve stable accuracy when tightening the LM rail mounting bolts, tighten them in order from the center to the rail ends.
- (5) Mount the other rail in the same manner to complete the installation of the LM rails.
- (6) Hammer in caps into the bolt holes on the top face of each LM rail until the top of the cap is on the same level as the top face of the rail.

Mounting the LM Blocks

- Gently place the table on the LM blocks and temporarily fasten the mounting bolts.
- (2) Press the master side LM blocks to the side reference surface of the table using set screws and position the table. (See Fig.1 on A-340.)
- (3) Fully fasten the mounting bolts on the master side and the subsidiary side to complete the installation.

Note) To evenly secure the table, tighten the mounting bolts in diagonal order as shown in Fig.7.

This method saves time in establishing straightness of the LM rail and eliminates the need to machine securing dowel pins, thus to drastically shorten the installation man-hours.

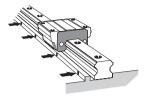


Fig.5 Tightening the Set screws

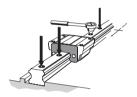


Fig.6 Fully Fastening the Mounting Bolts

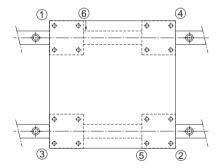


Fig.7 Sequence of Tightening the LM Blocks

[Example of Mounting the LM Guide When the Master LM Rail is not Provided with Set screws]

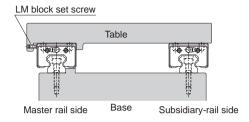
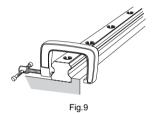



Fig.8 When the Master LM Rail is not Provided with Set screws

Mounting the Master LM Rail

After temporarily fastening the mounting bolts, firmly press the LM rail to the side reference surface at the position of each mounting bolt using a small vice and fully fasten the bolt. Perform this in order from either rail end to the other. (Fig.9)

Mounting the Subsidiary LM Rail

To mount the subsidiary LM rail in parallel with the master LM rail, which has been correctly installed, we recommend adopting the methods below.

■Using a Straight-edge

Place straight-edges between the two rails, and arrange the straight-edges in parallel with the side reference surface of the master LM rail using a dial gauge. Then, secure the mounting bolts in order while achieving straightness of the subsidiary rail with the straight edge as the reference by using the dial gauge. (Fig.10)

Fig.10

Mounting Procedure and Maintenance

Mounting the LM Guide

■Using Parallelism of the Table

Secure the two LM blocks on the master LM rail with the table (or a temporary table for measurement), and temporarily fasten the LM rail and the LM block on the subsidiary LM rail with the table. Place a dial gauge to the side face of the LM block on the subsidiary rail from the dial stand fixed on the table top, then fasten the bolts in order while achieving parallelism of the subsidiary LM rail by moving the table from the rail end. (Fig.11)

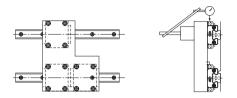


Fig.11

■Having the Subsidiary LM Rail Follow the Master LM Rail

Place the table on the blocks of the correctly mounted master LM rail and the temporarily fastened subsidiary LM rail, and fully fasten the two LM blocks on the master rail and one of the two LM blocks on the subsidiary rail with bolts. Fully tighten the mounting bolts on the subsidiary LM rail in order while temporarily fastening the remaining LM block on the subsidiary LM rail. (Fig.12)



Fig.12

■Using a Jig

Use a jig like the one shown in Fig.13 to achieve parallelism of the reference surface on the subsidiary side against the side reference surface of the master side from one end of the rail by the mounting pitch, and at the same time, fully fasten the mounting bolts in order. (Fig.13)

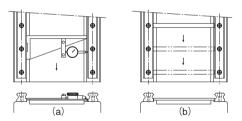


Fig.13

[Example of Mounting the LM Guide When the Master LM Rail Does not Have a Reference Surface]

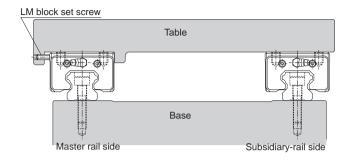


Fig.14

Mounting the Master LM Rail

■Using a Temporary Reference Surface

You can temporarily set a reference surface near the LM rail mounting position on the base to achieve straightness of the LM rail from the rail end. In this method, two LM blocks must be joined together and attached to a measurement plate, as shown in Fig.15.

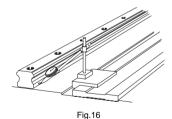


Fig.15

■Using a Straight-edge

After temporarily fastening the mounting bolts, use a dial gauge to check the straightness of the side reference surface of the LM rail from the rail end, and at the same time, fully fasten the mounting bolts.(Fig.16)

To mount the subsidiary LM rail, follow the procedure described on A-342.

[Procedure for Assembling Model HR]

The following procedure is recommended for assembling model HR.

- (1) Remove burr or knots from the LM rail mounting surface of the base using an oilstone. (Fig.17)
- (2) Use a small vice to press the two LM rails to the base so that they closely contact the reference surface, then tighten the mounting bolts to the recommended torque (see A-350). (Fig.18)
 - a. Check if any of the bolts has a sinking.
 - b. Use a torque wrench to tighten the bolts in order from the center to both ends.
- (3) Mount the LM blocks on the table, then install them onto the LM rails. Be sure the mounting bolts for the LM blocks are temporarily fastened.
- (4) Tighten the clearance adjustment bolt alternately to adjust the clearance.
 - If a relatively large preload is applied in order to achieve high rigidity, control the tightening torque or the rolling resistance.
 - a. It is preferable to use three clearance adjustment bolts for each LM block as shown in Fig.19.
 - b. To obtain a favorable result of the clearance adjustment, set the tightening torque of the two outside screws at approx. 90% of that of the enter screw.
- (5) Secure each LM block by gradually tightening the two LM block mounting bolts, which have temporarily been fastened, while sliding the table. (Fig.20)

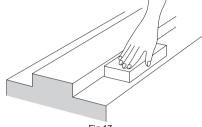


Fig.17

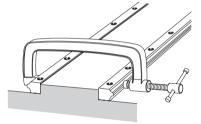


Fig.18

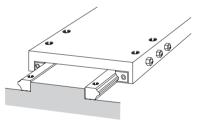


Fig.19

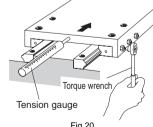
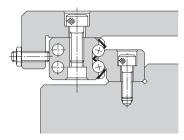
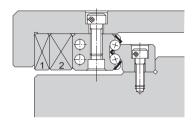
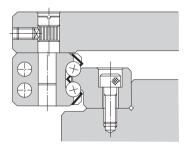



Fig.20


• Example of Clearance Adjustment

Design the clearance adjustment bolt so that it presses the center of the side face of the LM block.


Using an adjustment screw
 Normally, an adjustment screw is used to press the LM block.

Using tapered gibs
 When high accuracy and high rigidity are required, use tapered gibs 1) and 2).

Using an eccentric pin
 A type using an eccentric pin to adjust the clearance is also available.

LM Guide

Mounting Procedure and Maintenance

Mounting the LM Guide

[Procedure for Assembling Model GSR]

The procedure for assembling model GSR is as follows:

- Align the table with the reference-surface of each LM block and fully fasten the mounting bolts to secure the blocks.
 Both ends of the table must have a datum surface. (Fig.21)
- (2) Place LM rail A onto the base and align the rail with a straight-edge. Fully fasten the mounting bolts using a torque wrench. (Fig.22)
- (3) Temporarily secure LM rail B onto the base, then mount the blocks on the rail by sliding the blocks. Temporarily fasten LM rail B while pressing it toward the LM blocks. (Fig.23)
- (4) Slide the table a few strokes to fit the LM blocks to LM rail B, then fully fasten LM rail B using a torque wrench. (Fig.24)

If there are more GSR units to be assembled, we recommend producing a jig like the one shown in Fig.25 first. You can easily mount LM rails while achieving parallelism of the LM rails using the jig.

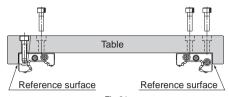
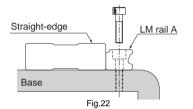



Fig.21

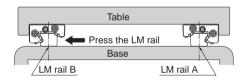
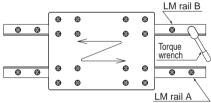
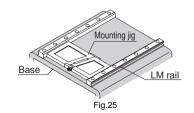
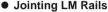
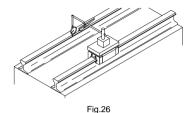


Fig.23


Fig.24


[Procedure for Assembling Model JR]

Mounting the LM Rails

When two LM rails are to be used in parallel as shown in Fig.26, first secure one LM rail on the base, and place a dial gauge on the LM block. Then, place the pointer of the dial gauge on the side face and top face of the other LM rail to simultaneously adjust the parallelism and the level, thus to complete mounting the LM rails.

When two or more LM rails are to be jointed, a special metal fitting as shown in Fig.27 is available. For such applications, specify this fitting when ordering the LM Guide.

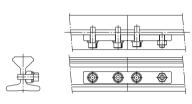


Fig.27

Welding the LM Rail

When welding the LM rail, it is best to weld the LM rail while clamping it at the welding point with a small vice or the like as shown in Fig.28. For effective welding, we recommend the following welding conditions. (During welding the LM rail, take care to prevent spatter from contacting the LM rail raceway.)

[Welding conditions]
Preheating temperature:200°C
Postheating temperature:350°C
Note) If the temperature exceeds 750°C, the LM rail may be hardened again.

[For shielded metal arc welding] Welding rod: LB-52 (Kobelco)

[For carbon dioxide arc welding]

Wire: YGW12 Electric current: 200A

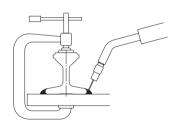


Fig.28

Mounting Procedure and Maintenance

Mounting the LM Guide

[Procedure for Assembling Model HCR]

To install the LM rails of R Guide model HCR, we recommend having any form of datum point (such as a pin) on the reference side (inside) of the LM rail, and pressing the LM rail to the datum point then stopping the LM rail with a presser plate from the counter-reference surface.

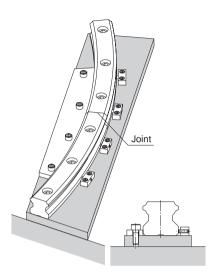
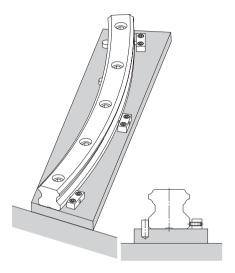
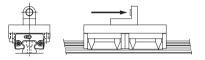
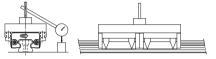


Fig.29 Method for Securing the LM Rails at the Joint


Fig.30 Method for Securing the LM Rail Using a Pin as a Datum Point

Methods for Measuring Accuracy after Installation

[When Measuring Running Accuracy for Single Rail Application]

When measuring running accuracy of the LM block, stable accuracy can be obtained by securing two LM blocks on an inspection plate, as shown in Fig.31. When using a dial gauge, we recommend placing the straight-edge as close as possible to the LM block in order to perform accurate measurement.

- 1) Measurement method using an auto-collimator
- 2) Measurement method using a dial gauge

Fig.31 Methods for Measuring Accuracy after Installation

Recommended Tightening Torque for LM Rails

With high-precision LM rails for the LM Guide, their raceways are ground and accuracy is inspected with the rails tightened with bolts. When mounting a high-precision LM rail on a machine, we recommend using the corresponding tightening torque indicated in Table1 or Table2

Table1 Tightening Torques when Pan Head Screws are Used
Unit: N-cm

Screw	Tightening torque	
model No.	Not hardened	Hardened
M 2	17.6	21.6
M 2.3	29.4	35.3
M 2.6	44.1	52.9

Table2 Tightening Torques when Hexagonal-Socket-Head Type Bolts are Used

Unit: N-cm

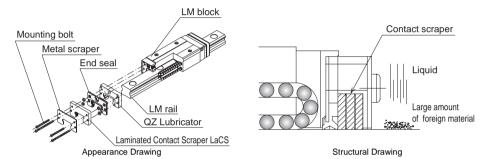
Screw	Tightening torque		
model No.	Iron	Casting	Aluminum
M 2	58.8	39.2	29.4
M 2.3	78.4	53.9	39.2
M 2.6	118	78.4	58.8
M 3	196	127	98
M 4	412	274	206
M 5	882	588	441
M 6	1370	921	686
M 8	3040	2010	1470
M 10	6760	4510	3330
M 12	11800	7840	5880
M 14	15700	10500	7840
M 16	19600	13100	9800
M 20	38200	25500	19100
M 22	51900	34800	26000
M 24	65700	44100	32800
M 30	130000	87200	65200

LM Guide
Options

Seal and Metal Scraper

- •For the supported models, see the table of options by model number on A-370.
- ●For the LM block dimension (dimension L) with seal attached, see B-224 to B-230.
- ●For the seal resistance, see A-372 to A-374.

Item name	Schematic diagram / mounting location	Purpose/location of use
End Seal	End seal End seal	Used in locations exposed to dust
Side Seal	Side seal Side seal	Used in locations where dust may enter the LM block from the side or bottom surface, such as vertical, horizontal and inverted mounts
Inner Seal	Inner seal Inner seal	Used in locations severely exposed to dust or cutting chips
Double Seals	End seal Spacer End seal Hexagon socket button bolt	Used in locations exposed to much dust or many cutting chips
Metal Scraper (Non-contact)	End seal Metal scraper Hexagon socket button bolt	Used in locations where welding spatter may adhere to the LM rail


Symbol	Contamination protection accessory
UU	End seal
SS	With end seal + side seal + inner seal
DD	With double seals + side seal + inner seal
ZZ	With end seal + side seal + inner seal + metal scraper
KK	With double seals + side seal + inner seal + metal scraper

Options

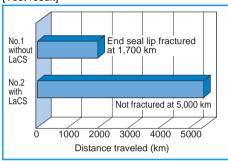
Laminated Contact Scraper LaCS

- •For the supported models, see the table of options by model number on A-370.
- For the LM block dimension (dimension L) with LaCS attached, see B-224 to B-230.
- •For the resistance of LaCS, see A-375.

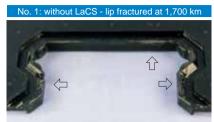
For locations with adverse environment, Laminated Contact Scraper LaCS is available. LaCS removes minute foreign material adhering to the LM rail in multiple stages and prevents it from entering the LM block with laminated contact structure (3-layer scraper).

[Features]

- Since the 3 layers of scrapers fully contact the LM rail, LaCS is highly capable of removing minute foreign material.
- Since it uses oil-impregnated, foam synthetic rubber with a self-lubricating function, low friction resistance is achieved.


Symbol	Contamination protection accessory
SSHH	With end seal + side seal + inner seal + LaCS
DDHH	With double seals + side seal + inner seal + LaCS
ZZHH	With end seal + side seal + inner seal + metal scraper + LaCS
KKHH	With double seals + side seal + inner seal + metal scraper + LaCS

Test under an Environment with a Water-soluble Coolant


[Test conditions] Test environment: water-soluble coolant

[Test conditions] Test environment, water-soluble coolain		
Item		Description
Tested	No.1	SHS45R1SS+3000L (end seal only)
model	No.2	SHS45R1SSHH+3000L (end seal and LaCS)
Maximum speed		200m/min
Environmen- tal conditions		Coolant sprayed: 5 time per day

[Test result]

Magnified view of the end seal lip

Areas marked with arrow are fractured

Lip has not been fractured

Test under an Environment with Minute Foreign Matter

[Test conditions] Test environment: minute foreign material

Item		Description				
Tested	No.1	SNR45R1DD+600L (double seals only)				
model	No.2	SNR45R1HH+600L (LaCS only)				
Max speed/ acceleration		60m/min, 1G				
Extern load	al	9.6kN				
Foreign material		Type: FCD450#115 (particle diameter: 125 µm or less)				
conditi		Sprayed amount: 1g/1hour (total sprayed amount: 120 g)				

[Test result] Amount of foreign material entering the raceway

[Took Tooding 7 and dark of Torong 17 material officering and Taborna)									
Seal configuration		Amount of foreign material entering the raceway g							
Double-seal	Tested model 1	0.3							
configuration (2 end seals superposed	Tested model 2	0.3							
with each other)	Tested model 3	0.3							
	Tested model 1	0							
LaCS	Tested model 2	0							
	Tested model 3	0							

No. 1 Traveled 100 km (double-seal configuration)

Large amount of foreign matter has entered the raceway

No foreign matter entering the raceway observed

LiCS

Light-Resistance Contact Seal LiCS

- •For the supported models, see the table of options by model number on A-370.
- For the LM block dimension (dimension L) with LiCS attached, see B-233.
- ●For the resistance of LiCS, see A-376.

LiCS is a light sliding resistance contact seal. It is effective in removing dust on the raceway and retaining a lubricant such as grease. It achieves extremely low drag and smooth, stable motion.

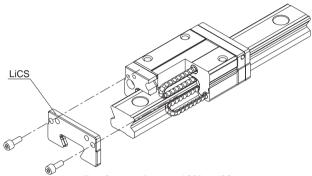


Fig.1 Structural Drawing of SSR + LiCS

[Features]

Light-Resistance Contact Seal LiCS is a seal that uses a light-resistance material in its sealing element and contacts the LM rail raceway to achieve low drag resistance. It is optimal for applications where low drag resistance is required, such as semiconductor-related devices, inspection devices and OA equipment all of which are used in favorable environments.

- Since the sealing element contacts the LM rail raceway, it is effective in removing dust on the raceway.
- Use of oil-impregnated, expanded synthetic rubber, which has excellent self-lubricating property, achieves low drag resistance.

Model number coding SSR20 +600L LM rail length LM Guide Type of With LiCS seal Symbol for on both ends number of axes model LM block (in mm) number Radial clearance symbol Accuracy symbol No. of LM blocks Normal grade (No Symbol) / High accuracy grade (H) Normal (No symbol) used on the same rail Precision grade (P) / Super precision grade (SP) Ultra precision grade (UP) Light preload (C1) Medium preload (C0)

Symbol	Contamination protection accessory
GG	LiCS
PP	With LiCS + side seal + inner seal

Dedicated Bellows

- For the supported models, see the table of options by model number on A-370.
- •For the dedicated bellows dimensions, see B-235 to B-247.

Item name	Schematic diagram / mounting location	Purpose/location of use
Dedicated Bellows	Bellows	Used in locations exposed to dust or cutting chips

Dedicated LM Cover

- •For the supported models, see the table of options by model number on A-370.
- ●For the dimensions of the dedicated LM cover, see B-248 to B-249.

Item name	Schematic diagram / mounting location	Purpose/location of use
Dedicated LM Cover	LM cover	Used in locations exposed to dust or cutting chips Used in locations where high temperature foreign material such as flying spatter

Cap C

Cap C

If any of the LM rail mounting holes of an LM Guide is filled with cutting chips or foreign material, they may enter the LM block structure. Entrance of such foreign material can be prevented by covering each LM rail mounting hole with the dedicated cap.

Since the dedicated cap C for LM rail mounting holes uses a special synthetic resin with high oil resistance and high wear resistance, it is highly durable. Different sizes of the dedicated cap C are in stock as standard for hexagonal-socket-head type bolts of M3 to M22.

To attach the dedicated cap to the mounting hole, place a flat metal piece like one shown in Fig.1 on the cap and gradually hammer in the cap until it is on the same level as the top face of the LM rail. When attaching the dedicated cap C for LM rail mounting holes, do not remove any of the LM blocks from the LM rail.

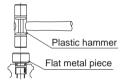


Fig.1 Cap C

Table1 List of Model Numbers Supported for the Dedicated Cap C for LM Rail Mounting Holes

Madal	Bolt	Main dimen- sions (mm)		sions (mm) Supported model number														
Model No.	used	D	Н	SSR	SCR	SR	SNR SNS	NR NRS	SERVE SECT	HMG	SHW HRW		GSR	HR	SRS RSR RSH	SRS-W RSR-W RSH-W	NSR- TBC	SRW
С3	М3	6.3	1.2	_	-	15	-	-	12	-	_	_	-	1123 1530	12 15	9	-	_
C4	M4	7.8	1.0	15Y	ı	_	_	_	15	15	12,14, 17,21, 27	15	15	ı	14	_	_	-
C5	M5	9.8	2.4	20	_	20	25	25X	20	_	_	20	20	2042	20	_	20	_
C6	M6	11.4	2.7	25Y 30	25	25Y 30	30	30	25	25	35	25	25	_	25	_	25 30	_
C8	M8	14.4	3.7	35	30 35	35	35	35	30 35	35	50	30 35	30	2555 3065	_	_	40	_
C10	M10	18.0	3.7	_	_	45	_	_	_	_	60	_	35	3575	_	_	50	70
C12	M12	20.5	4.7	_	45	55	45	45	45	45	_	45	_	4085	_	_	70	85
C14	M14	23.5	5.7	_	_	_	55	55	55	_	_	55	_	_	_	_	_	100
C16	M16	26.5	5.7	_	65	70 85	65	65	65	65	_	65	_	50105	_	_	_	_
C22	M22	35.5	5.7	_	_	_	_	85	85	_	_	_	_	_	_	_	_	_

Note) The dedicated cap for the LM rail mounting hole can be made of other materials (e.g., metal). Contact THK for details.

Plate Cover SV Steel Tape SP

•For the supported models, see the table of options by model number on A-370.

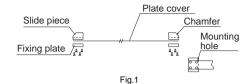
Item name	Schematic diagram / mounting location	Purpose/location of use
Plate Cover SV	Plate cover: SV Fixing-jig: NT Slide piece Case fixing bolt Tension screw	For the LM Guide, steel tapes are available as an essential means of contamination protection for machine tools. By covering the LM rail mounting holes with an ultra-thin stainless steel (SUS304) plate, the plate cover SV drastically increases sealability, thus to prevent the penetration of a coolant or cutting chips from the top face of the LM rail, which was previously impossible. For the mounting method, see A-359. Note) When mounting the plate cover, the LM rail needs to be machined. Indicate that the plate cover is required when ordering the LM Guide.
Steel Tape SP	Setscrew End piece: EP Tap for attaching a bellows LM block mounting/ removing jig	For the LM Guide, steel tapes are available as an essential means of contamination protection for machine tools. By covering the LM rail mounting holes with an ultra-thin stainless steel (SUS304) plate, the plate cover SV drastically increases sealability, thus to prevent the penetration of a coolant or cutting chips from the top face of the LM rail, which was previously impossible. (When mounting the steel tape, end piece EP can be used as a means to secure the cover.) For the mounting method, see A-360. Note) When mounting the steel tape, the LM rail needs to be machined. Indicate that the steel tape is required when ordering the LM Guide.

Options

Plate Cover SV -- Steel Tape SP

[Mounting Procedure for Plate Cover SV]

(1) Attach slide pieces to the plate cover. Place the slide pieces on the plate cover with their chamfered sides facing outward, hold the plate cover with the slide pieces and the securing plates, and then secure them with countersunk screws.


www.technobearing.ru

- (2) Use an LM block mounting/removing jig to remove the LM block from the LM rail, and then mount the fixing-jigs onto the LM rail. Identify the positions of the mounting holes on the fixing jigs, then secure the jigs with hexagonal-socket-head type bolts.
- (3) Temporarily secure either slide piece. Insert either slide piece into one of the fixing-jigs, then attach the slide piece to the LM rail's end face using the tension adjustment bolt and gently secure the bolt until the bolt head is inside the fixing-jig.
- (4) Temporarily secure the other slide piece. Temporarily secure the other slide piece in the same manner as above.
- (5) Apply tension to the plate cover. Apply tension to the plate cover by evenly securing the tension adjustment bolts on both ends of the LM rail. Make sure there is only a small difference between the H and H' dimensions in Fig.5. If the difference is too large, there may be no interference left on either end.
- (6) Mount the LM block on the LM rail. Identity the reference surface of the LM rail and the LM block, then insert the LM rail into the LM block using the LM block mounting/removing jig.

Note1) When removing or the mounting the LM block, use much care not to let the balls fall off.

Note2) The plate cover is an ultra-thin stainless steel (SUS304) plate. When handing it, use much care not to bend it.

Note3) The plate cover is available for models SNR/SNS35 to 65 and models NR/NRS35 to 100.

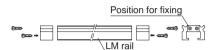


Fig.2

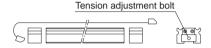


Fig.3

Fig.4

Fig.5

[Mounting Procedure for Steel Tape SP]

- Use an LM block mounting/removing jig to remove the LM block from the LM rail.
- (2) Thoroughly degrease and clean the top face of the LM rail, to which the steel tape is to be adhered. For degreasing, use an adequately volatile detergent (e.g., industrial alcohol).
- (3) Carefully adhere the steel tape from the end with care not to let it bend or sag, while gradually peeling the release paper from the steel tape.
- (4) Have the steel tape settle on the rail by rubbing the tape. The adhesive strength increases with time. The adhering tape can be peeled off by pulling its end upward.
- (5) Mount the LM block onto the LM rail using the LM block mounting/removing jig.
- (6) Attach the end pieces on both ends of the LM rail and further secure the steel tape. When securing the end pieces, fasten only the setscrew on the top face of each end piece.

(The tap on the end face of the end piece is used for mounting a bellows.)

Note1) The setscrew on the side face is used to lightly secure the bent steel tape. Be sure to stop fastening the screw as soon as it hits the end face, and do not force the screw further.

Note2) Since the steel tape is a thin steel plate, mishandling it may cause an accident such as cutting your finger. When handling it, take an effective safety measure such as wearing rubber gloves.

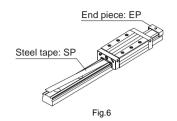


Fig.7

Fig.8

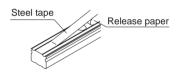
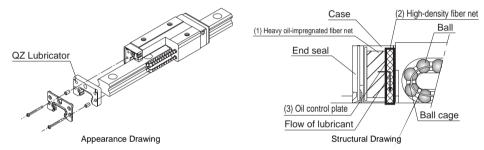


Fig.9

Fig.10


QZ Lubricator

QZ Lubricator

- For the supported models, see the table of options by model number on A-370.
- ●For the LM block dimension with QZ attached, see B-251 to B-253.

QZ Lubricator feeds the right amount of lubricant to the raceway on the LM rail. This allows an oil film to continuously be formed between the rolling element and the raceway, and drastically extends the lubrication and maintenance intervals.

The structure of QZ Lubricator consists of three major components: (1) a heavy oil-impregnated fiber net (function to store lubricant), (2) a high-density fiber net (function to apply lubricant to the raceway) and (3) an oil-control plate (function to adjust oil flow). The lubricant contained in QZ Lubricator is fed by the capillary phenomenon, which is used also in felt pens and many other products, as the fundamental principle.

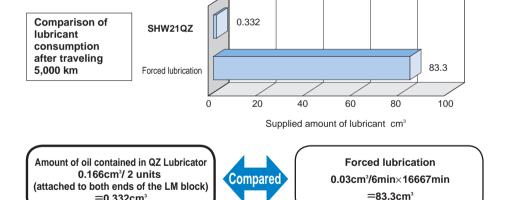

[Features]

- Since it supplements an oil loss, the lubrication maintenance interval can be significantly extended.
- Eco-friendly lubrication system that does not contaminate the surrounding area since it feeds the right amount of lubricant to the ball raceway.

Symbol	Contamination protection accessory
QZUU	With end seal + QZ
QZSS	With end seal + side seal + inner seal + QZ
QZDD	With double seals + side seal + inner seal + QZ
QZZZ	With end seal + side seal + inner seal + metal scraper + QZ
QZKK	With double seals + side seal + inner seal + metal scraper + QZ
QZGG	With LiCS + QZ
QZPP	With LiCS + side seal + inner seal + QZ
QZSSHH	With end seal + side seal + inner seal + LaCS + QZ
QZDDHH	With double seals + side seal + inner seal + LaCS + QZ
QZZZHH	With end seal + side seal + inner seal + metal scraper + LaCS + QZ
QZKKHH	With double seals + side seal + inner seal + metal scraper + LaCS + QZ

Significantly Extended Maintenance Interval

Attaching QZ Lubricator helps extend the maintenance interval throughout the whole load range from the light load area to the heavy load area.



LM Guide Running Test without Replenishment of Lubricant

Effective Use of Lubricant

Since the lubricator feeds the right amount of lubricant to the ball raceway, lubricant can be used efficiently.

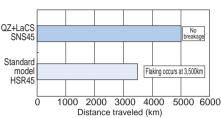
[Test conditions] speed: 300 m/min

Lubricant consumption is 1/250 less than forced lubrication.

=0.332cm³

Options

QZ Lubricator


• Effective in Helping Lubrication under Severe Environments

A 5,000 km durability test was conducted under severe environments (containing coolant and contaminated environment).

[Test conditions]

Model No.	SNS45	HSR45				
Load	8kN	6kN				
Speed	60m/min					
Coolant	Immersed 48 hrs, dried 96 hrs					
Foreign material	Foundry dust (125 µm or less)					
Lubrication	AFA Grease + QZ	Super Multi 68 Oiling cycle: 0.1cc/shot Periodically lubricated every 16 min				

When using the LM system under severe environment, use QZ Lubricator and Laminated Contact Scraper LaCS (see "Laminated Contact Scraper LaCS" on A-353) in combination.

Lubrication Adapter

An oil lubricant-only lubrication adapter is available for models NR/NRS.

Even if the LM Guide is installed in an orientation where oil lubrication is difficult, such as wall mount and inversed mount, the adapter is capable of feeding a constant quantity of lubricant to the four raceways.

[Features]

The dedicated lubrication adapter for models NR-NRS is built in with a constant quantity distributor. Therefore, the adapter can accurately feed a constant quantity of lubricant to each raceway regardless of the mounting orientation. The adapter is economical since it is capable of constantly feeding the optimum amount of lubricant and helping eliminate the supply of surplus lubricant.

To provide pipe arrangement, simply connect an intermittent lubrication pump widely used for ordinary machine tools to the greasing holes (M8) on the front and the side of the lubrication adapter.

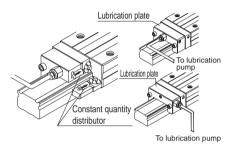


Fig.1 Structural Drawing

[Specifications]

Viscosity range of lubricant used	32 to 64 mm²/s recommended
Discharge	0.03×4, 0.06×4cc/1shot
Diameter of pipe connected	φ4, φ6
Material	Aluminum alloy

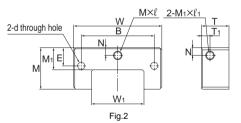
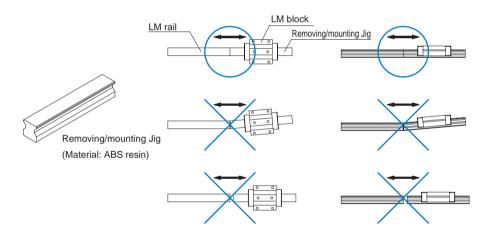


Table1 Dimension Table for Lubrication Adapter

Unit: mm

		Main dimensions											
Model No.	Width W	Height M	٦	W ₁	M ₁	В	Е	N	T ₁	d	Μ×ℓ	$M_1 \times \ell_1$	per shot (cc/shot)
A30N	56	29	25	29	14.5	46	14	5	5.3	3.5	M8×8	M8×8	
A35N	66	33	25	35	17	54	16.5	6	5.3	4.5	M8×8	M8×8	0.03×4
A45N	81	38	25	48	20	67	16.5	7	7.8	6.6	M8×8	M8×8	
A55N	94	45.5	25	56	22	76	20.5	7	7.8	6.6	M8×8	M8×8	
A65N	119	55.5	25	67	26.3	92	25.5	11.5	7.8	9	M8×8	M8×8	0.06×4
A85N	147	68.5	25	92	34	114	32	15.5	7.8	9	M8×8	M8×8	


Removing/mounting Jig

Removing/mounting Jig

When assembling the guide, do not remove the LM block from the LM rail whenever possible. If it is inevitable to remove the LM block due to the plate cover type or the assembly procedure, be sure to use the removing/mounting jig.

Mounting the LM block without using the removing/mounting jig may cause rolling elements to fall from the LM block due to contamination by foreign material, damage to internal components or slight inclination. Mounting the LM block with some of the rolling elements missing may also cause damage to the LM block at an early stage.

When using the removing/mounting jig, do not incline the jig and match the ends of both LM rails. If any of the rolling elements falls from the LM block, contact THK instead of using the product. Note that the removing/mounting jig is not included in the LM Guide package as standard. When desiring to use it, contact THK.

End Piece EP

For those models whose balls may fall if the LM rail is pulled out of the LM block, an end piece is attached to the product to prevent the LM block from being removed from the LM rail.

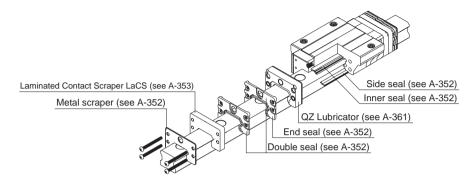
For models that can use the end piece, see the table below.

If removing the end piece when using the LM Guide, be sure that the LM block will not overshoot. The end piece can also be used as a fixing jig for a steel tape, and is available also for the LM rail of models SSR, SR and HSR.

A B C

Fig.1 End Piece EP for Models NR/NRS

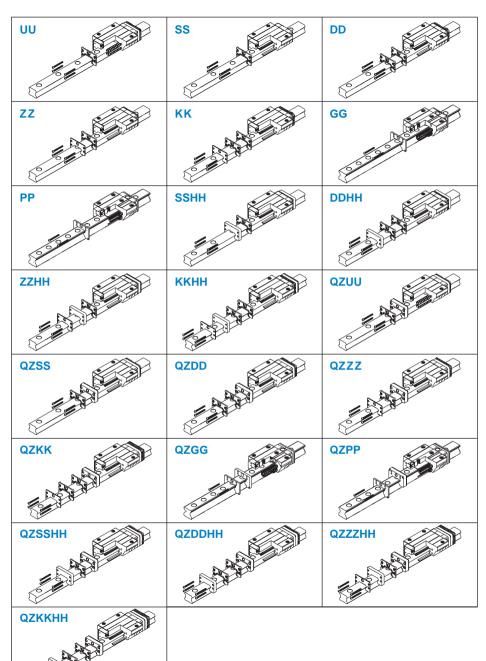
Table1 Dimension Table for End Piece EP for Models NR/ NRS


Unit: mm

		<u>.</u>		
Model No.	Α	В	С	Т
NR/NRS 25X	26	14	25	1.5
NR/NRS 30	31	14	31	1.5
NR/NRS 35	38	16	32.5	2
NR/NRS 45	49	18	41	2
NR/NRS 55	57	20	46.5	2
NR/NRS 65	69.4	22	59	3.2
NR/NRS 75	81.7	28	56	3.2
NR/NRS 85	91.4	22	68	3.2
NR/NRS 100	106.4	25	73	3.2

End Piece EP

List of Parts Symbols


•For supported model numbers, see the correspondence table of options by model number on A-370.

Symbol	Lubrication and Dust Prevention Accessories
UU	End seal
SS	With end seal + side seal + inner seal
DD	With double seals + side seal + inner seal
ZZ	With end seal + side seal + inner seal + metal scraper
KK	With double seals + side seal + inner seal + metal scraper
GG	LiCS
PP	With LiCS + side seal + inner seal
SSHH	With end seal + side seal + inner seal + LaCS
DDHH	With double seals + side seal + inner seal + LaCS
ZZHH	With end seal + side seal + inner seal + metal scraper + LaCS
KKHH	With double seals + side seal + inner seal + metal scraper + LaCS
QZUU	With end seal + QZ
QZSS	With end seal + side seal + inner seal + QZ
QZDD	With double seals + side seal + inner seal + QZ
QZZZ	With end seal + side seal + inner seal + metal scraper + QZ
QZKK	With double seals + side seal + inner seal + metal scraper + QZ
QZGG	With LiCS + QZ
QZPP	With LiCS + side seal + inner seal + QZ
QZSSHH	With end seal + side seal + inner seal + LaCS + QZ
QZDDHH	With double seals + side seal + inner seal + LaCS + QZ
QZZZHH	With end seal + side seal + inner seal + metal scraper + LaCS + QZ
QZKKHH	With double seals + side seal + inner seal + metal scraper + LaCS + QZ

Options List of Parts Symbols

list of Parts Symbols

Table of Supported Options by Models

For the overall length with an option attached, see B-224 to B-255.

								Cage	d Ball							
				Mod	del No.	*1	*2	*3	*4	*5		*6	*7	*8	*9	
	Туре					SHS	SSR	SNR SNS	SHW	SRS	SCR	HSR	SR	NR NRS	HRW	
				Symbol	Reference page	A-136	A-142	A-148	A-156	A-160	A-166	A-170	A-178	A-186	A-194	
		E	nd seal	UU		0	0 *	0	0 *	0	0	0 *	0 *	0 *	0 *	
				SS		♦ *	0		\Diamond	0 *	0 *	\triangle	0	0	0	
	[2]	[1]		DD	A-352 to	\Diamond	0	\Diamond	\Diamond	_	0	Δ	\triangle	0	\triangle	
	[2]	ניו		ZZ	A-353	\Diamond	0	\Diamond	\Diamond	_	0	Δ	\triangle	0	\triangle	
				KK		\Diamond	0	\Diamond	\Diamond	_	0	Δ	\triangle	0	\triangle	
ction		L	aCS+[1]	НН		0	0	0	\triangle	\triangle	0	Δ	_	\triangle	_	
Contamination Protection	Lo resist			LL	-	_	_	_	_	_	_	\triangle	\triangle	_	_	
n Pı	end		+ Side seal	RR	_	_	_	_	_	_	_	0	0	_	_	
natic	LiC	20		GG	A-355	_	0	_	_	_	_	_	-	_	_	
amir	LIC	,3		PP	A-355	_	0	_	_	_	_	_	-	_	_	
Sont	F	Plate Co	over SV	Z	A-358	_	_	\triangle	_	_	_	_	-	0	_	
	;	Steel Ta	ape SP	Z	A-330	0	\triangle	\triangle	_	_	_	Δ	\triangle	\triangle	_	
	De	dicated	l cap C ⁴¹⁵	_	A-357	0	0	0	0	\triangle	0	0	0	0	0	
	De	edicated	d bellows	_	A-356	B-235	B-236	B-237	B-238	_	_	B-239	B-241	B-243	B-244	
	D	edicate	ed cover	_	A-330	_	_	_	_	_	_	B-248	B-249	_	_	
	Тарре	ed-hole	LM rail type	K	_	0	0	_	_	_	B-59	B-83	B-91	_	_	
cation	Q Lubri		QZ+[2]	QZ	A-361	0	0	0	0	0	0	Δ	_	Δ	_	
Lubrication	End	plate v side r	vith/without nipple	_	ı	0	0	0	Δ	Δ	0	_	-	0	-	
Corrosion Prevention	AP-	HC, AP	-C, AP-CF	F	A-20	0	0	0	0	_	0	0	0	0	0	
Corre	(Stainles LM G	ss Steel Guide	М	A-19	_	Δ	-	Δ	0	_	Δ	Δ	ı	Δ	

^{*1.} Model SHS: steel tape SP – applicable to models SHS15 to 65.
*2. Model SSR: steel tape SP – not applicable to model SSR15; stainless steel type – not applicable to model SSR35.
*3. Models SNR/SNS: plate cover SV – applicable to models SNR/SNS35 to 65;
*4. Model SHW: inner seal and LaCS are not applicable to models SHW12, 14 and 17.
Models SHW12 and 14 cannot have a grease nipple; instead, a greasing hole is available. stainless steel type – not applicable to some models (contact THK for details).
*5. Model SRS: LaCS – applicable to models SRS20 and 25.
Models SRS9M, 9WM, 12M and 12WM cannot have a grease nipple; instead, a greasing hole is available.
*6. Model HSR: SS – applicable to models HSR15 to 150; DD, ZZ and KK -- applicable to models HSR15 to 65; LaCS -- applicable to models HSR15 to 35; LL -- applicable to models HSR15 to 65;

LL -- applicable to models HSR15 to 65

LL -- applicable to models HSR15 to 65;
steel tape SP: applicable to models HSR15 to 100; for models HSR8 to 12, only UU is applicable;
stainless steel type - not applicable to some models (contact THK for details).
for model Model HSR-R Grade Ct, only SS is applicable.
*7. Model SR: DD, ZZ and KK - applicable to models SR15 to 70; LL -- applicable to models SR15 to 25;
steel tape SP: applicable to models SR20 to 70;
for models SR85 to 150, only UU and SS are applicable;
stainless steel type - not applicable to some models (contact THK for details).

Options

Table of Supported Options by Models

○: Option ○: Applicable △: Not applicable for some models ★: THK recommendation (standard stock product) ♦: With inner seal attached

							F	ull-ba	II					F	, •		Caged roller		ller
*10 RSR RSR-W	RSR-Z RSR-WZ	RSH	RSH-Z RSH-WZ	*11 HR	GSR	GSR-R	CSR	MX	JR	*12 HCR	HMG	NSR- TBC	HSR- M1	SR- M1	RSR- M1	HSR- M2	*13 SRG	*14 SRN	SRW
A-200	A-208	A-214	A-218	A-224	A-230	A-236	A-244	A-248	A-252	A-258	A-262	A-268	A-272	A-280	A-286	A-292	A-300	A-306	A-312
0 *	0	0 *	0	0 *	0 *	0	0	0 *	0	0	0	0	0	0	0	0	0	0	0
_	△ *	_	△ *	_	0	0	0	_	0	0	_	0	0	0	_	0	0 *	0 *	0
_	_	_	_	_	0	0	0	_	0	Δ	_	_	_	_	_	_	0	0	0
_	_	_	_	_	0	0	0	_	0	Δ	_	_	_	_	_	_	0	0	0
_	-	_	_	_	0	0	0	_	0	Δ	_	_	_	-	_	_	0	0	0
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	\triangle	\triangle	0
_	_	_	_	_	_	_	0	_	_	0	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	0	_	_	0	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Δ	_	_
_	1	-	_	-	1	1	_	_	1	_	_	_	_	1	1	-	\triangle	-	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	\triangle	\triangle	0
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
\triangle	Δ	\triangle	\triangle	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0
	-	ı	-	-	-	-	_		-	_	_	B-245		-	-	ı	B-246	ı	B-247
1	-	ı	1	-	-	-	-	1	-	ı	1	ı	1	-	-	ı	I	I	_
	-	-	-	-	-	-	B-157		-	-	-	ı		-	_	ı	-	-	_
\triangle	ı	l	ı	ı	ı	ı	ı	ı	ı	ı	1	-	ı	ı	1	ı	0	0	0
ı	ı	ı	ı	1	ı	ı	1	ı	ı	ı	1	-	ı	ı	ı	ı	0	0	0
0	_	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	\triangle	-	-	-	0	-	-	-	-	-	-	-	-	-	-	_

^{*8.} Models NR/NRS: LaCS and QZ – applicable to models NR/NRS25 to 65; steel tape SP -- applicable to models NR/NRS25 to 100
*9. Model HRW: for models HRW12 and 14, only UU and SS is applicable; model HRW17 and 21 cannot have a side seal; stainless steel type – not applicable to models HRW50 and 60 *10. Model RSR: QZ – applicable to models RSR9 to 15. *11. Model HR: stainless steel type – applicable to models HR918 to 2555.

For locations where adequate dust prevention cannot be provided with the end seal alone, consider using also a bellows and a cover.

^{*12.} Model HCR: DD, ZZ and KK – may not applicable depending on R; for model HCR12, only UU is applicable.
*13. Model SRG: LaCS – applicable to all model numbers except model SRG15;
plate cover SV – applicable to models SRG35 to 65; GG and PP – applicable to only model SRG15.

^{*14.} Model SRN: LaCS - applicable to all model numbers except model SRN15;

plate cover SV – applicable to models SRN35 to 65.
*15. Dedicated cap C – may not be attached depending on the size of the model.

Seal Resistance Value

Unit: N

Jr		
U	шι	,

Mode	l No.	Seal symbol	Seal resistance value
	15		4.5
	20		7.0
	25		10.5
SHS	30	SS	17.0
505	35	- 55	20.5
	45		30.0
	55		31.5
	65		43.0
	15X		2.0
	20X		2.6
SSR	25X	UU	3.5
	30X		4.9
	35X		6.3
	25		8
	30		14
	35		14
SNR/SNS	45	SS	16
	55		20
	65		25
	85		30
	12CA/CR		1.0
	12HR		1.0
	14		1.2
	17	UU	1.4
	21	00	4.9
	27		4.9
	35		9.8
SHW	50		14.7
SHVV	12CA/CR		1.4
	12HR		1.8
	14		1.8
	17	SS	2.2
	21	33	6.9
	27		8.9
	35		15.8
	50		22.7

		Seal	Unit: N Seal resistance
Mode	el No.	symbol	value
	7M		0.08
	7WM		0.12
	9M		0.2
	9WM		1.0
SRS	12M	SS	0.6
SKS	12WM	33	1.3
	15M		1.0
	15WM		1.6
	20M		1.3
	25M		1.6
	15		2.5MAX
	20		3MAX
	25		5MAX
SCR	30	SS	10MAX
	35		12MAX
	45		20MAX
	65		30MAX
	8		0.5
	10		0.8
	12		1.2
	15		2.0
	20		2.5
HSR	25	UU	3.9
пок	30	00	7.8
	35		11.8
	45		19.6
	55		19.6
	65		34.3
	85		34.3
	15		2.5
	20		3.4
	25	1	4.4
SR	30	UU	8.8
SK	35	00	11.8
	45		12.7
	55		15.7
	70	1	19.6
	•		·

Options

Unit: N

NR/NRS 25X 30 35 23 45 24 29 65 42 75 42 42 65 42 75 42 49 49 49 35 50 14.7 60 19.6 5 7 9 7 12 15 20 3 3 3 3 3 3 3 3 3	Mode	l No	Seal	Seal resistance
NR/NRS 35	Wiodo		symbol	value
NR/NRS 35				
NR/NRS 55				
NR/NRS 55				
HRW		45		24
T5 85 42 100 51 12 14 0.3 17 2.9 4.9 21 4.9 27 35 50 14.7 60 19.6 5 7 0.08 9 0.1 12 0.4 15 0.8 20 3W 5W 7W 9W 14W 15W 7Z 0.08 9Z 11Z 12Z 15Z 7WZ 9WZ 12WZ 1.1	NR/NRS	55	UU	29
HRW 100		65		42
HRW 12 0.2 14 0.3 17 2.9 4.9 4.9 35 9.8 50 14.7 60 19.6 5 0.06 7 19.6 5 0.08 9 0.1 12 0.4 15 0.8 20 1.0 3W 5W 0.2 5W 7W 9W 0.8 12W 1.1 1.2 15W 7Z 9.2 15Z 0.8 7WZ 9WZ 12WZ 15WZ 1.1 1		75		42
HRW		85		42
HRW 21 UU 4.9 2.9 4.9 35 9.8 50 14.7 60 19.6 5 0.06 7 0.08 9 0.1 12 0.4 15 0.8 20 1.0 3W 0.2 5W 0.3 7W 9W 0.8 12W 1.1 1.2 15W 7Z 9Z 0.1 1.2 15Z 7WZ 9WZ 12WZ 1.1 1		100		51
HRW 21		12		0.2
HRW 21 4.9 4.9 4.9 9.8 50 14.7 60 19.6 5 0.06 7 0.08 9 0.1 1.0 3W 0.2 5W 0.3 7W 0.4 9W 0.8 12W 1.1 1.2 15W 1.3 7Z 0.08 9Z 0.1 1.2 15Z 0.4 15Z 0.8 7WZ 9WZ 12WZ 1.1 1		14		0.3
RSR 12W UU 1.1 1.2 1.5W 7.7 2 9.7 1.2		17		2.9
27 35 35 9.8 14.7 60 19.6 5 0.06 7 0.08 9 0.1 12 0.4 15 20 1.0 3W 0.2 5W 7W 9W 0.8 12W 15W 7Z 0.08 9Z 11Z 0.4 15Z 0.8 7WZ 9WZ 12WZ 1.1	LIDIM	21		4.9
50	HKW	27	UU	4.9
Franchise State 19.6		35		9.8
S 0.06 7 0.08 9 0.1 12 0.4 15 0.8 20 3W 0.2 5W 0.3 7W 0.4 9W 0.8 12W 0.8 14W 1.2 15W 7Z 0.08 9Z 0.1 12Z 0.4 15Z 0.8 7WZ 9WZ 12WZ 1.1		50		14.7
7 0.08 9 0.1 12 0.4 15 0.8 20 1.0 3W 0.2 5W 0.3 7W 0.4 9W 0.8 12W 1.1 14W 1.2 15W 7Z 0.08 9Z 0.1 12Z 0.4 15Z 0.8 7WZ 9WZ 0.8 12WZ 1.1		60		19.6
9 0.1 12 0.4 15 0.8 20 1.0 3W 0.2 5W 0.3 7W 0.4 9W 0.8 12W 1.1 14W 1.2 15W 1.3 7Z 0.08 9Z 0.1 12Z 0.4 15Z 0.8 7WZ 0.4 9WZ 0.8 12WZ 1.1		5		0.06
12		7		0.08
15		9		0.1
20 3W 0.2 5W 0.3 7W 0.4 9W 0.8 12W 1.1 14W 1.2 15W 7Z 0.08 9Z 0.1 12Z 0.4 15Z 7WZ 9WZ 0.8 12WZ 1.1		12		0.4
3W 0.2 0.3 7W 0.4 9W 0.8 1.2 15W 1.3 7Z 0.08 9Z 0.1 12Z 0.4 15Z 0.8 7WZ 9WZ 0.8 12WZ 1.1		15		0.8
TW 0.3		20		1.0
RSR 12W UU 1.1 1.2 1.3 7Z 0.08 9Z 0.1 1.2Z 0.4 15Z 0.8 7WZ 9WZ 12WZ 0.8 1.1		3W		0.2
RSR 12W UU 1.1 1.2 1.2 1.3 7Z 0.08 9Z 0.1 1.2Z 0.4 1.5Z 7WZ 9WZ 1.2WZ 1.1		5W		0.3
RSR 12W UU 1.1 1.2 1.2 1.3 1.3 7.2 0.08 9.2 0.1 1.2 0.4 1.5 0.8 7.2 0.4 9.2 0.4 9.2 0.4 9.2 0.8 1.2 0.8 1.2 0.8 1.2 1.2 1.1		7W		0.4
14W 1.2 1.3 7Z 0.08 9Z 0.1 12Z 0.4 15Z 0.8 7WZ 0.4 9WZ 0.8 12WZ 1.1		9W		0.8
15W 1.3 0.08 9Z 0.1 12Z 0.4 15Z 0.8 7WZ 0.4 9WZ 0.8 12WZ 1.1	RSR	12W	UU	1.1
7Z 0.08 9Z 0.1 12Z 0.4 15Z 0.8 7WZ 0.4 9WZ 0.8 12WZ 1.1		14W		1.2
9Z 0.1 12Z 0.4 15Z 0.8 7WZ 0.4 9WZ 0.8 12WZ 1.1		15W		1.3
12Z 0.4 15Z 0.8 7WZ 0.4 9WZ 0.8 12WZ 1.1		7Z		0.08
15Z 0.8 7WZ 0.4 9WZ 0.8 12WZ 1.1		9Z		0.1
7WZ 0.4 9WZ 0.8 12WZ 1.1		12Z		0.4
9WZ 0.8 12WZ 1.1		15Z		0.8
12WZ 1.1		7WZ		0.4
		9WZ		0.8
15WZ 1.3		12WZ		1.1
		15WZ		1.3

Unit: N

Mode	l No.	Seal	Seal resistance
	7	symbol	value
			0.08
	9		0.1
	12		0.4
	7Z		0.08
	9Z		0.1
RSH	12Z	UU	0.4
	15Z		0.8
	7WZ		0.4
	9WZ		0.8
	12WZ		1.1
	15WZ		1.3
	918		0.5
	1123		0.7
	1530		1.0
	2042		2.0
HR	2555	UU	2.9
пк	3065	00	3.4
	3575		3.9
	4085		4.4
	50105		5.9
	60125		9.8
	15		2.5
	20		3.1
	25		4.4
000	30		6.3
GSR	35	UU	7.6
	25-R		4.4
	30-R		6.3
	35-R	1	7.6
	15		2.0
	20		2.5
0.55	25		3.9
CSR	30	UU	7.8
	35		11.8
	45		19.6
	5		0.06
MX	7W	UU	0.4
		<u> </u>	

Unit: N Unit: N

Mode	l No.	Seal symbol	Seal resistance value
	25		3.9
ID	35	l	11.8
JR	45	UU	19.6
	55		19.6
	12		1.2
	15		2.0
HCR	25	UU	3.9
пск	35	00	11.8
	45		19.6
	65		34.3
	15		3
	25		6
HMG	35	UU	8
	45		12
	65		40
	20TBC		4.9
	25TBC		4.9
NSR	30TBC	UU	6.9
NON	40TBC	00	9.8
	50TBC		14.7
	70TBC		24.5
	15M1		2.0
	20M1		2.5
HSR	25M1	UU	3.9
	30M1		7.8
	35M1		11.8
	15M1	_	2.5
	20M1		3.4
SR	25M1	UU	4.4
	30M1		8.8
	35M1		11.8

Seal symbol Seal resistance value				Unit: N
RSR	Mode	l No.	Seal	Seal resistance
RSR		QM1	Symbol	
RSR				
RSR				-
9M1W 12M1W 115M1W 15M1W 1.3 15M2 15M2 20M2 25M2 3.9 15 20 18 25 30 25 35 35 45 30 35 45 30 35 45 30 35 45 30 35 45 30 35 36 45 30 37 38 38 38 38 38 38 38 38 38 38 38 38 38	200		UU	
12M1W 1.1 1.3 1.3 1.5M1W 1.3 1.5M2 2.0 2.5 2.5 2.5M2 3.9 15 13 2.0 18 2.5 19 2.5 19 2.5 3.5 3.5 6.5 40 3.5 3.5 6.5 6.5 40 3.5 3.5 6.5 6.5 40 3.5 3.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	RSR			
SRG 15M1W 1.3 2.0 2.5		_		
HSR				***
HSR		15M1W		1.3
25M2 3.9 15 13 20 18 25 19 30 35 45 30 55 35 65 40 35 30 35 30 35 30 35 30 35 30 45 30 35 30 45 30 35 35 40 32 SRW 85 SS 37		15M2		2.0
SRG 15 20 18 19 19 30 35 45 30 35 65 40 35 8S 30 30 35 30 35 65 40 30 30 30 30 30 30 30 30 30 30 30 30 30	HSR	20M2	UU	2.5
SRG 20 18 19 19 30 32 SRW 85 SS 37 19 32 32 37 30 32 37 30 32 37 30 32 37 37 30 32 37 37 30 32 37 37 30 32 37 37 30 32 37 37 30 32 37 37 30 32 37 37 30 32 37 37 30 32 37 37 37 30 32 37 37 30 32 37 37 30 32 37 37 37 30 32 37 37 30 32 37 37 30 32 37 37 37 30 32 37 37 37 37 37 37 37 37 37 37 37 37 37		25M2		3.9
SRG		15		13
SRG 30 SS 24 30 30 30 35 45 30 35 45 30 35 35 35 30 35 30 35 30 30 35 35 30 35 35 35 35 35 35 35 35 35 35 35 35 35		20		18
SRG 35 SS 30 30 30 35 65 40 30 35 55 65 40 30 35 35 65 40 30 35 55 65 40 30 35 65 40 32 SRW 85 SS 37		25	SS	19
35 30 30 30 30 30 35 65 40 30 30 35 35 65 40 30 35 35 35 65 40 32 SRW 85 SS 37	SBC	30		24
SRN	SKG	35		30
SRN		45		30
SRN		55		35
SRN 45 SS 30 30 35 35 40 30 SRW 85 SS 37		65		40
SRN 55 SS 35 40 70 32 SRW 85 SS 37		35		30
55 35 65 40 70 32 SRW 85 SS 37	QDNI	45	99	30
70 32 SRW 85 SS 37	SIKIN	55	33	35
SRW 85 SS 37		65		40
		70		32
100 43	SRW	85	SS	37
		100		43

Resistance of LaCS

Unit: N

Unit: N

Model No	-	Resistance of LaCS
	15	5.2
	20	6.5
	25	11.7
SHS	30	18.2
SHS	35	20.8
	45	26.0
	55	32.5
	65	39.0
	15	5.9
	20	6.9
SSR	25	8.1
	30	12.8
	35	15.1
	25	8.1
	30	13.4
	35	15.5
SNR/SNS NR/NRS	45	23.3
	55	28.6
	65	39.6
	85	52.7
	21	3.9
SHW	27	6.5
SHVV	35	13.0
	50	19.5
SRS	20	5.2
SNS	25	7.8

Model No		Resistance of LaCS
	15	5.2
	20	6.5
	25	11.7
	30	18.2
SCR	35	20.8
	45	26.0
	65	39.0
	15	3.8
	20	5.6
HSR	25	7.5
	30	14.9
	35	22.4
	20	6.1
	25	6.9
	30	8.2
SRG	35	9.1
	45	14.3
	55	18.2
	65	26.0
	35	9.1
SRN	45	14.3
SIXIN	55	18.2
	65	22.1
	70	32.8
SRW	85	39.7
	100	58.3

Note1) Each resistance value in the table only consists of that of LaCS, and does not include sliding resistances of seals and other accessories.

Note2) For the maximum service speed of LaCS, contact THK.

Maximum Seal Resistance of LiCS

Unit: N

Mode	el No.	Resistance of LiCS
	15X	1
	20X	1.1
SSR	25X	1.6
	30X	1.6
	35X	2
SRG	15	0.7

Note) The value indicates the sliding resistance of two LiCS units per LM block and does not include the sliding resistances of the LM block and the side seals.

Greasing Hole

[Grease Nipple and Greasing Hole for Models SHW and SRS]

Models SHW and SRS do not have a grease nipple as standard. Installation of a grease nipple and the drilling of a greasing hole is performed at THK. When ordering SHW and SRS, indicate that the desired model requires a grease nipple or greasing hole. (For greasing hole dimensions and supported grease nipple types and dimensions, see Table1.)

When using SHW and SRS under harsh conditions, use QZ Lubricator* (optional) or Laminated Contact Scraper LaCS* (optional).

Note1) Grease nipple is not available for models SHW12, SHW14, SRS9M, SRS9WM, SRS12M and SRS12WM. They can have a greasing hole.

Note2) Using a greasing hole other than for greasing may cause damage.

Note3) For QZ Lubricator*, see A-361. For Laminated Contact Scraper LaCS*, see A-353.

Note4) When desiring a grease nipple for a model attached with QZ Lubricator, contact THK.

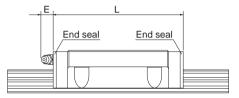


Fig.1 Dimensions of the Grease Nipple for Model SHW

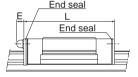
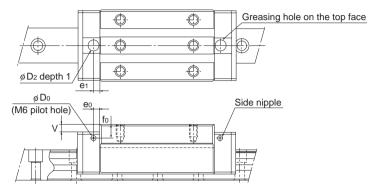


Fig.2 Dimensions of the Grease Nipple for Model SRS

Note) For the L dimension, see the corresponding specification table.

Table1	Table of	Grease I	Nipple and	Greasing Hole Dimen-
			sions	

Unit: mm

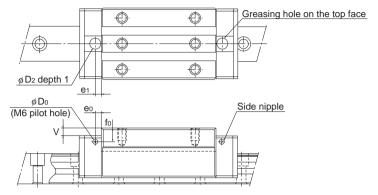

			Onit. mini
Mod	el No.	Е	Grease nipple or greasing hole
	12	_	ϕ 2.2 drilled hole
	14	_	φ2.2 drilled hole
	17	5	PB107
SHW	21	5.5	PB1021B
	27	12	B-M6F
	35	12	B-M6F
	50	16	B-PT1/8
	9M	_	ϕ 1.5 drilled hole
	9WM	_	ϕ 1.6 drilled hole
	12M	-	ϕ 2.0 drilled hole
	12WM	-	ϕ 2.0 drilled hole
SRS	15M	4.0 (5.0)	PB107
	15WM	4.0 (5.0)	PB107
	20M	3.5 (5.0)	PB107
	25M	4.0 (5.5)	PB1021B

Note) Figures in the parentheses indicate dimensions without a seal.

[Greasing Hole for Model SRG]

Model SRG allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign material from entering the LM block. When using the greasing hole, contact THK.

When using the greasing hole on the top face of models SRG-R and SRG-LR, a greasing adapter is separately required. Contact THK for details.

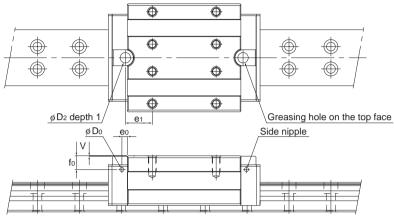

Unit: mm

Model No.		Pilot hole for side nipple			Applicable	Greasing hole on the top face			
IVIOU		e ₀	f o	D₀	nipple	D_2	(O-ring)	V	e 1
	15A 15V	4	4	2.9	PB107	9.2	(P6)	0.5	5.5
	20A 20LA	4	5	2.9	PB107	9.2	(P6)	0.5	6.5
	20V 20LV	4	5	2.9	PB107	9.2	(P6)	0.5	6.5
	25C 25LC	6	6.3	5.2	M6F	10.2	(P7)	0.5	6
	25R 25LR	6	10.3	5.2	M6F	10.2	(P7)	4.5	6
	30C 30LC	6	5.8	5.2	M6F	10.2	(P7)	0.4	6
000	30R 30LR	6	8.8	5.2	M6F	10.2	(P7)	3.4	6
SRG	35C 35LC	6	6	5.2	M6F	10.2	(P7)	0.4	6
	35R 35LR	6	13	5.2	M6F	10.2	(P7)	7.4	6
	45C 45LC	7	7	5.2	M6F	10.2	(P7)	0.4	7
	45R 45LR	7	17	5.2	M6F	10.2	(P7)	10.4	7
	55C 55LC	9	8.5	5.2	M6F	10.2	(P7)	0.4	11
	55R 55LR	9	18.5	5.2	M6F	10.2	(P7)	10.4	11
	65LC	9	13.5	5.2	M6F	10.2	(P7)	0.4	10
	65LV	9	13.5	5.2	M6F	10.2	(P7)	0.4	10

Note) The greasing interval is longer than that of full-roller types because of the roller cage effect. However, the actual greasing interval may vary depending on the service environment, such as a high load and high speed. Contact THK for details.

[Greasing Hole for Model SRN]

Model SRN allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign material from entering the LM block. When using the greasing hole, contact THK.


Unit: mm

Model No.		Pilot h	ole for side	nipple	Applicable	Greasing hole on the top face			
		e₀	f₀	D ₀	nipple	D ₂	(O-ring)	V	e 1
	35C 35LC	8	6.5	5.2	M6F	10.2	(P7)	0.4	6
	35R 35LR	8	6.5	5.2	M6F	10.2	(P7)	0.4	6
	45C 45LC	8.5	7	5.2	M6F	10.2	(P7)	0.4	7
SRN	45R 45LR	8.5	7	5.2	M6F	10.2	(P7)	0.4	7
	55C 55LC	10	8	5.2	M6F	10.2	(P7)	0.4	11
	55R 55LR	10	8	5.2	M6F	10.2	(P7)	0.4	11
	65LC	9	11	5.2	M6F	10.2	(P7)	0.4	10
	65LR	9	11	5.2	M6F	10.2	(P7)	0.4	10

Note) The greasing interval is longer than that of full-roller types because of the roller cage effect. However, the actual greasing interval may vary depending on the service environment, such as a high load and high speed. Contact THK for details.

[Greasing Hole for Model SRW]

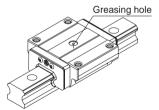
Model SRW allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign material from entering the LM block. When using the greasing hole, contact THK.

Unit: mm

Model No.		Pilot h	ole for side	nipple	Applicable	Greasing hole on the top face			
IVIOU	ei ivo.	e ₀	f o	D ₀	nipple	D ₂	(O-ring)	V	e ₁
	70	7	17	5.2	M6F	13	(P10)	0.4	33.7
SRW	85	9	17.7	5.2	M6F	13	(P10)	0.4	42.75
	100	9	22.4	5.2	M6F	13	(P10)	0.4	55

Note) The greasing interval is longer than that of full-roller types because of the roller cage effect. However, the actual greasing interval may vary depending on the service environment, such as a high load and high speed. Contact THK for details

[Semi-standard Greasing Hole for Model HSR]


For model HSR, a semi-standard greasing hole is available. Specify the appropriate model number according to the application.

Type with a Greasing Hole Drilled on the Side Surface

[Lubrication for Model HR]

The LM block has a greasing hole in the center of its top face. To provide lubrication through this hole, the table must be machined to also have a greasing hole as shown in Fig.3 and attach a grease nipple or the like. When using oil lubrication, it is necessary to identify the lubrication route. Contact THK for details.

Type with a Greasing Hole Drilled on the Top Face

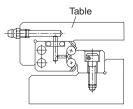


Fig.3 Example of Machining a Greasing Hole

Precautions on Use

LM Guide

Precautions on Using the LM Guide

[Handling]

- (1) Disassembling components may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Tilting an LM block or LM rail may cause them to fall by their own weight.
- (3) Dropping or hitting the LM Guide may damage it. Giving an impact to the product could also cause damage to its function even if the product looks intact.

[Lubrication]

- Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (2) Do not mix lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.
- (5) When adopting oil lubrication, the lubricant may not be distributed throughout the LM system depending on the mounting orientation of the system. Contact THK for details.
- (6) Lubrication interval varies according to the conditions. Contact THK for details.

[Precautions on Use]

- (1) Entrance of foreign material may cause damage to the ball (roller) circulating path or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (2) When planning to use the LM system in an environment where the coolant penetrates the LM block, it may cause trouble to product functions depending on the type of the coolant. Contact THK for details.
- (3) Contact THK if you desire to use the product at a temperature of 80°C or higher.
- (4) If foreign material such as dust or cutting chips adheres to the product, replenish the lubricant after cleaning the product with pure white kerosene. For available types of detergent, contact THK.
- (5) When using the LM Guide with inverted mount, breakage of the endplate due to an accident or the like may cause balls (rollers) to fall and the LM block to come off from the LM rail and fall. In these cases, take preventive measures such as adding a safety mechanism for preventing such falls.
- (6) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.
- (7) When removing the LM block from the LM rail and then replacing the block, an LM block mounting/removing jig that facilitates such installation is available. Contact THK for details.

[Storage]

When storing the LM Guide, enclose it in a package designated by THK and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.

Precautions on Using Options for the LM Guide

QZ Lubricator

[Handling]

Dropping or hitting the product may damage it. Use much care when handling it.

Do not block the vent hole with grease or the like.

[Service Environment]

Be sure the service temperature of this product is between -10 to $+50^{\circ}$ C, and do not clean the product by immersing it in an organic solvent or white kerosene, or leave it unpacked. When using it out of the service temperature range, contact THK in advance.

[Use in a Special Environment]

When desiring to use the product in a special environment, contact THK.

[Precaution on Selection]

Secure a stroke longer than the overall LM block with QZ Lubricator attached.

[Corrosion Prevention]

QZ is a lubricating device designed to feed a minimum amount of oil to the raceway, and does not provide an anti-rust effect to the whole LM Guide. When using it in an environment subject to a coolant or the like, we strongly recommend applying grease to the mounting base of the LM Guide and to the rail ends as an anti-rust measure.

Laminated Contact Scraper LaCS, Side Scraper

[Service Environment]

Be sure the service temperature of this product is between -20 to +80°C, and do not clean the product by immersing it in an organic solvent or white kerosene, or leave it unpacked.

[Impregnating Oil]

The lubricant impregnated into the scraper is used to increase its sliding capability. For lubrication of the LM Guide, attach QZ Lubricator, or the grease nipple on the side face of the end plate of the LM block, before providing a lubricant.

[Function]

It is specifically designed to provide dust prevention capability to remove foreign material and liquid. To seal oil, an end seal is required.

[Design]

When using the product, be sure to attach the rail cap C or the plate cover.

Precautions on Use

Precautions on Using Options for the LM Guide

Light Sliding Resistance Contact Seal LiCS

[Service Environment]

Be sure the service temperature of this product is between -20 to +80°C, and do not clean the product by immersing it in an organic solvent or white kerosene, or leave it unpacked. It contacts only with the LM rail raceway. Do not use it in harsh environments.

[Impregnating Oil]

The lubricant impregnated into LiCS is used to increase its sliding capability. For lubrication of the LM Guide, attach the grease nipple on the end plate of the LM block before providing a lubricant.

LM Guide Actuator

玩出ば General Catalog

A Technical Descriptions of the Products

Model KR..... A-386 Structure and features..... A-386 Types and Features A-390 Load Ratings in All Directions and Static Permissible Moment A-391 Maximum Travel Speed and the Maximum Length A-396 Lubrication..... A-398 Service Life A-399 Static Safety Factor..... A-402 Example of Calculating the Nominal Life. A-403 Accuracy Standards A-412 Model SKR A-416 Structure and features..... A-416 Caged Ball/Roller Technology..... A-419 Types and Features A-421 Load Ratings in All Directions and Permissible Moment A-422 Lubrication A-425 Service Life A-426 Accuracy Standards A-428 Options...... A-430 Cover...... A-431 Bellows..... A-432 Sensor..... A-433 Motor Bracket...... A-434 Precautions on Use..... A-436 Precautions on Using Models KR/SKR A-436

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table Model KR Model Number Coding Mass of Moving Element	B-263 B-290 B-290
Model SKR	B-291 B-300 B-300
Options	B-301 B-302 B-308 B-312 B-342 B-343

Please see the separate "B Product Specifications".

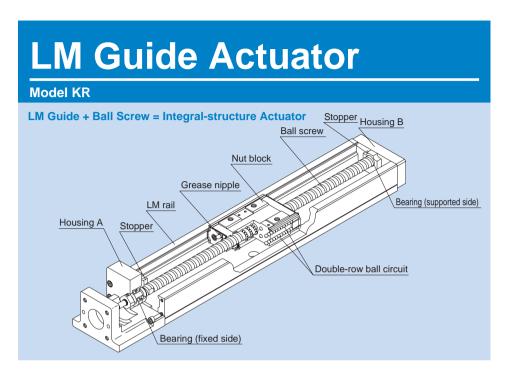


Fig.1 Structure of LM Guide Actuator Model KR

Structure and Features

Because of its integral-structure nut block consisting of a highly rigid LM rail with a U-shaped cross section, LM Guide units on both side faces and a Ball Screw unit in the center, LM Guide Actuator model KR achieves a highly rigid and highly accurate actuator in a minimal space.

In addition, since the housings A and B also serve as support units and the nut block as a table, the this model allows significant reduction of man-hours and time required for design and assembly since it incorporates a support unit and a table, thus to contribute to total cost cutting.

LM Guide Actuator Model KR

[4-way Equal Load]

Each train of balls is arranged at a contact angle of 45° so that the rated load on the nut block is uniform in the four directions (radial, reverse radial and lateral directions). As a result, model KR can be used in any mounting orientation.

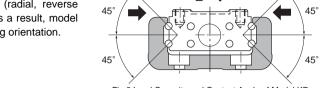
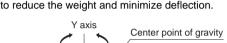



Fig.2 Load Capacity and Contact Angle of Model KR

[High Rigidity]

Unlike the conventional LM Guide, model KR uses an outer rail structure to achieve higher rigidity against an overhung load.

The LM rail has a wide U-shaped cross section to reduce the weight and minimize deflection.

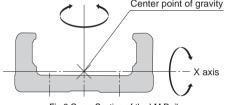


Fig.3 Cross Section of the LM Rail

Table1 Cross-sectional Characteristics of the LM Rail Unit: mm⁴

Model No.	lx	ly	Mass (kg/100mm)
KR15	9.08×10^{2}	1.42 × 10 ⁴	0.104
KR20	6.1 × 10 ³	6.2 × 10 ⁴	0.26
KR26	1.7 × 10⁴	1.5 × 10⁵	0.39
KR30H	2.7 × 10 ⁴	2.8 × 10 ⁵	0.5
KR33	6.2 × 10 ⁴	3.8 × 10⁵	0.66
KR45H	8.4 × 10⁴	8.9 × 10⁵	0.9
KR46	2.4 × 10 ⁵	1.5 × 10 ⁶	1.26
KR55	2.2 × 10 ⁵	2.3 × 10 ⁶	1.5
KR65	4.6 × 10 ⁵	5.9 × 10 ⁶	2.31

Ix=geometrical moment of inertia around X axis Ix=geometrical moment of inertia around Y axis

[High Accuracy]

Since the linear guide section consists of 4 rows of circular-arc grooves that enable balls to smoothly move even under a preload, a highly rigid guide with no clearance is achieved. Additionally, variation in frictional resistance caused by load fluctuation is minimized, allowing the system to follow highly accurate feed.

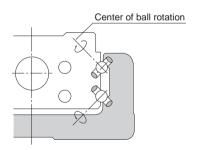


Fig.4 Contact Structure of Model KR

[Space Saving]

Use of a nut block integrating LM Guide units on both ends and a Ball Screw unit in the center makes model KR a highly rigid and highly accurate actuator in a minimal space.

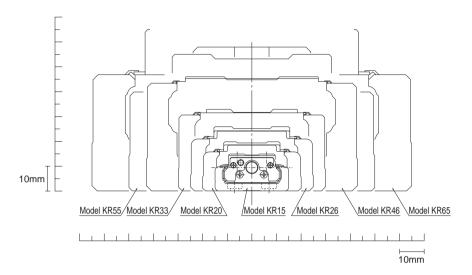


Fig.5 Cross Sectional Drawing

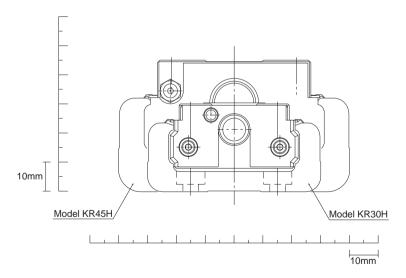


Fig.6 Cross Sectional Drawing

LM Guide Actuator Model KR

[Seal]

Model KR is equipped with end seals and side seals for dust prevention as standard.

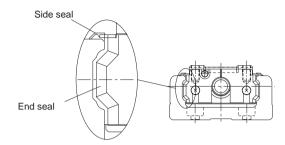
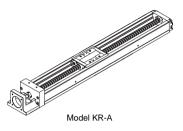
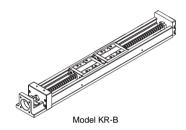


Table2 shows the rolling resistance and seal resistance per nut block (guide section).

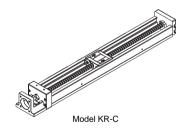

Table2 Maximum Resistance Value Unit: N									
Model No.	Rolling resistance value	Seal resistance value	Total						
KR15	0.2	0.7	0.9						
KR20	0.5	0.7	1.2						
KR26	0.6	0.8	1.4						
KR30H	1.5	2.0	3.5						
KR33	1.5	1.9	3.4						
KR45H	2.5	2.6	5.1						
KR46	2.5	2.5	5						
KR55	5.0	3.8	8.8						
KR65	6.0	4.1	10.1						

Note) The rolling resistance represents the value when a lubricant is not used.

Types and Features

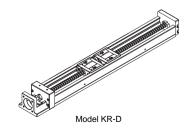

Model KR-A (with a Single Long Nut Block)

Representative model of KR.

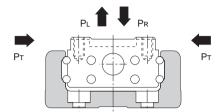

Model KR-B (with Two Long Nut Blocks)

Equipped with two units of the nut block of model KR-A, this model achieves higher rigidity, higher load capacity and higher accuracy.

Model KR-C (with a Single Short Nut Block)


This model has a shorter overall length of the nut block and a longer stroke than model KR-A. (Supported models: model KR30H, 33, 45H, 46)

Model KR-D (with Two Short Nut Blocks)


Equipped with two units of the nut block of model KR-C, this design allows a span between blocks that suits the equipment, thus to achieve high rigidity.

(Supported models: model KR30H, 33, 45H, 46)

Load Ratings in All Directions and Static Permissible Moment

[Load Rating]

LM Guide Unit

Model KR is capable of receiving loads in four directions: radial, reverse radial and lateral directions. Its basic load ratings are equal in all four directions (radial, reverse radial and lateral directions), and their values are indicated in Table3 on A-392 and A-393.

Ball Screw Unit

Since the nut block is incorporated with a Ball Screw, model KR is capable of receiving an axial load. The basic load rating value is indicated in Table3 on A-392 and A-393.

Bearing Unit (Fixed Side)

Since housing A contains an angular bearing, model KR is capable of receiving an axial load. The basic load rating value is indicated in Table3 on A-392 and A-393.

[Equivalent Load (LM Guide Unit)]

The equivalent load when the LM Guide unit of model KR simultaneously receives loads in all directions is obtained from the following equation.

$P_E = P_R (P_L) + P_T$

P_E: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\scriptscriptstyle R} & : Radial \ load & (N) \\ P_{\scriptscriptstyle L} & : Reverse \ radial \ load & (N) \\ P_{\scriptscriptstyle T} & : Lateral \ load & (N) \end{array}$

Table3 Load Rating of Model KR

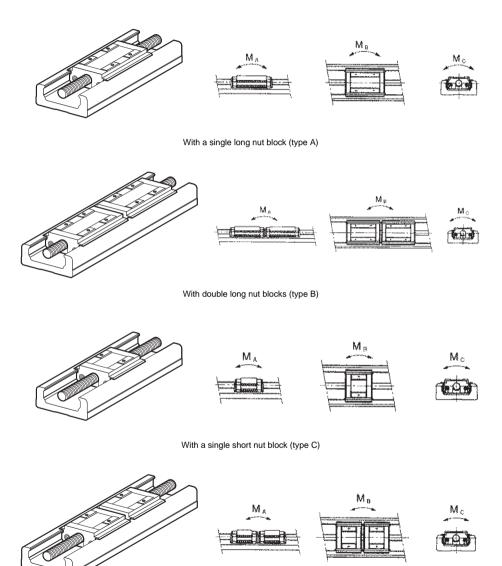
			KR	R15	KF	R20	KR26			
		Mode	el No.	KR1501	KR1502	KR2001	KR2006	KR2602	KR2606	
		Basic dynamic	Long nut block types A, B	19	30	3590		7240		
	_	load rating C (N)	Short nut block types C, D	_		_		_		
	LIM guide uriit	Basic static	Long nut block types A, B	34	50	6300		12	12150	
2	ing in:	C₀ (N)	Short nut block types C, D	-	_		_		_	
_	_	Radial clearance	Normal grade, high accuracy grade		01 to 002		03 to 002		04 to 002	
		(mm)	Precision grade	-0.005 to -0.002		-0.007 to -0.003		-0.01 to -0.004		
	Basic dynamic load rating	Normal grade, high accuracy grade	340	230	660	860	2350	1950		
		Ca (N)	Precision grade	340	230	660	1060	2350	2390	
:		Basic static load rating	Normal grade, high accuracy grade	660	410	1170	1450	4020	3510	
or or	screw unit	C₀a (N)	Precision grade	660	410	1170	1600	4020	3900	
= C	ם מ	Screw sha	ft diameter (mm)	5		6		8		
		Le	ad (mm)	1	2	1	6	2	6	
		Thread min	or diameter (mm)	4	.5	5.3	5.0	6.6	6.7	
		Ball center-to-c	center diameter (mm)	5.	15	6.15	6.3	8.3	8.4	
(chic boy!)	Axial direction		Basic dynamic load rating Ca (N)	59	90	1000		1380		
100			Static permissible load P₀a (N)	29	90	1240		1760		

Note1) The load ratings in the LM Guide unit each indicate the load rating per LM block.

Note2) The Ball Screw of precision grade (grade P) for models KR30H, KR33, KR45H10 and KR4610 is incorporated with spacer balls in the proportion of one to one.

Note3) The Ball Screw of precision grade (grade P) for models KR45H20, KR4620, KR55 and KR65 is incorporated with spacer balls in the proportion of two to one.

LM Guide Actuator Model KR


Symbols in the	parentheses	indicate units.
----------------	-------------	-----------------

KR	30H	KR	133	KR	45H	KR	46	KR55	KR65
KR30H06	KR30H10	KR3306	KR3310	KR45H10	KR45H20	KR4610	KR4620	KKSS	KKOS
116	11600 11600 23300		23300		274	100	38100	50900	
49	00	49	00	119	900	140	000	_	_
202	200	202	200	392	200	455	500	61900	80900
100	000	100	000	196	600	227	700	_	_
-0.00 +0.0		-0.0 +0.	04 to 002		06 to 003	-0.00 +0.0		-0.007 to +0.004	-0.008 to +0.004
-0.0 -0.0		-0.0 -0.		-0.0 -0.	16 to 006	-0.0 -0.0		-0.019 to -0.007	-0.022 to -0.008
2840	1760	2840	1760	3140	3040	3140	3040	3620	5680
2250	1370	2250	1370	2940	3430	2940	3430	3980	5950
4900	2840	4900	2840	6760	7150	6760	7150	9290	14500
2740	1570	2740	1570	3720	5290	3720	5290	6850	10700
1	0	1	0	1	5	1	5	20	25
6	10	6	10	10	20	10	20	20	25
7.	.8	7.	.8	12	2.5	12	5	17.5	22
10).5	10).5	15	.75	15.	75	20.75	26
17	90	17	90	66	60	6660		7600	13700
25	90	25	90	32	40	32	40	3990	5830

[Static Permissible Moment (LM Guide Unit)]

The LM Guide unit of model KR is capable of receiving moments in four directions only with a single nut block.

Table4 on A-395 shows static permissible moments in the MA, MB and Mc directions.

With double short nut blocks (type D)

LM Guide Actuator Model KR

Table4 Static Permissible Moments of Model KR

Unit: N-m

Model No.	MA	Static permissible moment	
		Мв	Mc
1/0/5			
KR15-A	12.1	12.1	38
KR15-B	70.3	70.3	76
KR20-A	31	31	83
KR20-B	176	176	165
KR26-A	84	84	208
KR26-B	480	480	416
KR30H-A	166	166	428
KR30H-B	908	908	857
KR30H-C	44	44	214
KR30H-D	319	319	427
KR33-A	166	166	428
KR33-B	908	908	857
KR33-C	44	44	214
KR33-D	319	319	427
KR45H-A	486	486	925
KR45H-B	2732	2732	1850
KR45H-C	130	130	463
KR45H-D	994	994	925
KR46-A	547	547	1400
KR46-B	2940	2940	2800
KR46-C	149	149	700
KR46-D	1010	1010	1400
KR55-A	870	870	2280
KR55-B	4890	4890	4570
KR65-A	1300	1300	3920
KR65-B	7230	7230	7840

Note1) Symbols A, B, C or D in the end of each model number indicates the nut block size and the number of nut blocks used.

B: With double long nut blocks
C: With a single short nut block
D: With double short nut block
Note2) The values for models KR - B/D indicate the values when double nut blocks are used in close contact with each other.

A: With a single long nut block

Maximum Travel Speed and the Maximum Length

The maximum travel speed of model KR is limited by the dangerous speed of the ball screw shaft and the DN value regardless of the maximum rotation speed of the motor. These factors must be taken into account especially when model KR operates at high speed.

The maximum lengths are indicated in terms of LM rail length.

Table5 Maximum Travel Speed and the Maximum Length

			Maximum travel speed (mm/s)			Maximum length(mm)		
Model No.	Ball Screw	LM rail	Precision	High-accuracy Normal grade grade	Precision	High-accuracy Normal grade grade	Precision	High-accuracy
	lead (mm)	length (mm)	grade	ng block	grade	ort block	grade	grade, normal grade
	01		160	160	OII	OIT BIOCK	_	normal grade
KR15	02		330	330			250	250
	01		190	190				
KR20	06	_	1100	790	_	 	250	250
	02	_	280	280	_		 	
KR26	06	_	830	590	_		350	350
		150	660	470	660	470		
		200	660	470	660	470		
	06	300	660	470	660	470		
	06	400	660	470	660	470		
		500	590	360	530	470		
KR30H		600	395	395	360	360	600	700
KKSUH		150	1100	790	1100	790	600	700
		200	1100	790	1100	790		
	10	300	1100	790	1100	790		
	10	400	1100	790	1100	790		
		500	980	790	880	790		
		600	650	650	600	600		
		150	660	470	660	470	600	700
		200	660	470	660	470		
	06	300	660	470	660	470		
		400	660	470	660	470		
		500	590	360	530	470		
KR33		600	395	395	360	360		
	10	150	1100	790	1100	790		
		200	1100	790	1100	790		
		300	1100	790	1100	790		
		400	1100	790	1100	790		
		500	980	790	880	790		
		600	650	650	600 740	600 520		
	10	340 440	740 740	520 520	740 740	520 520	- - - -	
		540	740	520	740	520		
KR45H		640	740	520	740	520		
		740	730	520	640	520		
		840		520	-	520		
		940		430	_	380		
	20	340	1480	1050	1480	1050	800	1200
		440	1480	1050	1480	1050		
		540	1480	1050	1480	1050		
		640	1480	1050	1480	1050		
		740	1430	1050	1280	1050		
		840		1050	_	1050		
		940	_	840	_	770		

LM Guide Actuator Model KR

			Maximum travel speed (mm/s)			Maximum length(mm)		
Model No. Ball Screw lead (mm)	LM rail length (mm)		High-accuracy grade grade	grade	High-accuracy grade Mormal grade ort block	Precision grade	High-accuracy grade, normal grade	
		340	740	520	740	520		
		440	740	520	740	520		1200
		540	740	520	740	520		
	10	640	740	520	740	520		
		740	730	520	650	520		
		840	_	520	_	520		
KR46 -		940	ı	430	_	390	800	
	20	340	1480	1050	1480	1050	800	
		440	1480	1050	1480	1050		
		540	1480	1050	1480	1050		
		640	1480	1050	1480	1050		
		740	1440	1050	1300	1050		
		940	-	1050	_	1050		
			_	840	_	780		
	20	980	1120	800	_			
KR55		1080	900	800	_			
		1180	740	740	_		1180	2000
		1280	_	620	_			
		1380	_	530	_			
KR65	25	980	1120	800	_		1380	2000
		1180	1120	800	_			
		1380	840	800	_			
		1680	_	550	_	_ _		

^{*} Any rail length greater than the standard rail length is limited by the dangerous speed. If desiring such a rail length, contact THK.

Lubrication

Table6 shows standard greases used in model KR and grease nipple types.

Table6

Model No.	Standard grease	Grease nipple
KR15	THK AFF Grease	_
KR20	THK AFA Grease	PB107
KR26	THK AFA Grease	PB107
KR30H	THK AFB-LF Grease	PB107
KR33	THK AFB-LF Grease	PB107
KR45H	THK AFB-LF Grease	A-M6F
KR46	THK AFB-LF Grease	A-M6F
KR55	THK AFB-LF Grease	A-M6F
KR65	THK AFB-LF Grease	A-M6F

Service Life

Model KR consists of an LM Guide, a Ball Screw and a support bearing. The nominal life of each component can be obtained using the basic dynamic load rating indicated in Table3 on A-392 and A-393 (Rated Load of Model KR).

(km)

[LM Guide Unit]

Nominal Life

$$L = \left(\frac{f_c \cdot C}{f_w \cdot P_c}\right)^3 \times 50$$

ı : Nominal life

> (The total travel distance that 90% of a group of identical LM Guide units independently operating under the same conditions can achieve without showing flaking)

C : Basic dynamic load rating (N) Pc : Calculated applied load (N) fw : Load factor (see Table8 on A-401) : Contact factor (see Table7 on A-401)

• If a moment is applied to model KR-A/C or model KR-B/D using two nut blocks in close contact with each other, calculate the equivalent load by multiplying the applied moment by the equivalent factor indicated in Table9 on A-401.

$$P_m = K \cdot M$$

: Equivalent load (per nut block) (N)

: Equivalent moment factor(see Table9 on A-401) K

M : Applied moment (N-mm)

> (If planning to use three or more nut blocks, or use nut blocks with a wide span, contact THK.)

If moment Mc is applied to model KR-B/D

$$P_{m} = \frac{K_{c} \cdot M_{c}}{2}$$

• If a radial load (P) and a moment are simultaneously applied to model KR

$$P_E = P_m + P$$

P_E: Total equivalent radial load (N)

Perform a nominal life calculation using the above data.

Service Life Time

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations are constant, the service life time is obtained using the equation below.

$$L_h = \frac{L \times 10^6}{2 \cdot \ell \cdot n_1 \times 60}$$

Lh : Service life time (h) ls : Stroke length (mm) : Number of reciprocations per minute(min-1)

[Ball Screw Unit/Bearing Unit(Fixed Side)]

Nominal Life

$$L = \left(\frac{Ca}{f_w \cdot Fa}\right)^3 \times 10^6$$

: Nominal life (rev)

> (The total number of revolutions that 90% of a group of identical Ball Screw units independently operating under the same conditions can achieve without showing flaking)

: Basic dynamic load rating (N) : Applied axial load (N) fw : Load factor (see Table8 on A-401)

When the nominal life has been obtained from the equation above, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

Service Life Time

$$L_h = \frac{L \cdot \ell}{2 \cdot \ell \cdot s \cdot n_1 \times 60}$$

: Service life time (h) : Stroke length (mm) : Number of reciprocations per minute(min-1) n₁ : Ball Screw lead (mm)

LM Guide Actuator Model KR

■fc: Contact Factor

If two nut blocks are used in close contact with each other with model KR-B/D, multiply the basic load rating by the corresponding contact factor indicated in Table7.

■fw: Load Factor

Table8 shows load factors.

■K: Moment Equivalent Factor (LM Guide Unit)
When model KR travels under a moment, the
distribution of load applied to the LM Guide is
locally large (see A-75). In such cases, calculate
the load by multiplying the moment value by the
corresponding moment equivalent factor indicated in Table9.

Symbols K_A , K_B and K_C indicate the moment equivalent loads in the M_A , M_B and M_C directions, respectively.

Table7 Contact Factor (fc)

Block type	Contact factor fo	
A, C type	1	
B, D type	0.81	

Table8 Load Factor (fw)

()			
Vibrations/ impact	Speed(V)	fw	
Faint	Very low V≦0.25m/s	1 to 1.2	
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5	
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2	
Strong	High V>2m/s	2 to 3.5	

Table9 Equivalent moment factor(K)

Table9 Equivalent moment factor(K)				
Model No.	KA	K _B	K c	
KR15-A	3.2 × 10 ⁻¹	3.2 × 10 ⁻¹	9.09 × 10 ⁻²	
KR15-B	5.96 × 10 ⁻²	5.96 × 10 ⁻²	9.09 × 10 ⁻²	
KR20-A	2.4 × 10 ⁻¹	2.4 × 10 ⁻¹	7.69 × 10 ⁻²	
KR20-B	4.26 × 10 ⁻²	4.26 × 10 ⁻²	7.69 × 10 ⁻²	
KR26-A	1.73 × 10 ⁻¹	1.73 × 10 ⁻¹	5.88 × 10 ⁻²	
KR26-B	3.06×10^{-2}	3.06×10^{-2}	5.88 × 10 ⁻²	
KR30H-A	1.51 × 10 ⁻¹	1.51 × 10 ⁻¹	4.78×10^{-2}	
KR30H-B	2.76 × 10 ⁻²	2.76 × 10 ⁻²	4.78×10^{-2}	
KR30H-C	2.77×10^{-1}	2.77×10^{-1}	4.78 × 10 ⁻²	
KR30H-D	3.99×10^{-2}	3.99×10^{-2}	4.78 × 10 ⁻²	
KR33-A	1.51 × 10 ⁻¹	1.51 × 10 ⁻¹	4.93×10^{-2}	
KR33-B	2.57×10^{-2}	2.57 × 10 ⁻²	4.93 × 10 ⁻²	
KR33-C	2.77 × 10 ⁻¹	2.77 × 10 ⁻¹	4.93×10^{-2}	
KR33-D	3.55×10^{-2}	3.55×10^{-2}	4.93×10^{-2}	
KR45H-A	9.83×10^{-2}	9.83×10^{-2}	3.45×10^{-2}	
KR45H-B	1.87×10^{-2}	1.87×10^{-2}	3.45×10^{-2}	
KR45H-C	1.83 × 10 ⁻¹	1.83 × 10 ⁻¹	3.45 × 10 ⁻²	
KR45H-D	2.81 × 10 ⁻²	2.81×10^{-2}	3.45×10^{-2}	
KR46-A	1.01 × 10 ⁻¹	1.01 × 10 ⁻¹	3.38×10^{-2}	
KR46-B	1.78×10^{-2}	1.78×10^{-2}	3.38×10^{-2}	
KR46-C	1.85 × 10 ⁻¹	1.85 × 10 ⁻¹	3.38×10^{-2}	
KR46-D	2.5 × 10 ⁻²	2.5 × 10 ⁻²	3.38 × 10 ⁻²	
KR55-A	8.63×10^{-2}	8.63×10^{-2}	2.83×10^{-2}	
KR55-B	1.53×10^{-2}	1.53×10^{-2}	2.83×10^{-2}	
KR65-A	7.55×10^{-2}	7.55×10^{-2}	2.14×10^{-2}	
KR65-B	1.35 × 10 ⁻²	1.35 × 10 ⁻²	2.14 × 10 ⁻²	

Note) The values for models KR-B/D indicate the values when double nut blocks are used in close contact with each other.

Static Safety Factor

[Calculating the Static Safety Factor]

LM Guide Unit

To calculate a load applied to the LM Guide of model KR, the average load required for calculating the service life and the maximum load needed for calculating the static safety factor must be obtained first. In particular, if the system starts and stops frequently, or if a large moment caused by an overhung load is applied to the system, it may receive an unexpectedly large load.

When selecting a model number, make sure that the desired model is capable of receiving the required maximum load (whether stationary or in motion).

$$f_s = \frac{C_0}{P_{max}}$$

fs : Static safety factor

C₀: Basic static load rating (N) P_{max}: Maximum applied load (N)

Ball Screw Unit/Bearing Unit(Fixed Side)

If an unexpected external force is applied in the axial direction as a result of an inertia caused by an impact or start and stop while model KR is stationary or operating, it is necessary to take into account the static safety factor.

$$f_s = \frac{C_{0a}}{F_{max}}$$

fs : Static safety factor

 C_{0a} : Basic static load rating (N) F_{max} : Maximum applied load (N)

[Standard Values for the Static Safety Factor (fs)]

Machine using the LM system	Load conditions	Lower limit of f₅
General industrial	Without vibration or impact	1 to 1.3
machinery	With vibration or impact	2 to 3

The standard value of the static safety factor may vary according to the conditions such as environment, lubrication status, mounting section accuracy or rigidity.

^{*} The basic static load rating is a static load with a constant direction and magnitude whereby the sum of the permanent deformation of the rolling element and that of the raceway on the contact area under the maximum stress is 0.0001 times the rolling element diameter.

LM Guide Actuator Model KR

Example of Calculating the Nominal Life

[Condition (Horizontal Installation)]

Assumed model number : KR 5520A

 LM Guide unit
 (C=38100N, C₀=61900N)

 Ball Screw unit
 (C₀=3620N, C₀₀=9290N)

 Bearing unit(Fixed Side)
 (C₀=7600N, P₀₀=3990N)

Mass : m = 30kg Speed : v = 500mm/s Acceleration : α =2.4m/s² Stroke : ℓ s = 1200mm Gravitational acceleration : g = 9.807m/s² Velocity diagram : see Fig.7

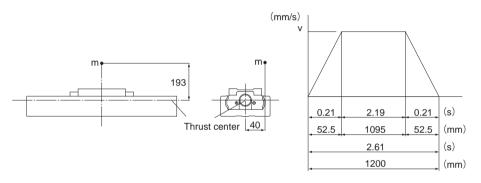


Fig.7

[Consideration]

Studying the LM Guide Unit

■Load Applied to the Nut Block

- * Assuming that a single nut block is used, convert applied moments M_A and M_B into applied load by multiplying them by the moment equivalent factor ($K_A=K_B=8.63\times 10^{\circ 2}$).
- * Assuming that a single shaft is used, convert applied moment M₀ into applied load by multiplying it by the moment equivalent factor (K₀=2.83 × 10⁻²).

During uniform motion:

$$P_1 = mg + K_c \cdot mg \times 40 = 627 \text{ N}$$

During acceleration:

$$P_{1a} = P_1 + K_A \cdot m\alpha \times 193 = 1826 \text{ N}$$

 $P_{1aT} = -K_B \cdot m\alpha \times 40 = -249 \text{ N}$

During deceleration:

$$P_{1d} = P_1 - K_A \cdot m\alpha \times 193 = -572 \text{ N}$$

$$P_{1dT} = K_B \cdot m\alpha \times 40 = 249 \text{ N}$$

* Since the groove under a load is different from the assumed groove, give "0" (zero) to P1sT and P1s.

■Combined Radial And Thrust Load

• During uniform motion:

$$P_{1E} = P_1 = 627 \text{ N}$$

During acceleration:

$$P_{1aE} = P_{1a} + P_{1aT} = 1826 \text{ N}$$

During deceleration:

$$P_{1dE} = P_{1d} + P_{1dT} = 249 \text{ N}$$

■Static Safety Factor

$$f_s = \frac{C_0}{P_{max}} = \frac{C_0}{P_{1aF}} = 33.9$$

■Nominal Life

Average load

$$P_{m} = \sqrt[3]{\frac{1}{\ell_{s}} (P_{1E}^{3} \times 1095 + P_{1aE}^{3} \times 52.5 + P_{1dE}^{3} \times 52.5)} = 790 \text{ N}$$

Nominal life

$$L = \left(\frac{C}{f_w \cdot P_m}\right)^3 \times 50 = 3.25 \times 10^6 \, \text{km}$$

(1.2)

LM Guide Actuator Model KR

Studying the Ball Screw Unit

■Axial load

During forward uniform motion:

$$Fa_1 = \mu \cdot mg + f = 11 N$$

: Friction coefficient(0.005)

: Rolling resistance of one KR block + seal resistance(10.0 N)

During forward acceleration:

$$Fa_2 = Fa_1 + m\alpha = 83 \text{ N}$$

During forward deceleration:

$$Fa_3 = Fa_1 - m\alpha = -61 \text{ N}$$

During uniform backward motion

$$Fa_4 = -Fa_1 = -11 \text{ N}$$

During backward acceleration:

$$Fa_5 = Fa_4 - m\alpha = -83 N$$

During backward deceleration:

$$Fa_6 = Fa_4 + m\alpha = 61 N$$

(N)

■Static Safety Factor

$$f_s = \frac{C_{0a}}{F_{a_{max}}} = \frac{C_{0a}}{F_{a_2}} = 111.9$$

■Buckling Load

$$P_1 = \frac{n \cdot \pi^2 \cdot E \cdot I}{\ell_a^2} \times 0.5 = 11000 \text{ N}$$

 ℓ_a^2 P₁ : Buckling load

! Distance between two mounting surfaces (1300 mm)
 ! Young's modulus (2.06×10⁵ N/mm²)
 ! Factor for mounting method (fixed-fixed: 4.0, see A-694)

0.5 : Safety factor

I : Minimum geometrical moment of inertia of the shaft (mm⁴

$$I = \frac{\pi}{64} \cdot d_1^4$$

d₁ : Screw-shaft thread minor diameter (17.5 mm)

^{*} Since the groove under a load is different from the assumed groove, give "0" (zero) to Fas, Fas and Fas.

■Permissible tensile Compressive Load

$$P_2 = \delta \cdot \frac{\pi}{4} \cdot d_1^2 = 35300 \text{ N}$$

: Permissible tensile compressive load (N) : Permissible tensile compressive stress (147 N/mm²) : Screw-shaft thread minor diameter (17.5mm)

■Dangerous Speed

$$N_1 = \frac{60 \cdot \lambda^2}{2\pi \cdot \ell_b^2} \cdot \sqrt{\frac{E \times 10^3 \cdot I}{\gamma \cdot A}} \times 0.8 = 1560 \text{ min}^{-1}$$

N₁: Dangerous speed (min-1) : Distance between two mounting surfaces (1300mm) $(7.85 \times 10^{-6} \text{kg/mm}^3)$: Density

λ : Factor according to the mounting method (fixed-supported 3.927, see A-696)

0.8 : Safety factor

■DN Value

DN=31125(≦50000)

: Ball center-to-center diameter (20.75mm): Maximum working rotation speed (1500min-1)

■Nominal Life

Average axial load

$$F_{am} = \sqrt[3]{\frac{1}{2 \cdot l_s} \left(F_{a_1}^3 \times 1095 + F_{a_2}^3 \times 52.5 + F_{a_6}^3 \times 52.5 \right)} = 26.2 \text{ N}$$

Nominal life

$$L = \left(\frac{C_a}{f_w \cdot F_{am}}\right)^3 \cdot \ell = 3.05 \times 10^7 \text{km}$$

: Load factor (1.2): Ball Screw lead (20mm)

LM Guide Actuator Model KR

Bearing Unit (Fixed Side)

■Axial Load (Same as the Ball Screw Unit)

Fa₁ = 11 N

Fa₂ = 83 N

Fa₃ = 0 N

Fa₄ = 0 N

Fa₅ = 0 N

Fa₆ = 61 N

■Static Safety Factor

$$f_s = \frac{P_{0a}}{F_{a_{max}}} = \frac{P_{0a}}{F_{a_2}} = 48.0$$

■Nominal Life

Average axial load

$$F_{am} = \sqrt[3]{\frac{1}{2 \cdot \ell_s} \left(F_{a1}^3 \times 1095 + F_{a2}^3 \times 52.5 + F_{a6}^3 \times 52.5 \right)} = 26.2 \text{ N}$$

Nominal life

$$L = \left(\frac{Ca}{f_w \cdot Fa_m}\right)^3 \times 10^6 = 1.41 \times 10^{13} \text{ rev}$$

fw : Load factor

(1.2)

 * Convert the above nominal life into the service life in travel distance of the Ball Screw.

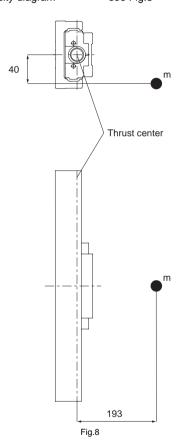
$$L_s = L \cdot \ell \times 10^{-6} = 2.82 \times 10^8 \text{ km}$$

[Result]

The table below shows the result of the examination.

KR5520A	LM guide unit	Ball screw unit	Bearing unit (Fixed side)
Static safety factor	33.9	111.9	48.0
Buckling load(N)	-	11000	_
Permissible tensile compressive load(N)	_	35300	_
Dangerous speed(min-1)	-	1560	_
DN Value	_	31125	_
Nominal life(km)	3.25 × 10 ⁶	3.05 × 10 ⁷	2.82 × 10 ⁸
Maximum axial load(N)	_	76	_
Maximum working rotation speed(min ⁻¹)	-	1500	-

Note1) From the static safety coefficient and other values above, it is judged that the assumed model can be used.


Note2) Of the rated lives of the three components, the shortest value (of LM Guide unit) is considered the nominal life of the assumed model KR 5520A.

[Condition (Vertical Installation)]

Assumed model number : KR 5520A

 $\begin{array}{lll} \text{Mass} & \text{: m = 30 kg} \\ \text{Speed} & \text{: v = 500mm/s} \\ \text{Acceleration} & \text{: } \alpha = 2.4 \text{ m/s}^2 \\ \text{Stroke} & \text{: } \ell_\text{s} = 1200 \text{ mm} \\ \text{Gravitational acceleration} & \text{: g = 9.807 m/s}^2 \end{array}$

Velocity diagram see Fig.8

LM Guide Actuator Model KR

[Consideration]

Studying the LM Guide Unit

■Load Applied to the Block

- * Assuming that a single block is used, convert applied moments M_A and M_B into applied load by multiplying them by the moment equivalent factor (K_A=K_B=8.63x10⁻²).
- During uniform motion:

$$P_1 = K_A \cdot mg \times 193 = 4900 \text{ N}$$

$$P_{1T} = K_B \cdot mq \times 40 = 1016 \text{ N}$$

During acceleration:

$$P_{1a} = P_1 + K_A \cdot m\alpha \times 193 = 6100 \text{ N}$$

$$P_{1aT} = P_{1T} + K_B \cdot m\alpha \times 40 = 1264 \text{ N}$$

During deceleration:

$$P_{1d} = P_1 - K_A \cdot m\alpha \times 193 = 3701 \text{ N}$$

$$P_{1dT} = P_{1d} - K_B \cdot m\alpha \times 40 = 767 N$$

■Combined Radial And Thrust Load

During uniform motion:

$$P_{1E} = P_1 + P_{1T} = 5916 \text{ N}$$

During acceleration:

$$P_{1aE} = P_{1a} + P_{1aT} = 7364 \text{ N}$$

During deceleration:

$$P_{1dE} = P_{1d} + P_{1dT} = 4468 \text{ N}$$

■Static Safety Factor

$$f_s = \frac{C_0}{P_{max}} = \frac{C_0}{P_{1aF}} = 8.4$$

■Nominal Life

Average load

$$P_{m} = \sqrt[3]{\frac{1}{\ell_{s}}(P_{1E}^{3} \times 1095 + P_{1aE}^{3} \times 52.5 + P_{1dE}^{3} \times 52.5)} = 5947 \text{ N}$$

Nominal life

$$L = \left(\frac{C}{f_{w} \cdot P_{m}}\right)^{3} \times 50 = 7.61 \times 10^{3} \text{ km}$$

Studying the Ball Screw Unit

■Axial Load

During upward uniform motion:

$$Fa_1 = mg + \mu \cdot mg + f = 306 N$$

During upward acceleration:

$$Fa_2 = Fa_1 + m\alpha = 378 \text{ N}$$

During upward deceleration:

Fa₃ = Fa₁ -
$$m\alpha$$
 = 234 N

During downward uniform motion:

$$Fa_4 = mg - \mu \cdot mg - f = 283 \text{ N}$$

$$Fa_5 = Fa_4 - m\alpha = 211 \text{ N}$$

$$Fa_6 = Fa_4 + m\alpha = 355 N$$

■Static Safety Factor

$$f_s = \frac{C_{0a}}{F_{max}} = \frac{C_{0a}}{F_{a2}} = 24.5$$

■Buckling Load

Same as Horizontal Installation

■Permissible Tensile Compressive Load

Same as Horizontal Installation

■Dangerous Speed

Same as Horizontal Installation

■DN Value

Same as Horizontal Installation

■Nominal Life

Average axial load

$$F_{m} = \sqrt[3]{\frac{1}{2 \cdot \ell_{s}} \left(Fa_{1}^{3} \times 1095 + Fa_{2}^{3} \times 525 + Fa_{3}^{3} \times 525 + Fa_{4}^{3} \times 1095 + Fa_{5}^{3} \times 525 + Fa_{6}^{3} \times 525 \right)} = 296 \text{ N}$$

Nominal life

$$L = \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times \ell = 2.12 \times 10^4 \,\text{km}$$

: Load factor ℓ : Lead fw (1.2)(20mm)

LM Guide Actuator Model KR

Bearing Unit (Fixed Side)

■Axial Load (Same as the Ball Screw Unit)

Fa₁ = 306 N

 $Fa_2 = 378 \text{ N}$

Fa₃ = 234 N

Fa₄ = 283 N

Fa₅ = 211 N

Fa₆ = 355 N

■Static Safety Factor

$$f_s = \frac{P_{0a}}{F_{max}} = \frac{P_{0a}}{F_{a2}} = 10.5$$

■Nominal Life

Average axial load

$$F_{m} = \sqrt[3]{\frac{1}{2 \cdot \ell_{s}} \left(F{a_{1}}^{3} \times 1095 + F{a_{2}}^{3} \times 525 + F{a_{3}}^{3} \times 525 + F{a_{4}}^{3} \times 1095 + F{a_{5}}^{3} \times 525 + F{a_{6}}^{3} \times 525 \right)} = 296 \text{ N}$$

Nominal life

$$L = \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6 = 9.80 \times 10^9 \text{ rev}$$

fw : Load factor

(1.2)

* Convert the above nominal life into the service life in travel distance of the Ball Screw.

$$L_s = L \cdot \ell \times 10^{-6} = 1.96 \times 10^5 \text{ km}$$

[Result]

The table below shows the result of the examination.

KR5520A	LM guide unit	Ball screw unit	Bearing unit (Fixed side)
Static safety factor	8.4	24.5	10.5
Buckling load(N)	_	11000	_
Permissible tensile compressive load(N)	-	35300	_
Dangerous speed(min ⁻¹)	_	1560	-
DN Value	_	31125	_
Nominal life(km)	7.61×10 ³	2.12×10⁴	1.96×10⁵
Maximum axial load(N)	_	76	_
Maximum working rotation speed(min ⁻¹)	_	1500	_

Note1) From the static safety coefficient and other values above, it is judged that the assumed model can be used. Note2) Of the rated lives of the three components, the shortest value (of LM Guide unit) is considered the nominal life of the assumed model KR 5520A.

Accuracy Standards

The accuracy of model KR is defined in positioning repeatability, positioning accuracy, backlash and running parallelism.

[Positioning Repeatability]

After repeating positioning to a given point in the same direction seven times, measure the halting point and obtain the value of half the maximum difference. Perform this measurement in the center and both ends of the travel distance, use the maximum value as the measurement value and express the value of half the maximum difference with symbol "±" as positioning repeatability.

[Positioning Accuracy]

Using the maximum stroke as the reference length, express the maximum error between the actual distance traveled from the reference point and the command value in an absolute value as positioning accuracy.

[Running of Parallelism]

Place a straightedge on the surface table where model KR is mounted, measure almost throughout the travel distance of the nut block using a test indicator. Use the maximum difference among the readings within the travel distance as the running parallelism measurement.

[Backlash]

Feed and slightly move the nut block and read the measurement on the test indicator as the reference value. Subsequently, apply a load to the nut block from the same direction (table feed direction), and then release the nut block from the load. Use the difference between the reference value and the return as the backlash measurement.

Perform this measurement in the center and near both ends, and use the maximum value as the measurement value.

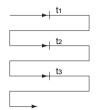


Fig.9 Positioning Repeatability

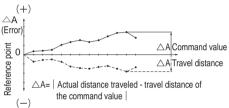


Fig.10 Positioning Accuracy

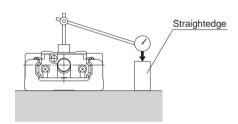


Fig.11 Running of Parallelism

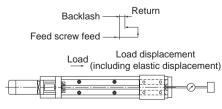


Fig.12 Backlash

LM Guide Actuator Model KR

The accuracies of model KR are classified into normal grade (no symbol), high accuracy grade (H) and precision grade (P). Tables below show standards for all the accuracies.

Table 10 Normal Grade (No Symbol)

Unit: mm

Table 10 Normal Grade (No Symbol) Unit: mm						
Model No.	Rail length	Positioning Repeatability	Positioning Accuracy	Running of parallelism	Backlash	Starting torque (N•cm)
	100		No standard	No otro le d		
KR20	150	±0.01	No standard	No standard defined	0.02	0.5
	200 ±0.01 defined d		delilled			
	150					
KR26	200	±0.01	No standard	No standard	0.02	1.5
KKZO	250	±0.01	defined	defined	0.02	1.5
	300					
	150					
	200					
KDOOLI	300	10.04	No standard	No standard	0.00	7
KR30H	400	±0.01	defined	defined	0.02	/
	500					
	600	1				
	150					
	200					
KR33	300	±0.01	No standard	No standard	0.02	7
KK33	400 ±0.01 de	defined	defined	0.02	·	
	500					
	600					
	340					
	440					
	540		No standard	No standard		
KR45H	640	±0.01	defined	defined	0.02	10
	740		delilled	delined		
	840					
	940					
	340					
	440					
KR46	540	±0.01	No standard	No standard	0.02	10
KK40	640	±0.01	defined	defined	0.02	10
	740					
	940	7				
	980					
	1080		No standard	No standard		
KR55	1180	±0.01	No standard defined	No standard defined	0.05	12
	1280		ueilileu	ueillieu		
	1380					
	980					
KR65	1180	±0.01	No standard	No standard defined	0.05	12
KINOS	1380		defined			
	1680	±0.012				15

Note1) The evaluation method complies with THK standards.

Note2) Measurement is performed using an inspection-use motor. For motor wrap types, measurement with motor wrap com-

pletion is not performed.

Note3) The starting torque represents the value when THK AFB-LF Grease is used.

However, that of models KR20 and KR26 represents the value when THK AFA Grease is used, and that of KR15 represents the value when THK AFF Grease is used.

Note4) If highly viscous grease such as vacuum grease and clean room grease is used, the actual starting torque may exceed the corresponding value in the table. Use much care in selecting a motor.

Note5) For accuracy with a rail length longer than the standard rail length, contact THK.

Model No. Rail length Positioning Repeatability Positioning Accuracy Parallelism Backlash Starting torque (N-cm)	Table11 High Accuracy Grade (H) Unit: mn						
KR15	Model No.	Rail length	Positioning Repeatability		Running of parallelism	Backlash	Starting torque (N•cm)
KR20	KR15	100 125 150 175 200	±0.004	0.04	0.02	0.01	0.4
KR26 200	KR20	150	±0.005	0.06	0.025	0.01	0.5
KR30H	KR26	200 250	±0.005	0.06	0.025	0.01	1.5
KR33	KR30H	200 300 400	±0.005	0.06	0.025	0.02	7
KR33		600		0.1	0.035		
RR45H 600 0.1 0.035 0.02 10	KR33	200 300 400	±0.005	0.06	0.025	0.02	7
KR45H		600		0.1	0.035		
R840 940	KR45H	440 540	±0.005	0.1	0.035	0.02	10
Name				0.12	0.04		
KR46		940		0.15	0.05		
940 0.15 0.05	KR46	440 540	±0.005	0.1	0.035	0.02	10
KR55 980 1080 1180 1280 1380 ±0.005 0.25 0.05 0.05 0.05 12 KR65 980 1180 1380 0.18 ±0.008 0.05 0.2 0.05 0.05 12							
KR55				0.15	0.05		
1380 980 0.18 1180 ±0.008 0.2 0.05 12	KR55	1080 1180	±0.005		0.05	0.05	12
KR65 1180 ±0.008 0.2 0.05 0.05 12		1380					
	KR65	1180	±0.008		0.05	0.05	12
				0.28	0.055		15

LM Guide Actuator Model KR

Table12 Precision Grade (P)

Unit: mm

Model No.	Rail length	Positioning	Positioning	Running of	Backlash	Starting torque
Wodel 140.	Ğ	Repeatability	Accuracy	parallelism	Dacklasii	(N·cm)
	75					
	100					
KR15	125	±0.003	0.02	0.01	0.002	0.8
14110	150	±0.000	0.02	0.01	0.002	0.0
	175					
	200					
	100					
KR20	150	±0.003	0.02	0.01	0.003	1.2
	200					
	150					
KR26	200	±0.003	0.02	0.01	0.003	4
TATALO	250	±0.000	0.02	0.01	0.000	7
	300					
	150					
	200		0.02	0.01		
KR30H	300	±0.003	0.02	0.01	0.003	15
TUTOOTT	400	±0.000			0.000	10
	500		0.025	0.015		
	600		0.025	0.013		
	150					
	200		0.02	0.01		
KR33	300	±0.003	0.02	0.01	0.003	15
KKSS	400	±0.003			0.003	13
	500		0.025	0.015		
	600		0.023	0.013		
	340					
	440		0.025	0.015		15
KR45H	540	±0.003	0.025	0.013	0.003	
	640					17
	740		0.03	0.02		17
	340					
	440		0.025	0.015		15
KR46	540	±0.003	0.025	0.015	0.003	
	640]				17
	740		0.03	0.02		17
	980		0.035	0.025		17
KR55	1080	±0.005			0.003	
	1180		0.04	0.03		20
	980		0.035	0.025		20
KR65	1180	±0.005			0.005	
	1380		0.04	0.03		22

Note1) The evaluation method complies with THK standards.

Note2) Measurement is performed using an inspection-use motor. For motor wrap types, measurement with motor wrap com-

pletion is not performed.

Note3) The starting torque represents the value when THK AFB-LF Grease is used.

However, that of models KR20 and KR26 represents the value when THK AFA Grease is used, and that of KR15 represents the value when THK AFF Grease is used.

Note4) If highly viscous grease such as vacuum grease and clean room grease is used, the actual starting torque may exceed the corresponding value in the table. Use much care in selecting a motor.

Note5) For accuracy with a rail length longer than the standard rail length, contact THK.

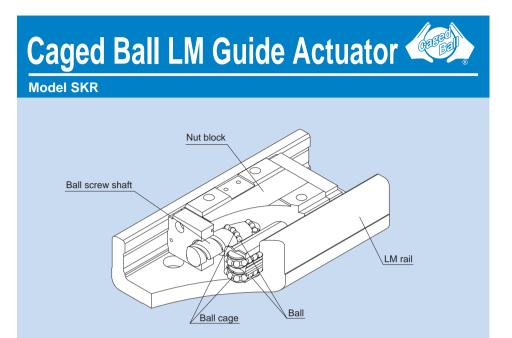


Fig.1 Structure of Caged Ball LM Guide Model SKR

Structure and Features

Caged Ball LM Guide Actuator model SKR is a compact actuator that has a nut block consisting of LM blocks and a ball screw nut integrated inside a U-shaped LM rail.

In addition, this model achieves high speed operation, lower noise and longer-term maintenance-free operation by using ball cages in the LM Guide units and the Ball Screw unit.

[4-way Equal Load]

Each train of balls is arranged at a contact angle of 45° so that the rated load on the nut block is uniform in the four directions (radial, reverse radial and lateral directions). As a result, model SKR can be used in any mounting orientation.

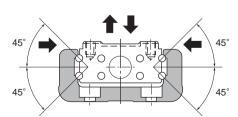
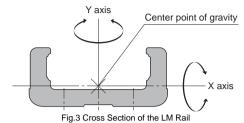



Fig.2 Load Capacity and Contact Angle of Model SKR

Caged Ball LM Guide Actuator Model SKR

[High Rigidity]

Use of an LM rail with a U-shaped cross section increases the rigidity against a moment and torsion.

[High Accuracy]

Since the linear guide section consists of 4 rows of circular-arc grooves that enable balls to smoothly move even under a preload, a highly rigid guide with no clearance is achieved. Additionally, variation in frictional resistance caused by load fluctuation is minimized, allowing the system to follow highly accurate feed.

Table1 Cross-sectional Characteristics of the LM Rail Unit: mm⁴

Model No.	lx	ly	Mass (kg/100mm)
SKR33	5.35×10⁴	3.52×10⁵	0.61
SKR46	2.05×10⁵	1.45×10 ⁶	1.26

 l_x =geometrical moment of inertia around X axis l_y =geometrical moment of inertia around Y axis

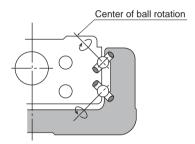
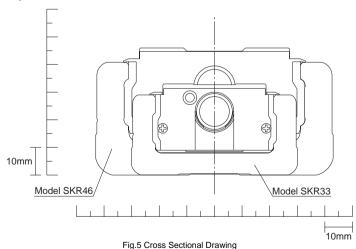



Fig.4 Contact Structure of SKR

[Space Saving]

Due to an integral structure where LM Guide units are placed on both side faces of the nut block and a Ball Screw unit is placed in the center of the nut block, a highly rigid and highly accurate actuator with a minimal space is achieved.

ТНК А-417 8 (800) 700-72-07 (бесплатно)

[High Speed]

Model SKR supports a latest high-rotation servomotor (6,000 min⁻¹) using a ball cage and is capable of operating at higher speed than the conventional model KR.

In addition, a new type with a 20 -mm lead is added to lineups of the new model SKR33 in order to achieve fast feed (formerly, only 6 mm and 10 mm ball screw leads were available for the conventional model KR33).

Table2 Maximum Travel Speed

Model No.	Ball Screw lead	LM rail length Maximum travel spee		el speed (mm/s)	Maximum	
Model No.	(mm)	(mm)	Long block	Short block	length(mm)	
		150		00		
		200		00		
		300		00		
	6	400	60	00		
		500	60	00		
		600	552	503		
		700	393	364		
		150	10	000		
		200	10	000		
		300	10	000		
SKR33	10	400		000	700	
		500	1000			
		600	920	839		
		700	656	607		
		150	2000	_		
		200	2000	_		
		300	2000	_		
	20	400	2000	_		
		500	2000	_		
		600	1780	_		
		700	1276	_		
		340	10	000		
		440		000		
	10	540		000		
	10	640	1026	914		
		740	736	667		
SKR46		940	431	400	940	
OKK40		340		000	340	
		440		000	1	
	20	540		000		
	20	640	1988	1774		
		740	1433	1300		
		940	845	784		

The maximum travel speed of model SKR is limited by the dangerous speed of the ball screw shaft despite the maximum rotation speed of the motor (6,000 min⁻¹). Take much care when using the product at high speed.

When considering the use of this model at speed higher than the maximum speed indicated above, contact THK.

Caged Ball LM Guide Actuator Model SKR

Caged Ball/Roller Technology

[High Lubricity]

Model SKR uses ball cages to eliminate friction between balls and significantly improve torque characteristics. As a result, the torque fluctuation is reduced and superb lubricity is achieved.

Item	Description
Shaft diameter/lead	φ13/10mm
Shaft rotation speed	60min⁻¹

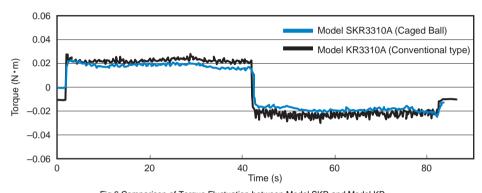


Fig.6 Comparison of Torque Fluctuation between Model SKR and Model KR

[Low Noise, Acceptable Running Sound]

Model SKR uses ball cages in the LM Guide unit and the Ball Screw unit. As a result, low noise and acceptable running sound are achieved.

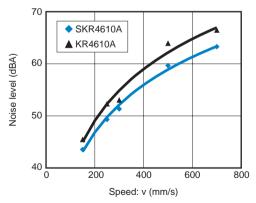


Fig.7 Comparison of Noise between Model SKR4610A and Model KR4610A

[Long-term Maintenance-free Operation]

With model SKR, the ball cage effect helps increase grease retention and achieve long-term maintenance-free operation.

[Long Service Life – 3 Times Longer (with Model *KR3310. Calculated from the Following Equation)]

With model SKR, both the LM Guide unit and the Ball Screw unit have larger basic dynamic load ratings, and therefore a longer service life is achieved.

The rated service life is calculated from the following equation.

LM guide unit		Ball screw unit	
$L=(C/P)^3\times 50$		L=(Ca/Fa)3×106	
L : Nominal life	(km)	L : Nominal life	(rev)
C : Basic dynamic load rating	(N)	Ca: Basic dynamic load rating	(N)
P : Applied load	(N)	Fa: Applied axial load	(N)

As indicated in the equation above, the greater the basic dynamic load rating, the longer the service life of both the LM Guide unit and the Ball Screw unit.

Table3 Comparison of Basic Dynamic Load Rating between Model SKR and Model KR

Unit: N

	Basic d	lynamic load rating	SKR3310	KR3310	SKR4620	KR4620
LM	guide	Long type block	17000	11600	39500	27400
unit		Short type block	11300	4900	28400	14000
	В	all screw unit	2700	1760	4240	3040

[Seal]

Model SKR is equipped with end seals and side seals for contamination protection as standard.

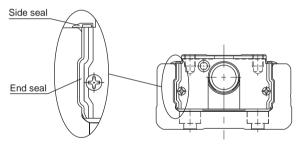
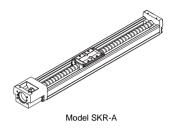


Table4 shows the rolling resistance and seal resistance per nut block (guide section).

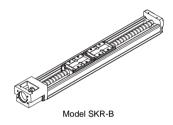
Table4 Maximum Resistance Value Unit: N

Model No.	Rolling resis- tance value	Seal resis- tance value	Total
SKR33	3.0	1.4	4.4
SKR46	2.5	1.8	4.3


Note) The rolling resistance represents the value when a lubricant is not used.

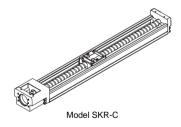
Caged Ball LM Guide Actuator Model SKR

Types and Features


Model SKR-A

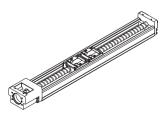
Representative model of SKR.

Model SKR-B


Equipped with two units of the nut block of model SKR-A, this model achieves higher rigidity, higher load capacity and higher accuracy.

Model SKR-C

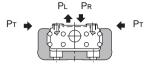
This model has a shorter overall length of the block and a longer stroke than model SKR-A.


* With model SKR3320, a short-block type is not available.

Model SKR-D

Equipped with two units of the nut block of model SKR-C, this design allows a span between blocks that suits the equipment, thus to achieve high rigidity.

* With model SKR3320, a short-block type is not available.



Model SKR-D

Load Ratings in All Directions and Permissible Moment

[Load Rating]

Caged Ball LM Guide Actuator Model SKR consists of an LM Guide, a Ball Screw and a support bearing.

LM Guide Unit

Model SKR is capable of receiving loads in four directions: radial, reverse radial and lateral directions. Its basic load ratings are equal in all four directions (radial, reverse radial and lateral directions), and their values are indicated in Table5.

Ball Screw Unit

Since the nut block is incorporated with a ball screw nut, model SKR is capable of receiving an axial load. The basic load rating value is indicated in Table5.

Bearing Unit (Fixed Side)

Since housing A contains an angular bearing, model SKR is capable of receiving an axial load. The basic load rating value is indicated in Table5.

[Equivalent Load (LM Guide Unit)]

The equivalent load when the LM Guide unit of model SKR simultaneously receives loads in all directions is obtained from the following equation.

$P_E = P_R (P_L) + P_T$

PE	: Equivalent load	(N)
----	-------------------	-----

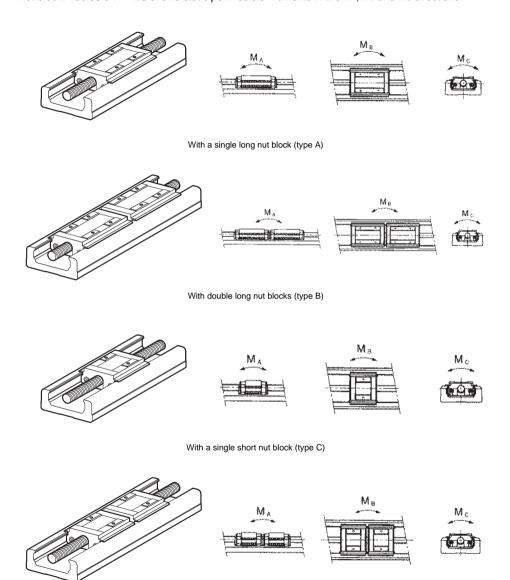
: Radial direction

: Reverse radial direction

: Lateral directions

PR	: Radiai load	(IN)
P_{L}	: Reverse radial load	(N)
P_{T}	: Lateral load	(N)

Caged Ball LM Guide Actuator Model SKR


Table5 Load Rating of Model SKR Symbols in the parentheses indicate units.

Model No.				SKR33			SKR46		
	MOGE	el INO.	SKR3306	SKR3310	SKR3320	SKR4610	SKR4620		
	Basic dynamic load rating	Long nut block types A, B	17000			39500			
	C (N)	Short nut block types C, D		11300			11300 28400		400
guide unit	Basic static load rating	Long nut block types A, B		20400		459	900		
LM gui	C ₀ (N)	Short nut block types C, D		11500		28700			
	Radial clearance (mm)	Normal grade, high accuracy grade	0 to -0.004			0 to -	0.006		
		Precision grade	-0.004 to -0.012			-0.006 to -0.016			
	Basic dynami	c load rating Ca (N)	4400	2700	2620	4350	4240		
unit	Basic static	load rating C₀a (N)	6290	3780	3770	6990	7040		
ě	Screw shaft	out diameter (mm)	13			1	5		
Ball screw unit	Le	ad (mm)	6	10	20	10	20		
Ball	Thread min	or diameter (mm)	10.8		12.5				
	Ball center-to-c	enter diameter (mm)	13.5			15.75			
Bearing unit (Fixed side)	Axial direction	Basic dynamic load rating Ca (N)	6250		6250 6700		00		
Bearing unit	7 Julia all Collon	Static permissible load P₀a (N)	2700			2700 3330		30	

Note1) The load ratings in the LM Guide unit each indicate the load rating per LM block. Note2) With model SKR3320, a short-block type is not available.

[Permissible Moment (LM Guide Unit)]

The LM Guide unit of model SKR is capable of receiving moments in four directions only with a single nut block. Table6 on A-425 shows static permissible moments in the M_A, M_B and M_C directions.

With double short nut blocks (type D)

Unit: N-m

Features of Each Model

Caged Ball LM Guide Actuator Model SKR

Model No.		Static permissible moment				
	Ma	Мв	Мс			
SKR33-A	173	173	424			
SKR33-B	990	990	848			
SKR33-C	58	58	240			
SKR33-D	390	390	480			
SKR46-A	579	579	1390			
SKR46-B	3240	3240	2780			
SKR46-C	236	236	870			
SKR46-D	1460	1460	1740			

Note1) Symbols A, B, C or D in the end of each model number indicates the nut block size and the number of nut blocks used.

- A: With a single long nut block
 B: With double long nut blocks
 C: With a single short nut block
 D: With double short nut blocks

Note2) The values for models SKR-B/D indicate the values when double nut blocks are used in close contact with each other.

Lubrication

Standard greases used in model SKR are indicated below. For model SKR, a grease nipple can be attached per your request.

Table7

Model No.	Standard grease	THK grease nipples that can be attached
SKR33	THK AFB-LF Grease	PB107
SKR46	THK AFB-LF Grease	A-M6F

Service Life

Caged Ball LM Guide Actuator Model SKR consists of an LM Guide, a Ball Screw and a support bearing. The service life of each component can be obtained using the basic dynamic load rating indicated in Table5 on A-423 (Rated Load of Model KR).

[LM Guide Unit]

Nominal Life

The nominal life (L) means the total travel distance that 90% of a group of units of the same LM Guide model can achieve without flaking (scale-like pieces on the metal surface) after individually running under the same conditions.

The nominal life of the LM Guide is obtained using the following equation.

$$L = \left(\frac{f_c \cdot C}{f_w \cdot P_c}\right)^3 \times 50$$

Pc : Calculated applied load (N)

If a moment is applied to model SKR-A/C or model SKR-B/D using two nut blocks in close contact
with each other, calculate the equivalent load by multiplying the applied moment by the equivalent
factor indicated in Table10 on A-427.

$$P_m = K \cdot M$$

P_m : Equivalent load (per nut block) (N)

K : Equivalent moment factor

M : Applied moment (N-mm)

(If planning to use three or more nut blocks, or use nut blocks with a wide span, contact THK.) If moment Mc is applied to model SKR-B/D

$$P_m = \frac{K_c \cdot M_c}{2}$$

• If a radial load (P) and a moment are simultaneously applied to model SKR

$$P_E = P_m + P$$

P_E: Overall equivalent radial load (N

Perform a nominal life calculation using the above data.

Service Life Time

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations are constant, the service life time is obtained using the equation below.

$$L_h = \frac{L \times 10^6}{2 \cdot \ell \cdot n_1 \times 60}$$

Caged Ball LM Guide Actuator Model SKR

[Ball Screw Unit/Bearing Unit(Fixed Side)]

Nominal Life

The nominal life (L) means the total travel distance that 90% of a group of units of the same Ball Screw (bearing) can achieve without flaking after individually running under the same conditions.

The nominal life of the Ball Screw unit/bearing unit (fixed side) is obtained using the following equation.

$$L = \left(\frac{Ca}{f_w \cdot Fa}\right)^3 \times 10^6$$

ı : Nominal life (rev) Ca : Basic dynamic load rating (N) F۵ : Axial load (N)

· Load factor f_{w/} (see Table8)

Table8 Load Factor (fw)

Vibrations/impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

Service Life Time

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations are constant, the service life time is obtained using the equation below.

$$L_h = \frac{L \cdot \ell}{2 \cdot \ell \cdot s \cdot n_1 \times 60}$$

Lh : Service life time (h)

: Stroke length (mm) : Number of reciprocations per minute (min-1)

: Ball Screw lead (mm)

■fc: Contact Factor

If two nut blocks are used in close contact with each other with model SKR-B/D, multiply the basic load rating by the corresponding contact factor indicated in Table9.

■fw: Load Factor

Table8 shows load factors.

■K: Moment Equivalent Factor (LM Guide Unit)

When model SKR travels under a moment, the distribution of load applied to the LM Guide is locally large. In such cases, calculate the load by multiplying the moment value by the corresponding moment equivalent factor indicated in Table10.

Symbols KA, KB and KC indicate the moment equivalent loads in the MA, MB and Mc directions, respectively.

Table9 Contact Factor (fc)

Block type	Contact factor fc
A, C type	1.0
B, D type	0.81

Table10 Equivalent moment factor(K)

			` '
Model No.	KA	K _B	K c
SKR33-A	1.42×10 ⁻¹	1.42×10 ⁻¹	5.05×10 ⁻²
SKR33-B	2.47×10 ⁻²	2.47×10 ⁻²	5.05×10 ⁻²
SKR33-C	2.39×10 ⁻¹	2.39×10 ⁻¹	5.05×10 ⁻²
SKR33-D	3.54×10 ⁻²	3.54×10 ⁻²	5.05×10 ⁻²
SKR46-A	9.51×10 ⁻²	9.51×10 ⁻²	3.46×10 ⁻²
SKR46-B	1.70×10 ⁻²	1.70×10 ⁻²	3.46×10 ⁻²
SKR46-C	1.46×10 ⁻¹	1.46×10 ⁻¹	3.46×10 ⁻²
SKR46-D	2.36×10 ⁻²	2.36×10 ⁻²	3.46×10 ⁻²

Ka: Moment equivalent factor in the Ma direction.

 K_B : Moment equivalent factor in the M_B direction.

Kc: Moment equivalent factor in the Mc direction.

Note) The values for models SKR-B/D indicate the values when double nut blocks are used in close contact with each other.

Accuracy Standards

The accuracy of model SKR is defined in positioning repeatability, positioning accuracy, backlash and running parallelism.

[Positioning Repeatability]

After repeating positioning to a given point in the same direction seven times, measure the halting point and obtain the value of half the maximum difference. Perform this measurement in the center and both ends of the travel distance, use the maximum value as the measurement value and express the value of half the maximum difference with symbol "±" as positioning repeatability.

[Positioning Accuracy]

Using the maximum stroke as the reference length, express the maximum error between the actual distance traveled from the reference point and the command value in an absolute value as positioning accuracy.

[Running of Parallelism]

Place a straightedge on the surface table where model SKR is mounted, measure almost throughout the travel distance of the nut block using a test indicator. Use the maximum difference among the readings within the travel distance as the running parallelism measurement.

[Backlash]

Feed and slightly move the nut block and read the measurement on the test indicator as the reference value. Subsequently, apply a load to the nut block from the same direction (table feed direction), and then release the nut block from the load. Use the difference between the reference value and the return as the backlash measurement.

Perform this measurement in the center and near both ends, and use the maximum value as the measurement value.

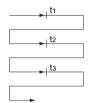
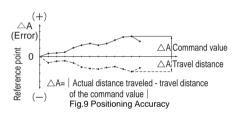



Fig.8 Positioning Repeatability

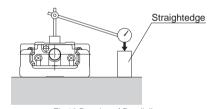
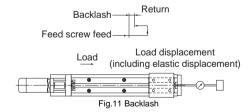



Fig.10 Running of Parallelism

Caged Ball LM Guide Actuator Model SKR

The accuracies of model SKR are classified into normal grade (no symbol), high accuracy grade (H) and precision grade (P). Tables below show standards for all the accuracies.

Table11 Normal Grade (No Symbol)

Unit: mm

Model No.	Rail length	Positioning Repeatability	Positioning Accuracy	Running of parallelism	Backlash	Starting torque (N • cm)
	150					
	200					
	300		No standard	No standard		
SKR33	400	±0.010	defined	defined	0.020	7
	500		4004	4004	,	
	600					
	700					
	340					
	440					
SKR46	540	±0.010	No standard No standard 0.020	10		
	640	_0.010	defined	defined	0.020	
	740					
	940					

Table12 High Accuracy Grade (H)

Unit: mm

Model No.	Rail length	Positioning Repeatability	Positioning Accuracy	Running of parallelism	Backlash	Starting torque (N • cm)
	150					
	200		0.060	0.025		
	300		0.000	0.023	0.020	7
SKR33	400	±0.005				
	500		0.100	0.035		
	600					
	700		0.120	0.040		
	340					
SKR46	440		0.100	0.035	0.020	
	540	±0.005	0.100	0.000		10
	640	±0.000			0.020	10
	740		0.120	0.040		
	940		0.150	0.050		

Table 13 Precision Grade (P)

Unit: mm

Table 13 Fredision Grade (F)						
Model No.	Rail length	Positioning Repeatability	Positioning Accuracy	Running of parallelism	Backlash	Starting torque (N·cm)
	150					
	200		0.020	0.010		
	300		0.020 0.010 0.003			
SKR33	400	±0.003			0.003	15
	500		0.025	0.015		
	600		0.020	0.010		
	700		0.030	0.020		
	340					
SKR46	440		0.025 0.015	15		
	540	±0.003	0.020	0.010	0.003	
	640					17
	740		0.030	0.020		17

Note1) The evaluation method complies with THK standards.

Note2) The starting torque represents the value when THK AFB-LF Grease is used.

Note3) If highly viscous grease such as vacuum grease and clean room grease is used, the actual starting torque may exceed the corresponding value in the table. Use much care in selecting a motor.

Note4) For accuracy with a rail length longer than the standard rail length, contact THK.

Options

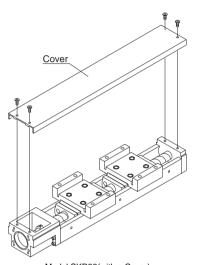
LM Guide Actuator

Various types of options are available for models KR and SKR. Select an appropriate model according to your application.

	Name	Reference page	Overview
Cover	Cover	A-431	Serve as contamination protection accessories or the
Cover	Bellows	B-302	likes
	Proximity sensor	B-309	Supporting manufacturer: Yamatake, SUNX
Sensor	Photo sensor	B-310	Supporting manufacturer: Omron
	Sensor rail	B-311	For mounting a sensor
	Housing	A-434	For standard type model KR without a motor If the customer manufactures a motor braket For motor wrap type
	Table of Motors Used in Model KR and Corresponding Motor Brackets	B-312	Supporting manufacturer: Yaskawa Electric, Mitsub- ishi Electric, Matsushita Electric, Sanyo Electric, Omron, Fanuc and Oriental Motor
Motor bracket	Motor bracket dimensional table for model KR	B-314	-
	Table of Motors Used in Model SKR and Corresponding Motor Brackets	B-336	Supporting manufacturer: Yaskawa Electric, Mitsub- ishi Electric, Matsushita Electric, Sanyo Electric, Omron, Fanuc and Oriental Motor
	Motor bracket dimensional table for model SKR	B-337	-

Table 1 Table of Applicable Options

Table 17 April able 67 Appillable Spirotte							
Model No.	Cover	Bellows	Proximity sensor	Photo sensor	Housing A for a Separate Motor	Turnaround Housing A	Intermediate Flange
KR15	0	0	0	_	_	_	0
KR20	0	0	0	0	_	_	0
KR26	0	0	0	0	_	_	0
KR30H	0	0	0	0	_	_	0
KR33	0	0	0	0	0	0	0
KR45H	0	0	0	0	_	_	0
KR46	0	0	0	0	0	0	0
KR55	0	0	0	0	_	0	0
KR65	0	0	0	0	_	0	0
SKR33	0	_	0	0	_	_	0
SKR46	0	-	0	0	_	1	0


Options

Cover

Cover

For models KR and SKR, covers are available as an option.

[Example of Installation]

Model SKR33(with a Cover)

dammy

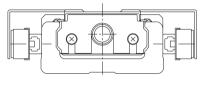
Bellows

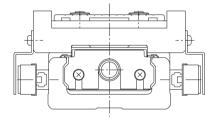
●For dimensions of the bellows, see B-302 to B-307.

For model KR, a bellows is available for contamination protection in addition to a cover.

Options

Sensor


Sensor


●For detailed dimensions, see B-308 to B-311.

Optional proximity sensors and photo sensors are available for models KR and SKR. Models equipped with a sensor are also provided with a dedicated sensor rail/sensor dog (detecting plate).

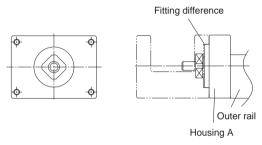
Some models with a short rail are attached with a sensor and sensor rail on both sides. See the table below.

[Example of Installation]

Model No.	Rail length
KR15A	75L
KKIJA	100L
KR15B	125L
	75L
KR20A	100L
	125L
KR20B	125L
RRZUB	150L
	100L
KR26A	125L
	150L
KR26B	175L
KKZOB	200L

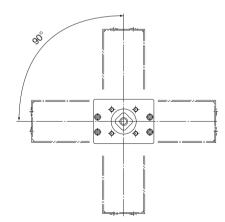
Motor Bracket

• For detailed dimensions, see B-312 to B-345.


[Housing]

Housing A

THK also offers Housing A for a separate motor and Turnaround Housing A as options in order to support a motor bracket or a turnaround section that the customer individually manufactures.


Housing A for a Separate Motor

By using the fitting difference, the user can easily mount a separately manufactured motor bracket.

Turnaround Housing A

Since the mounting holes are drilled in constant pitches, the user can select how to mount the motor bracket.

Motor Wrap Type (for Reference)

Motor wrap types are available that allow the motor to be turned around in order to minimize the dimension in the longitudinal direction. Contact THK for details. (Pulley ratio: 1:1)

XY Bracket (for Reference)

Brackets for installing models KR33 and 46 only are available as standard. The brackets use aluminum to reduce the weights and keep the inertia as low as possible.

Precautions on Use

LM Guide Actuator

Precautions on Using Models KR/SKR

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Dropping or hitting the product may damage it. Giving an impact to the product could also cause damage to its function even if the product looks intact.

[Lubrication]

- (1) Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (2) Do not mix lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.
- (5) When adopting oil lubrication, contact THK in advance.
- (6) To maximize the performance, lubrication is required. Using the product without lubrication may increase wear of the rolling elements or shorten the service life. In normal use, the lubricant must be replenished every 100 km as a guide. However, the greasing interval varies according to the conditions. We recommend determining the greasing interval based on the result of the initial inspection. For clean room applications, low dust generative AFF Grease is available. Contact THK for details.

[Precautions on Use]

- (1) Entrance of foreign material may cause damage to the ball circulating component or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (2) When planning to use the product in an environment where the coolant penetrates the nut block, contact THK in advance.
- (3) The service temperature range of this product is 0 to 40°C (no freezing or condensation). If you consider using this product outside the service temperature range, contact THK.
- (4) Exceeding the dangerous speed may lead the components to be damaged or cause an accident. Be sure to use the product within the specification range designated by THK.
- (5) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.

[Safety precautions]

- (1) If the product is operating or in the ready state, never touch a moving part. In addition, do not enter the operating area of the actuator.
- (2) If two or more people are involved in the operation, confirm the procedures such as a sequence, signs and anomalies in advance, and appoint another person for monitoring the operation.

[Storage]

When storing the product, enclose it in a package designated by THK and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.

LM Actuator

冗光K General Catalog

A Technical Descriptions of the Products

Model GL

model el	
Structure and features	A-438
 Feature of the LM Actuator Model GL 	A-438
Structure and features	A-438
 Types of the LM Actuator Model GL 	A-440
Types and Features	A-440
Point of Selection	
Load Rating	
Maximum Travel Speed	A-443
Accuracy Standards	A-443
Options	A-444
• Cover	A-444
Bellows	A-445
Endplate	A-445
Sensor	A-445
Plate Nut for Mounting the Base	A-445
Precautions on Use	Δ-446

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table			
Model GL	B-347		
 Ball Screw Drive Type 			
Long table type of model GL15	B-348		
Short table type of model GL15	B-349		
Long table type of model GL20	B-350		
Short table type of model GL20	B-351		
Belt Drive Type			
Long table type of model GL15	B-352		
Short table type of model GL15	B-353		
Long table type of model GL20	B-354		
Short table type of model GL20	B-355		
Model Number Coding	B-356		
Options	B-358		
Bellows	B-358		
Endplate	B-362		
Plate Nut for Mounting the Base	B-362		

^{*} Please see the separate "B Product Specifications".

Structure and Features

LM Actuator

Feature of the LM Actuator Model GL

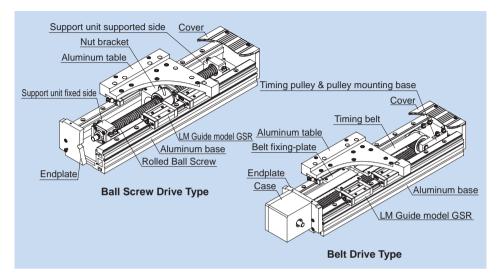


Fig.1 Structures of the Ball Screw Drive Type of Model GL and the Belt Drive Type of Model GL

Structure and Features

Model GL is a single-axis actuator that allows a ball screw drive or a belt drive to be integrated with an aluminum base on which the LM Guide model GSR is mounted. For the ball screw drive type of model GL, several ball screw leads are available to select from. The belt drive type of model GL supports a long stroke.

Model GL is used mainly in conveyance-related applications.

Belt drive type

Structure and Features

Feature of the LM Actuator Model GL

[Drive Methods are Selectable]

With model GL, two drive types are available to select from: a ball screw drive type and a belt drive

· Ball screw specifications Different ball screw leads are selectable for each model number.

	Ball Screw lead (mm)	
GL 15	5, 16, 30	
GL 20	5, 20, 40	

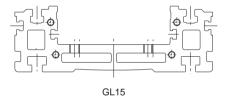
eter of the Timing Pulley

	Ball Screw lead (mm)
GL 15	5, 16, 30
GL 20	5, 20, 40

Table1 Ball Screw Leads by Model Numbers

Since it uses a highly rigid belt (wire woven),	Table2 Pitch C	ircle Diame
this type excels in high speed operation, and		Pitch circ
is not subject to restriction by dangerous speed as opposed to ball screw type. There-	GL 15	
fore , it supports a longer stroke (up to 2720	GL 20	
, ,,,	Note) When using AC servom also using a reducer. For	
different pitch circle diameter according to the model number.		

	Pitch circle diameter (P.C.D) (mm)	
GL 15	35.01	
GL 20	38.20	


motor drive, we recommend or details, contact THK.

[Lightweight, High Rigidity]

The base using an extruded aluminum material has a hollow sectional shape, thus achieving lightweight and high rigidity.

Table3 Geometrical Moment of Inertia and Mass of the Aluminum Base

	Geometrical m	Mass		
	lx (mm⁴)	l _∀ (mm⁴)	(kg/1000mm)	
GL15	2.0×10⁵	2.7×10 ⁶	5.1	
GL20	4.62×10 ⁵	4.62×10 ⁶	6.8	

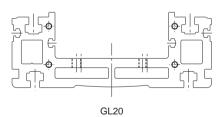
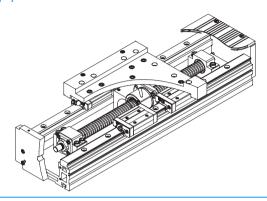
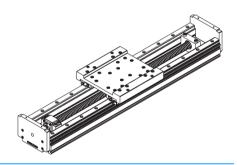
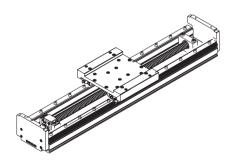



Fig.2 Cross Section of the Aluminum Base

Types of the LM Actuator Model GL


Types and Features

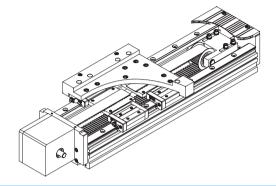
[Ball Screw Drive Type]


Long Table

This type has 4 units of LM Guide model GSR --- T (long type) attached with a dedicated table.

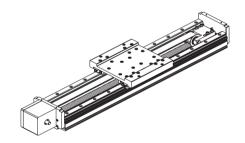
Short Table

This type has 4 units of LM Guide model GSR --- V (short type) attached with a dedicated table.

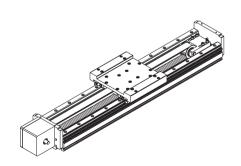

dammv

Structure and Features

Types of the LM Actuator Model GL


dammy

[Belt Drive Type]


Long Table

This type has 4 units of LM Guide model GSR --- T (long type) attached with a dedicated table.

Short Table

This type has 4 units of LM Guide model GSR --- V (short type) attached with a dedicated table.

LM Actuator

Load Rating

The following table shows the load ratings of the LM Guide, the Ball Screw and the support bearing used in model GL, which will help select a specific GL model.

[LM Guide Unit]

Model GL uses LM Guide model GSR for its guide unit.

Table1 shows the load ratings of the LM Guide model GSR used in model GL.

	Model No.	Basic dynamic load rating C (kN)	Basic static load rating C0 (kN)
GL 15	GSR 15V	4.31	5.59
	GSR 15T	5.69	8.43
GL 20	GSR 20V	7.01	8.82
	GSR 20T	9.22	13.2

Table1 Load Rating of an LM Guide

[Ball Screw Unit]

The ball screw drive type of model GL uses a THK Ball Screw for its ball screw unit.

Table2 shows the load ratings of the ball screw used in the ball screw drive type of model GL.

Table2 Load Ratings of the Ball Screw Unit

<u> </u>					
	Model No.	Basic dynamic load rating Ca (kN)	Basic static load rating C0a (kN)		
	BTK1605-2.6ZZ	5.4	13.3		
GL 15	BLK1616-3.6ZZ	10.5	25.9		
	WTF1530-2ZZ	5.6	12.4		
	BTK2005-2.6ZZ	6	16.5		
GL 20	BLK2020-3.6ZZ	7.7	22.3		
	WTF2040-2ZZ	5.4	13.6		

[Support Bearing Unit]

The ball screw drive type of model GL uses a THK Ball Screw for its ball screw unit.

Table3 shows the load ratings of the ball screw used in the ball screw drive type of model GL.

Table3 Load Ratings of and the Static Permissible Load of the Support Bearing Unit

	Model No.	Basic dynamic load rating Ca (N)	Static permissible load P₀a (N)
GL 15	GK 10	6080	2100
GL 20	GK 12	6660	2200

Maximum Travel Speed

Maximum Travel Speed

The maximum travel speed of the ball screw drive type of model GL is limited by the DN value of and the dangerous speed of the ball screw regardless of the maximum rotation speed of the motor.

Table4 Maximum Travel Speed Unit: mm/sec

Base	GL 15			GL 20		
length	Lead (mm)		Lead (mm)			
(mm)	5	16	30	5	20	40
340	248	1120	2220	ı	1	_
460	248	1120	2220	203	740	2247
580	248	1120	2220	203	740	2247
700	248	1120	2220	203	740	2247
820	248	1120	2120	203	707	2247
1060	203	667	1145	203	382	2127
1240	141	464	795	180	265	1480
1420	104	341	585	133	195	1087
1600	_	_	_	102	150	833
1780	_	_	_	81	118	660

Accuracy Standards

The accuracy of model GL is defined in terms of positioning repeatability.

[Positioning Repeatability]

After repeating positioning to a given point in the same direction seven times, measure the halting point and obtain the value of half the maximum difference. Perform this measurement in the center and both ends of the travel distance, use the maximum value as the measurement value and express the value of half the maximum difference with symbol "±" as positioning repeatability.

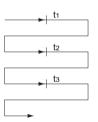


Fig.1 Positioning Repeatability

Table5 Accuracy of Each Model

Unit: mm

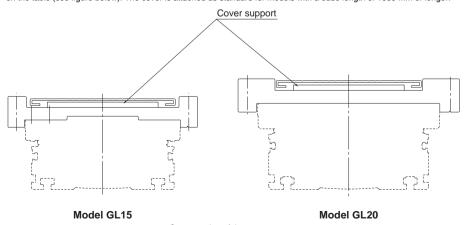
Drive method	Model No.		
Drive metriod	GL 15	GL 20	
Ball screw	±0.02	±0.02	
Belt	±0.08	±0.08	

Options

LM Actuator

Various types of options are available for model GL. Select an appropriate model according to your application.

Name	Reference page	Overview
Cover	A-444	Serve as contamination protection accessories or the
Bellows	A-445	likes
Endplate	A-445	For ball screw drive type
Sensor	A-445	Proximity sensor, photo sensor
Plate nut for mounting the base	A-445	Used for securing the base mounting bolt


Cover

For model GL, a cover is available for contamination protection from entering the top face.

Fig.1 Outline Drawing of the Cover

Greater the base length, the greater the defection of the cover. To prevent the cover from deflecting, attach a cover support on the table (see figure below). The cover is attached as standard for models with a base length of 1060 mm or longer.

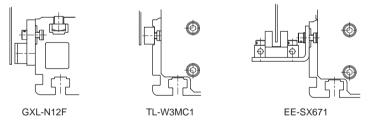
Cross section of the cover support

Options

Bellows

●For dimensions of the bellows, see B-358 to B-361.

For model GL, a bellows is available for contamination protection in addition to a cover.


Endplate

●For detailed dimensions, see B-362.

With the ball screw drive type of model GL, the end plate on the motor mounting side is machined according to the motor used. Indicate the motor to be used when placing an order to THK.

Sensor

Various types of sensors can be mounted for model GL. Contact THK for details.

Proximity sensor	GXL-N12F (SUNX) TL-W3MC1 (Omron)
Photo micro sensor	EE-SX671 (Omron)

Plate Nut for Mounting the Base

For detailed dimensions, see B-362.

For model GL, a plate nut for mounting the base is available. It is attached as standard when mode GL is delivered.

Precautions on Use

LM Actuator

[Handling]

- Disassembling parts may cause foreign material to enter the system or deteriorate the accuracy.
 Do not disassemble the product.
- (2) Dropping or hitting the LM Actuator model GL may damage it. Giving an impact to the Slide Rail could also cause damage to its function even if the product looks intact.

[Lubrication]

- (1) Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (2) Do not mix lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details. For clean room applications, low dust-generative grease is available. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.
- (5) To maximize the performance of the LM Actuator model GL, lubrication is required. Using the product without lubrication may increase wear of the rolling elements or shorten the service life.
- (6) In normal use, the lubricant must be replenished every 100 km as a guide. However, the greasing interval varies according to the conditions. We recommend determining the greasing interval based on the result of the initial inspection.

[Precautions on Use]

- (1) Entrance of foreign material may cause damage to the ball circulating component or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (2) When planning to use the LM system in an environment where the coolant penetrates the LM Actuator model GL, it may cause trouble to product functions depending on the type of the coolant. Contact THK for details.
- (3) The service temperature range of this product is 0 to 40°C (no freezing or condensation). If you consider using this product outside the service temperature range, contact THK.
- (4) When using the LM system in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.
- (5) Exceeding the permissible rotational speed may lead the components to be damaged or cause an accident. Be sure to use the product within the specification range designated by THK.

[Safety precautions]

- (1) If the product is operating or in the ready state, never touch a moving part. In addition, do not enter the operating area of the actuator.
- (2) If two or more people are involved in the operation, confirm the procedures such as a sequence, signs and anomalies in advance, and appoint another person for monitoring the operation.

[Storage]

When storing the LM Actuator model GL, enclose it in a package designated by THK and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.

Ball Spline

THK General Catalog

Ball Spline

氘岩狀 General Catalog

A Technical Descriptions of the Products

A-450	Spline shaft	Д-499
A-450		A 400
Δ-450	Rotary Ball Spline With Support Bearing type	
Δ-452	Model LTR.and LTR-A	A-500
/\ 	Structure and features	A-500
Δ-454	Types and Features	A-502
Δ-454	Service Life	Δ-502
Δ-454	Clearance in the Rotation Direction	A-503
	Accuracy Standards	A-503
	Housing Inner-diameter Tolerance	Δ-503
Λ-430 Λ 465	Spline shaft	A-503
		A-303
M-479	Point of Design	A FO4
Λ 470		
M-479	Housing Inner-diameter Tolerance	A-504
		A-505
		A FOE
···· A-482	Reyway and Mounting Holes	A-505
···· A-482	Mounting Decodure and Maintenance	4 500
	Accompling the Ball Caling	A-506
	* Mounting the Spline	A-506
	• Intelling the Opline Nut	·· A-506
···· A-484	• Installing the Spline Nut	·· A-508
···· A-485	• Installation of the Spline Shart	·· A-508
···· A-486	Outland	
···· A-489	Uptions	A-509
···· A-489	Lubrication	A-509
	Material, surface treatment	A-509
	Contamination Protection	A-509
···· A-489	Specifications of the Bellows	·· A-510
···· A-489		
	Precautions on Use	A-511
	• Handling	·· A-511
···· A-490	• Lubrication	·· A-511
···· A-490	Precautions on Use	·· A-511
···· A-492	• Storage	·· A-512
···· A-494	Other	·· A-512
··· A-494		
···· A-494		
···· A-494		
···· A-494		
۸ 406		
M-490		
M-490		
M-498		
M-499		
A-499		
	H. A-454 A-454 A-454 A-454 A-454 A-454 A-456 A-458 A-479 A-479 A-479 A-482 A-482 A-482 A-482 A-482 A-482 A-489 A-489 A-489 A-494 A-499	A-450 A-450 A-450 A-450 A-452 A-452 A-454 A-454 A-454 A-454 A-454 A-456 A-456 A-456 A-456 A-458 A-465 A-479 A-479 A-479 A-479 A-480 A-482 A-482 A-484 A-484 A-485 A-480 A-489 A-489 A-489 A-489 A-489 A-490 A-494 A-494 A-494 A-494 A-494 A-499

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	e
High Tarreys Trees Ball Culins	
High Torque Type Ball Spline	
Model LBS, LBF, LBH, LBST and LBR	B-367
Miniature Ball Spline	B-368
Model LBS (Medium Load Type)	D 300
Model EDO (Mediam Eodd Type)	Б-3/U
Model LBST (Heavy Load Type)	B-372
Model LBF (Medium Load Type)	B-374
Type LBR	B-376
Type LBH	D 070
Madall DO with Dansara and ad Obeth Field Obers	D-3/6
Model LBS with Recommended Shaft End Shape	B-380
Spline shaft	B-381
Accessories	D 201
710000001100	D-304
Medium Torque Type Ball Spline	
Models LT and LF	B-385
Model LT	B-386
Model LF	D 200
- Woder El	B-388
Model LT with Recommended Shaft End Shape.	B-390
Spline shaft	R-391
Accessories	D 303
710000001100	D-393
Rotary Ball Spline With Geared type	
Models LBG and LBGT	B-395
Models LBG and LBGT • Type LBG	B-395
Type LBG	B-396
Models LBG and LBGT Type LBG Model LBG	B-396
Type LBG Model LBG	B-396 B-398
Type LBG	B-396 B-398
Type LBG Model LBG	B-396 B-398
Type LBG Model LBG Spline shaft	B-396 B-398
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type	B-396 B-398 B-400
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A	B-396 B-398 B-400
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type	B-396 B-398 B-400 B-403 B-404
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A	B-396 B-398 B-400 B-403 B-404
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type	B-396 B-398 B-400 B-403 B-404
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR, and LTR-A Models LTR-A Compact type Model LTR	B-396 B-398 B-400 B-403 B-404 B-406
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type	B-396 B-398 B-400 B-403 B-404 B-406
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR, and LTR-A Models LTR-A Compact type Model LTR	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408
Type LBG Model LBG Spline shaft Rotary Ball Spline With Support Bearing type Model LTR,and LTR-A Models LTR-A Compact type Model LTR Spline shaft Spline shaft	B-396 B-398 B-400 B-403 B-404 B-406 B-408

^{*} Please see the separate "B Product Specifications".

Features of the Ball Spline

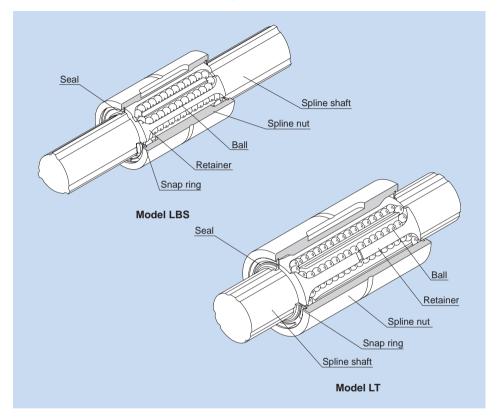
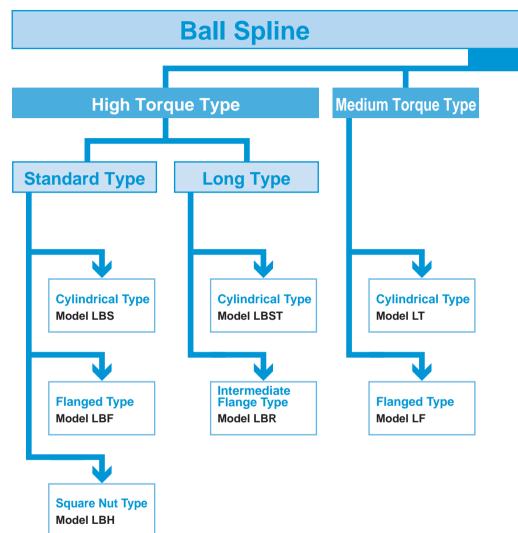


Fig.1 Structure of Ball Spline Models LBS and LT

Structure and Features

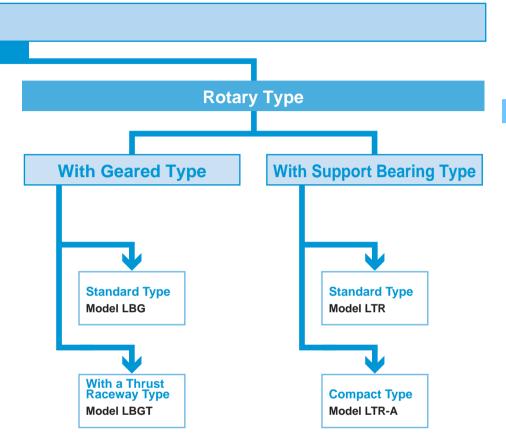
The Ball Spline is an innovative linear motion system in which balls accommodated in the spline nut transmit torque while linearly moving on precision-ground raceways on the spline shaft.


Unlike the conventional structure, a single spline nut can provide a preload with THK's Ball Spline. As a result, the Ball Spline demonstrates high performance in environments subject to vibrations and impact loads, locations where a high level of positioning accuracy is required or areas where high-speed kinetic performance is required.

In addition, even when used as an alternative to a linear bushing, the Ball Spline achieves a rated load more than 10 times greater than the linear bushing with the same shaft diameter, allowing it to compactly be designed and used in locations where an overhung load or a moment load is applied. Thus, the Ball Spline provides a high degree of safety and long service life.

Features and Types

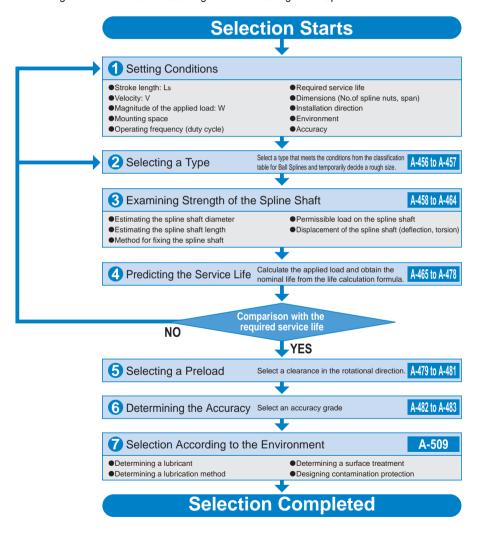
Features of the Ball Spline


Classification of Ball Splines

Features and Types

Classification of Ball Splines

dammy



Ball Spline

Flowchart for Selecting a Ball Spline

Steps for Selecting a Ball Spline

The following is a flowchart as a measuring stick for selecting a Ball Spline.

Selecting a Type

There are three types of the Ball Spline: high torque type, medium torque type and rotary type. You can choose a type according to the intended use. In addition, wide arrays of spline nut shapes are available for each type, enabling the user to choose a desired shape according to the mounting or service requirements.

	Classification	Туре	Shape	Shaft diameter
		Type LBS Type LBST		Nominal shaft diameter 6 to 150mm
High torque type		Type LBF		Nominal shaft diameter 15 to 100mm
High tor	0000	Type LBR		Nominal shaft diameter 15 to 100mm
		Type LBH		Nominal shaft diameter 15 to 50mm
Medium torque type		Type LT		Nominal shaft diameter 4 to 100mm
Medium to		Type LF		Nominal shaft diameter 6 to 50mm
Rotary type	Rotation	Type LBG Type LBGT		Nominal shaft diameter 20 to 85mm
Rotary	Rotation	Type LTR-A Type LTR		Nominal shaft diameter 8 to 60mm

^{*}For specification tables for each model, please see the separate "B Product Specifications".

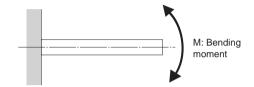
Flowchart for Selecting a Ball Spline

Specification Table	Structure and features	Major application	
B-368	 The spline shaft has three crests equidistantly formed at angles of 120°. On both 	Column and arm of industrial robot	
B-374	sides of each crest, two rows (six rows in total) of balls are arranged to hold the crest from both sides. The angular-contact design of the ball contact areas allows an appropriate preload to be evenly applied. Since the balls circulate inside the spline nut, the outer dimensions of the spline nut are	Automatic loader Transfer machine Automatic conveyance system Tire molding machine Spindle of spot-welding machine Guide shaft of high-speed automatic coating	
B-376	 compactly designed. Even under a large preload, smooth straight motion is achieved. Since the contact angle is large (45°) and the displacement is minimal, high rigidity is achieved. 	machine Riveting machine Wire winder Work head of electric discharge machine Spindle drive shaft of grinding machine Speed gears	
B-378	 No angular backlash occurs. Capable of transmitting a large torque. 	Precision indexing machine	
B-386	• The spline shaft has two to three crests. On both sides of each crest, two rows (four to six rows in total) of balls are arranged to hold the crest from both sides. This design allows an	Die-set shaft and similar applications requiring straight motion under a heavy load Loading system and similar applications requiring rotation to a	
B-388	 appropriate preload to be evenly applied. The contact angle of 20° and an appropriate preload level eliminate angular backlash, providing high-torque moment rigidity. 	given angle at a fixed position • Automatic gas-welding machine spindle and similar applications requiring a whiri-stop on one shaft machine • Automatic filler • XY recorders • Automatic spinner • Optical measuring instrument	
B-396	A unit type that has the same contact structure as model LBS. The flange circumference on the spline nut is machined to have gear teeth, and radial and thrust needle bearings are compactly combined on the circumference of the spline nut.	Speed gears for high torque transmission	
B-404	A lightweight and compact type based on model LT, but has a spline nut circumference machined to have angular-contact type ball raceways to accommodate support bearings.	Z axis of scalar robotWire winder	

Studying the Spline Shaft Strength

The spline shaft of the Ball Spline is a compound shaft capable of receiving a radial load and torque. When the load and torque are large, the spline shaft strength must be taken into account.

[Spline Shaft Receiving a Bending Load]


When a bending load is applied to the spline shaft of a Ball Spline, obtain the spline shaft diameter using the equation (1) below.

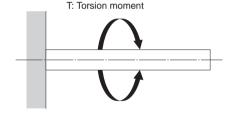
$$\mathbf{M} = \mathbf{\sigma} \cdot \mathbf{Z}$$
 and $\mathbf{Z} = \frac{\mathbf{M}}{\mathbf{\sigma}}$ (1)

M : Maximum bending moment acting on the spline shaft (N-mm)

 σ : Permissible bending stress of the spline shaft (98N/mm²)

Z : Modulus section factor of the spline shaft (mm³) (see Table3 on A-463 and Table4 on A-464)

[Spline Shaft Receiving a Torsion Load]


When a torsion load is applied on the spline shaft of a Ball Spline, obtain the spline shaft diameter using the equation (2) below.

$$T = \tau_a \cdot Z_P$$
 and $Z_P = \frac{T}{\tau_a}$ (2)

T : Maximum torsion moment (N-mm)

 $\tau_{\rm a}$: Permissible torsion stress of the spline shaft (49N/mm²)

 Z_p : Polar modulus of section of the spline nut (mm³) (see Table3 on A-463 and Table4 on A-464)

Flowchart for Selecting a Ball Spline

When the Spline Shaft Simultaneously Receives a Bending Load and a Torsion Load

When the spline shaft of a Ball Spline receives a bending load and a torsion load simultaneously, calculate two separate spline shaft diameters: one for the equivalent bending moment (M_e) and the other for the equivalent torsion moment (T_o). Then, use the greater value as the spline shaft diameter.

Equivalent bending moment

$$M_o = \frac{M + \sqrt{M^2 + T^2}}{2} = \frac{M}{2} \left\{ 1 + \sqrt{1 + \left(\frac{T}{M}\right)^2} \right\} \dots (3)$$

 $M_e = \sigma \cdot Z$

Equivalent torsion moment

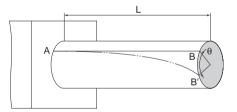
$$T_o = \sqrt{M^2 + T^2} = M \cdot \sqrt{1 + \left(\frac{T}{M}\right)^2} \cdots (4)$$

 $T_e = \tau_a \cdot Z_p$

[Rigidity of the Spline Shaft]

The rigidity of the spline shaft is expressed as a torsion angle per meter of shaft length. Its value should be limited within 1°/4.

$$\mbox{Rigidity of the shaft} = \frac{\mbox{Torsion angle}}{\mbox{Unit length}} = \frac{\theta \cdot \ell}{L} < \frac{\mbox{1}^{\circ}}{4}$$


θ : Torsion angle (°)

: Spline shaft length L (mm) G : Transverse elastic modulus

(7.9 × 104N/mm2) l : Unit length (1000mm) : Polar moment of inertia (mm⁴)

(see Table3 on A-463 and Table4

on A-464)

[Deflection and Deflection Angle of the Spline Shaft]

The deflection and deflection angle of the Ball Spline shaft need to be calculated using equations that meet the relevant conditions. Table1 and Table2 represent these conditions and the corresponding equations.

Table3 and Table4 (A-463 and A-464) show the modulus section (Z) and the geometrical moments of inertia (I) of the spline shaft. Using Z and I values in the tables, the strength and displacement (deflection) of a typical Ball Spline model can be obtained.

Table1 Deflection and Deflection Angle Equations

Support method	Condition	Deflection equation	Deflection angle equation
Both ends free	VE U.2 P 12	$\delta_{\text{max}} = \frac{P\ell^3}{48\text{EI}}$	$i_1 = 0$ $i_2 = \frac{P\ell^2}{16EI}$
Both ends fas- tened	l l	$\delta_{\text{max}} = \frac{P\ell^3}{192\text{EI}}$	i ₁ = 0 i ₂ = 0
Both ends free	Uniform load p	$\delta_{\text{max}} = \frac{5p\ell^4}{384\text{EI}}$	$i_2 = \frac{p\ell^3}{24EI}$
Both ends fas- tened	Uniform load p	$\delta_{\text{max}} = \frac{p \ell^4}{384 \text{EI}}$	i ₂ = 0

Table2 Deflection and Deflection Angle Equations

Support method	Condition	Deflection equation	Deflection angle equation
One end fas- tened	Nama S	$\delta_{\text{max}} = \frac{P\ell^3}{3EI}$	$i_1 = \frac{P\ell^2}{2EI}$ $i_2 = 0$
One end fas- tened	Uniform load p	$\delta_{\text{max}} = \frac{P\ell^4}{8EI}$	$i_1 = \frac{P\ell^3}{6EI}$ $i_2 = 0$
Both ends free	Xem of the second of the secon	$\delta_{\text{max}} = \frac{\sqrt{3} \text{Mo} \ell^2}{216 \text{EI}}$	$i_1 = \frac{M_0 \ell}{12EI}$ $i_2 = \frac{M_0 \ell}{24EI}$
Both ends fas- tened	We will the second of the seco	$\delta_{\text{max}} = \frac{M_0 \ell^2}{216 \text{EI}}$	$i_1 = \frac{M_0 \ell}{16EI}$ $i_2 = 0$

 δ_{max} : Maximum deflection(mm)

Mo: Moment(N-mm)

ℓ: Span (mm)

I: Geometrical moment of inertia(mm4)

i: Deflection angle at loading point

i2: Deflection angle at supporting point

P: Concentrated load(N)

p: Uniform load(N/mm)

E: Modulus of longitudinal elasticity 2.06×10⁵

 (N/mm^2)

[Dangerous Speed of the Spline Shaft]

When a Ball Spline shaft is used to transmit power while rotating, as the rotational speed of the shaft increases, the rotation cycle nears the natural frequency of the spline shaft. It may cause resonance and eventually result in inability to move. Therefore, the maximum shaft speed must be limited to a level that does not cause resonance. If the shaft's rotation cycle exceeds or nears the resonance point during operation, it is necessary to reconsider the spline shaft diameter. The critical speed of the spline shaft is obtained using the equation (6) below, in which the value is multiplied by a safety factor of 0.8.

Critical Speed

lь

$$N_{c} = \frac{60\lambda^{2}}{2\pi \cdot \ell_{b}^{2}} \cdot \sqrt{\frac{E \times 10^{3} \cdot I}{\gamma \cdot A}} \times 0.8 \quad \cdots (6)$$

Nc : Dangerous speed (min-1)

: Distance between two mounting surfaces

Ε : Young's modulus (2.06×10⁵ N/mm²) ı

: Minimum geometrical moment of

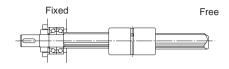
inertia of the shaft (mm⁴)

$$I = \frac{\pi}{64} d^4 \qquad \text{d:Minor diameter} \qquad \text{(mm)}$$

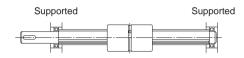
(see Table7 and Table8 on A-468)

: Density (specific gravity) $(7.85 \times 10^{-6} \text{kg/mm}^3)$

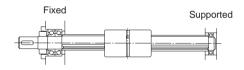
$$A = \frac{\pi}{4} d^2 \qquad \text{d: Minor diameter} \qquad \text{(mm)}$$
 (see Table7 and Table8 on A-468)

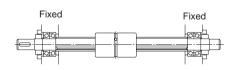

Α : Spline shaft cross-sectional area (mm²) λ. : Factor according to the mounting method

(1)Fixed - free


(2) Supported - supported λ =3.142

(3) Fixed - supported $\lambda = 3.927$


(4)Fixed - fixed $\lambda = 4.73$


Fixed - free

Supported - supported

Fixed - supported

Fixed - fixed

Flowchart for Selecting a Ball Spline

[Cross-sectional Characteristics of the Spline Shaft]

 Cross-sectional Characteristics of the Spline Shaft for Ball Spline Models LBS, LBST, LBF, LBR, LBH, LBG and LBGT

Table3 Cross-sectional Characteristics of the Spline Shaft for Models LBS, LBST, LBF, LBR, LBH, LBG and LBGT

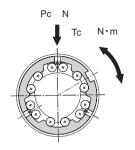
Nominal shaft diar	Nominal shaft diameter		Z: Modulus section mm³	l _F : Polar momentof inertia mm⁴	Z _P : Section modulus mm³
6	Solid shaft	50.6	17.8	1.03×10 ²	36.2
8	Solid shaft	1.64×10 ²	42.9	3.35×10 ²	87.8
10	Solid shaft	3.32×10 ²	73.0	6.80×10 ²	1.50×10 ²
15	Solid shaft	1.27×10 ³	2.00×10 ²	2.55×10 ³	4.03×10 ²
20	Solid shaft	3.82×10 ³	4.58×10 ²	7.72×10 ³	9.26×10 ²
20	Hollow shaft	3.79×10 ³	4.56×10 ²	7.59×10³	9.11×10 ²
25	Solid shaft	9.62×10³	9.14×10 ²	1.94×10⁴	1.85×10³
25	Hollow shaft	9.50×10³	9.05×10 ²	1.90×10⁴	1.81×10 ³
30	Solid shaft	1.87×10⁴	1.50×10 ³	3.77×10⁴	3.04×10 ³
30	Hollow shaft	1.78×10⁴	1.44×10 ³	3.57×10⁴	2.88×10 ³
40	Solid shaft	6.17×10⁴	3.69×10 ³	1.25×10⁵	7.46×10 ³
40	Hollow shaft	5.71×10⁴	3.42×10 ³	1.14×10⁵	6.84×10³
50	Solid shaft	1.49×10⁵	7.15×10³	3.01×10⁵	1.45×10⁴
30	Hollow shaft	1.34×10⁵	6.46×10³	2.69×10⁵	1.29×10⁴
60	Solid shaft	3.17×10⁵	1.26×10 ⁴	6.33×10⁵	2.53×10 ⁴
60	Hollow shaft	2.77×10⁵	1.11×10⁴	5.54×10⁵	2.21×10 ⁴
70	Solid shaft	5.77×10⁵	1.97×10⁴	1.16×10 ⁶	3.99×10⁴
70	Hollow shaft	5.07×10⁵	1.74×10 ⁴	1.01×10 ⁶	3.49×10 ⁴
85	Solid shaft	1.33×10 ⁶	3.69×10⁴	2.62×10 ⁶	7.32×10⁴
65	Hollow shaft	1.11×10 ⁶	3.10×10⁴	2.22×10 ⁶	6.20×10 ⁴
100	Solid shaft	2.69×10 ⁶	6.25×10⁴	5.33×10 ⁶	1.25×10⁵
100	Hollow shaft	2.18×10 ⁶	5.10×10⁴	4.37×10 ⁶	1.02×10⁵
120	Solid shaft	5.95×10 ⁶	1.13×10⁵	1.18×10 ⁷	2.26×10⁵
120	Hollow shaft	5.28×10 ⁶	1.01×10 ⁵	1.06×10 ⁷	2.02×10⁵
150	Solid shaft	1.61×10 ⁷	2.40×10 ⁵	3.20×10 ⁷	4.76×10⁵
130	Hollow shaft	1.40×10 ⁷	2.08×10 ⁵	2.79×10 ⁷	4.16×10⁵

Note) For the hole-shape of the hollow spline shaft, see B-381 and B-400.

Cross-sectional Characteristics of the Spline Shaft for Ball Spline Models LT, LF, LTR and LTR-A

Table4 Cross-sectional Characteristics of the Spline Shaft for Models LT, LF, LTR and LTR-A

Mmm	Nor	minal shaft dian	neter	I: Geometrical moment of inertia	Z: Modulus section	I _P : Polar moment of inertia	Z _P : Section modulus		
Solid shaft	1401	_							
Solid shaft	4	Solid shaft		11.39	5.84	22.78	11.68		
Hollow shaft Type K S5.87 18.9 1.16×10° 39.20	5	Solid shaft		Solid shaft		27.88	11.43	55.76	22.85
Hollow shaft Type K 55.87 18.9 1.16×10° 39.20		Solid shaft		57.80	19.7	1.19×10 ²	40.50		
Hollow shaft Type K 1.81×10² 46.0 3.74×10² 94.60	6	6		55.87	18.9	1.16×10 ²	39.20		
Hollow shaft Type K 1.81×10² 46.0 3.74×10² 94.60	0	Solid shaft		1.86×10 ²	47.4	3.81×10 ²	96.60		
Hollow shaft Type K	8	Hollow shaft	Type K	1.81×10 ²	46.0	3.74×10 ²	94.60		
Hollow shaft Type K	10	Solid shaft		4.54×10 ²	92.6	9.32×10 ²	1.89×10 ²		
Hollow shaft Type K	10	Hollow shaft	Type K	4.41×10 ²	89.5	9.09×10 ²	1.84×10 ²		
Hollow shaft Type K	10	Solid shaft		1.32×10 ³	2.09×10 ²	2.70×10 ³	4.19×10 ²		
Hollow shaft Type K 2.97 \times 10 3.75 \times 10^2 5.95 \times 10^3 7.51 \times 10^2	13	Hollow shaft	Type K	1.29×10 ³	2.00×10 ²	2.63×10 ³	4.09×10 ²		
Hollow shaft Type N 2.37×10³ 2.99×10² 4.74×10³ 5.99×10²		Solid shaft		3.09×10 ³	3.90×10 ²	6.18×10 ³	7.80×10 ²		
Type N 2.37×10³ 2.99×10² 4.74×10³ 5.99×10²	16	11-11	Type K	2.97×10 ³	3.75×10 ²	5.95×10 ³	7.51×10 ²		
Type K		Hollow Shall	Type N	2.37×10 ³	2.99×10 ²	4.74×10 ³	5.99×10 ²		
Hollow shaft Type N 5.72×10³ 5.77×10² 1.14×10⁴ 1.15×10³		Solid shaft		7.61×10 ³	7.67×10 ²	1.52×10⁴	1.53×10 ³		
Type N 5.72×10³ 5.77×10² 1.14×10⁴ 1.15×10³	20	11-11	Type K	7.12×10 ³	7.18×10 ²	1.42×10⁴	1.43×10 ³		
Type K		Hollow shart	Type N	5.72×10 ³	5.77×10 ²	1.14×10⁴	1.15×10 ³		
Hollow shaft		Solid shaft		1.86×10 ⁴	1.50×10 ³	3.71×10 ⁴	2.99×10 ³		
Type N	25	11-11	Type K	1.75×10⁴	1.41×10 ³	3.51×10⁴	2.83×10 ³		
Solid shaft		Hollow shart	Type N	1.34×10⁴	1.08×10 ³	2.68×10⁴	2.16×10 ³		
Hollow shaft Type N 2.90×10 ⁴ 1.95×10 ³ 5.80×10 ⁴ 3.89×10 ³ Solid shaft 5.01×10 ⁴ 3.15×10 ³ 9.90×10 ⁴ 6.27×10 ³ Hollow shaft Type K 4.50×10 ⁴ 2.83×10 ³ 8.87×10 ⁴ 5.61×10 ³ Type N 3.64×10 ⁴ 2.29×10 ³ 7.15×10 ⁴ 4.53×10 ³ Solid shaft 1.22×10 ⁵ 6.14×10 ³ 2.40×10 ⁵ 1.21×10 ⁴ Hollow shaft Type K 1.10×10 ⁵ 5.55×10 ³ 2.17×10 ⁵ 1.10×10 ⁴ Type N 8.70×10 ⁴ 4.39×10 ³ 1.71×10 ⁵ 8.64×10 ³ Solid shaft 2.97×10 ⁵ 1.20×10 ⁴ 5.94×10 ⁵ 2.40×10 ⁴ Hollow shaft Type K 2.78×10 ⁵ 1.12×10 ⁴ 5.56×10 ⁵ 2.24×10 ⁴ Hollow shaft 6.16×10 ⁵ 2.07×10 ⁴ 1.23×10 ⁶ 4.14×10 ⁴ Hollow shaft Type K 5.56×10 ⁵ 1.90×10 ⁴ 1.13×10 ⁶ 3.79×10 ⁴ Solid shaft 1.95×10 ⁶ 4.91×10 ⁴ 3.90×10 ⁶ 9.82×10 ⁴ Hollow shaft Type K 1.58×10 ⁶ 3.97×10 ⁴ 3.15×10 ⁶ 7.95×10 ⁴		Solid shaft		3.86×10⁴	2.59×10 ³	7.71×10 ⁴	5.18×10 ³		
Type N 2.90×10 ⁴ 1.95×10 ³ 5.80×10 ⁴ 3.89×10 ³	30	Type K		3.53×10⁴	2.37×10 ³	7.07×10 ⁴	4.74×10 ³		
Type K 4.50×10 ⁴ 2.83×10 ³ 8.87×10 ⁴ 5.61×10 ³		Hollow Shall	Type N	2.90×10 ⁴	1.95×10 ³	5.80×10⁴	3.89×10 ³		
Hollow shaft Type N 3.64×10 ⁴ 2.29×10 ³ 7.15×10 ⁴ 4.53×10 ³ Solid shaft 1.22×10 ⁵ 6.14×10 ³ 2.40×10 ⁵ 1.21×10 ⁴ Hollow shaft Type K 1.10×10 ⁵ 5.55×10 ³ 2.17×10 ⁵ 1.10×10 ⁴ Type N 8.70×10 ⁴ 4.39×10 ³ 1.71×10 ⁵ 8.64×10 ³ Solid shaft 2.97×10 ⁵ 1.20×10 ⁴ 5.94×10 ⁵ 2.40×10 ⁴ Hollow shaft Type K 2.78×10 ⁵ 1.12×10 ⁴ 5.56×10 ⁵ 2.24×10 ⁴ Type N 2.14×10 ⁵ 8.63×10 ³ 4.29×10 ⁵ 1.73×10 ⁴ Hollow shaft Type K 5.56×10 ⁵ 2.07×10 ⁴ 1.23×10 ⁶ 4.14×10 ⁴ Hollow shaft Type K 5.56×10 ⁵ 1.90×10 ⁴ 1.13×10 ⁶ 3.79×10 ⁴ Solid shaft 1.95×10 ⁶ 4.91×10 ⁴ 3.90×10 ⁵ 9.82×10 ⁴ Hollow shaft Type K 1.58×10 ⁶ 3.97×10 ⁴ 3.15×10 ⁶ 7.95×10 ⁴		Solid shaft		5.01×10⁴	3.15×10 ³	9.90×10⁴	6.27×10 ³		
Type N 3.64×10 ⁴ 2.29×10 ³ 7.15×10 ⁴ 4.53×10 ³	32	11-11	Type K	4.50×10⁴	2.83×10 ³	8.87×10 ⁴	5.61×10 ³		
Hollow shaft Type K 1.10×10 ⁵ 5.55×10 ³ 2.17×10 ⁵ 1.10×10 ⁴ Type N 8.70×10 ⁴ 4.39×10 ³ 1.71×10 ⁵ 8.64×10 ³ Solid shaft 2.97×10 ⁵ 1.20×10 ⁴ 5.94×10 ⁵ 2.40×10 ⁴ Hollow shaft Type K 2.78×10 ⁵ 1.12×10 ⁴ 5.56×10 ⁵ 2.24×10 ⁴ Type N 2.14×10 ⁵ 8.63×10 ³ 4.29×10 ⁵ 1.73×10 ⁴ Solid shaft 6.16×10 ⁵ 2.07×10 ⁴ 1.23×10 ⁶ 4.14×10 ⁴ Hollow shaft Type K 5.56×10 ⁵ 1.90×10 ⁴ 1.13×10 ⁶ 3.79×10 ⁴ Solid shaft 1.95×10 ⁶ 4.91×10 ⁴ 3.90×10 ⁶ 9.82×10 ⁴ Hollow shaft Type K 1.58×10 ⁶ 3.97×10 ⁴ 3.15×10 ⁶ 7.95×10 ⁴		Hollow shart	Type N	3.64×10 ⁴	2.29×10 ³	7.15×10⁴	4.53×10 ³		
Hollow shaft Type N 8.70×10 ⁴ 4.39×10 ³ 1.71×10 ⁵ 8.64×10 ³		Solid shaft		1.22×10 ⁵	6.14×10 ³	2.40×10 ⁵	1.21×10⁴		
Type N 8.70×10 ⁴ 4.39×10 ³ 1.71×10 ⁵ 8.64×10 ³ Solid shaft 2.97×10 ⁵ 1.20×10 ⁴ 5.94×10 ⁵ 2.40×10 ⁴ Hollow shaft Type K 2.78×10 ⁵ 1.12×10 ⁴ 5.56×10 ⁵ 2.24×10 ⁴ Type N 2.14×10 ⁵ 8.63×10 ³ 4.29×10 ⁵ 1.73×10 ⁴ Solid shaft 6.16×10 ⁵ 2.07×10 ⁴ 1.23×10 ⁶ 4.14×10 ⁴ Hollow shaft Type K 5.56×10 ⁵ 1.90×10 ⁴ 1.13×10 ⁶ 3.79×10 ⁴ Solid shaft 1.95×10 ⁶ 4.91×10 ⁴ 3.90×10 ⁶ 9.82×10 ⁴ Hollow shaft Type K 1.58×10 ⁶ 3.97×10 ⁴ 3.15×10 ⁶ 7.95×10 ⁴	40	11-11-11-11	Type K	1.10×10 ⁵	5.55×10 ³	2.17×10 ⁵	1.10×10⁴		
50 Hollow shaft Type K 2.78×10 ⁵ 1.12×10 ⁴ 5.56×10 ⁵ 2.24×10 ⁴ 60 Solid shaft 6.16×10 ⁵ 2.07×10 ⁴ 1.23×10 ⁶ 4.14×10 ⁴ Hollow shaft Type K 5.56×10 ⁵ 1.90×10 ⁴ 1.13×10 ⁶ 3.79×10 ⁴ 80 Solid shaft 1.95×10 ⁶ 4.91×10 ⁴ 3.90×10 ⁶ 9.82×10 ⁴ Hollow shaft Type K 1.58×10 ⁶ 3.97×10 ⁴ 3.15×10 ⁶ 7.95×10 ⁴		Hollow shart	Type N	8.70×10⁴	4.39×10³	1.71×10 ⁵	8.64×10 ³		
Hollow shaft Type N 2.14×10 ⁶ 8.63×10 ³ 4.29×10 ⁶ 1.73×10 ⁴		Solid shaft		2.97×10 ⁵	1.20×10⁴	5.94×10⁵	2.40×10 ⁴		
Type N 2.14×10 ⁵ 8.63×10 ³ 4.29×10 ⁵ 1.73×10 ⁴	50	Hallam aka "	Type K	2.78×10 ⁵	1.12×10⁴	5.56×10⁵	2.24×10⁴		
60 Hollow shaft Type K 5.56×10 ^s 1.90×10 ^a 1.13×10 ^s 3.79×10 ^a 80 Solid shaft 1.95×10 ^s 4.91×10 ^a 3.90×10 ^s 9.82×10 ^a Hollow shaft Type K 1.58×10 ^s 3.97×10 ^a 3.15×10 ^s 7.95×10 ^a		Hollow shart	Type N	2.14×10⁵	8.63×10 ³	4.29×10⁵	1.73×10⁴		
Hollow shaft Type K 5.56×10 ^s 1.90×10 ⁴ 1.13×10 ^s 3.79×10 ⁴ Solid shaft 1.95×10 ^s 4.91×10 ⁴ 3.90×10 ^s 9.82×10 ⁴ Hollow shaft Type K 1.58×10 ^s 3.97×10 ⁴ 3.15×10 ^s 7.95×10 ⁴	CO	Solid shaft			2.07×10 ⁴	1.23×10 ⁶	4.14×10⁴		
80 Hollow shaft Type K 1.58×10 ⁶ 3.97×10 ⁴ 3.15×10 ⁶ 7.95×10 ⁴	60	Hollow shaft	Type K	5.56×10 ⁵	1.90×10⁴	1.13×10 ⁶	3.79×10⁴		
Hollow shaft Type K 1.58×10 ⁶ 3.97×10 ⁴ 3.15×10 ⁶ 7.95×10 ⁴	90	Solid shaft		1.95×10 ⁶	4.91×10 ⁴	3.90×10 ⁶	9.82×10⁴		
Solid shaft 4.78 × 106 9.62 × 104 9.56 × 106 1.92 × 105	80	Hollow shaft	Type K	1.58×10 ⁶	3.97×10⁴	3.15×10 ⁶	7.95×10⁴		
400 John J.	100	Solid shaft		4.78×10 ⁶	9.62×10⁴	9.56×10 ⁶	1.92×10 ⁵		
100 Hollow shaft Type K 3.76×10 ⁶ 7.57×10 ⁴ 7.52×10 ⁶ 1.51×10 ⁵	100	Hollow shaft	Type K	3.76×10 ⁶	7.57×10⁴	7.52×10 ⁶	1.51×10⁵		


Note) For the hole-shape of the hollow spline shaft. For type K: see B-391 and B-408. For type N: see B-391 and B-408.

Flowchart for Selecting a Ball Spline

Predicting the Service Life

[Nominal Life]

The service life of a Ball Spline varies from unit to unit even if they are manufactured through the same process and used in the same operating conditions. Therefore, the nominal life defined below is normally used as a guidepost for obtaining the service life of a Ball Spline. Nominal life is the total travel distance that 90% of a group of identical ball splines independently operating under the same conditions can achieve without showing flaking (scale-like pieces on a metal surface).

[Calculating the Nominal Life]

The nominal life of a Ball Spline varies with types of loads applied during operation: torque load, radial load and moment load. The corresponding nominal life values are obtained using the equations (7) to (10) below. (The basic load ratings in these loading directions are indicated in the specification table for the corresponding model number.)

When a Torque Load is Applied

$$L = \left(\frac{f_{\tau} \cdot f_{c}}{f_{w}} \cdot \frac{C_{\tau}}{T_{c}}\right)^{3} \times 50 \quad \cdots (7)$$

When a Radial Load is Applied

$$L = \left(\frac{f_{\tau} \cdot f_{c}}{f_{w}} \cdot \frac{C}{P_{c}}\right)^{3} \times 50 \quad \dots (8)$$

: Nominal life (km)

 C_T : Basic dynamic torque rating (N-m) : Calculated torque applied (N-m)

C : Basic dynamic load rating (N)

: Calculated radial load (N)

f⊤ : Temperature factor

(see Fig.1 on A-467)

: Contact factor

fc (see Table5 on A-467)

: Load factor (see Table6 on A-467) fw

• When a Torque Load and a Radial Load are Simultaneously Applied

When a torque load and a radial load are simultaneously applied, calculate the nominal life by obtaining the equivalent radial load using the equation (9) below.

$$\mathbf{P}_{E} = \mathbf{P}_{c} + \frac{\mathbf{4} \cdot \mathbf{T}_{c} \times \mathbf{10}^{3}}{i \cdot \mathbf{dp} \cdot \mathbf{cos}\alpha} \quad \dots \dots \dots (9)$$

P_E : Equivalent radial load (N)

 $\text{cos}\alpha$: Contact angle i=Number of rows of balls under a load

Type LBS
$$\alpha$$
=45° i =2(LBS10 or smaller) i =3(LBS15 or greater)

Type LT α =70° i =2(LT13 or smaller) i =3(LT16 or greater)

dp : Ball center-to-center diameter (mm) (see Table7 and Table8 on A-468)

When a Moment Load is Applied to a Single Nut or Two Nuts in Close Contact with Each Other

Obtain the equivalent radial load using the equation (10) below.

$$P_u = K \cdot M$$
(10)

P_u : Equivalent radial load (N)

(with a moment applied)
: Equivalent Factors (see Table9 on A-471, Table10 on A-472)

K : Equivalent Factors (see Table9 on A-471, Table10 or M : Applied moment (N-mm)

However, M should be within the range of the static permissible moment.

When a Moment Load and a Radial Load are Simultaneously Applied

Calculated the nominal life from the sum of the radial load and the equivalent radial load.

Calculating the Service Life Time

When the nominal life (L) has been obtained in the equation above, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the equation (11) below.

Flowchart for Selecting a Ball Spline

■f_T:Temperature Factor

If the temperature of the environment surrounding the operating Ball Spline exceeds 100 $^{\circ}$ C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.1. In addition, the Ball Spline must be of a high temperature type.

Note) If the environment temperature exceeds $80\,^{\circ}\mathrm{C}$, high-tem-perature types of seal and retainer are required. ContactTHK for details.

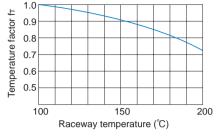


Fig.1 Temperature Factor (f₇)

Table5 Contact Factor (f_c)

Number of spline nuts in close contact with each other	Contact factor f₀
2	0.81
3	0.72
4	0.66
5	0.61
Normal use	1

■fc: Contact Factor

When multiple spline nuts are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C₀) by the corresponding contact factor in Table5.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table5.

■fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. When loads applied on a Ball Spline cannot be measured, or when speed and impact have a significant influence, divide the basic load rating (C or C₀), by the corresponding load factor in the table of empirically obtained data on Table6.

Table6 Load Factor (fw)

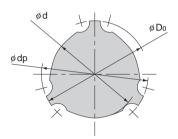
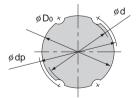
Vibrations/ impact	Speed(V)	f _w
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

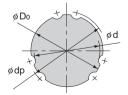
Table7 Sectional Shape of the Spline Shaft for Models LBS, LBST, LBF, LBR, LBH, LBG and LBGT

Unit: mm

Nominal shaft diameter	15	20	25	30	40	50	60	70	85	100	120	150
Minor diameter ϕ d	11.7	15.3	19.5	22.5	31	39	46.5	54.5	67	81	101	130
Outer diameter ϕD_0	14.5	19.7	24.5	29.6	39.8	49.5	60	70	84	99	117	147
Ball center-to-center diameter ϕ dp	15	20	25	30	40	50	60	70	85	100	120	150

^{*} The minor diameter ϕ d must be a value at which no groove is left after machining.


Table8 Sectional Shape of the Spline Shaft for Models LT, LF, LTR and LTR-A

Unit: mm

Nominal shaft diameter	4	5	6	8	10	13	16	20	25	30	32	40	50	60	80	100
Minor diameter ϕ d	3.5	4.5	5	7	8.5	11.5	14.5	18.5	23	28	30	37.5	46.5	56.5	75.5	95
Outer diameter ϕD_0	4	5	6	8	10	13	16	20	25	30	32	40	50	60	80	100
Ball center-to-center diameter ϕ dp	4.6	5.7	7	9.3	11.5	14.8	17.8	22.1	27.6	33.2	35.2	44.2	55.2	66.3	87.9	109.5
Outer diameter tolerance	diameter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	0 -0.021			0-0.0)25	0 -0.	03	0-0.035					

^{*} The minor diameter ϕ d must be a value at which no groove is left after machining.

Nominal shaft diameter: 13 mm or less Nominal shaft diameter: 16 mm or more

Flowchart for Selecting a Ball Spline

[Calculating the Average Load]

When the load applied on the spline shaft fluctuates according to varying conditions, such as an industrial robot arm traveling forward while holding a workpiece and traveling backward with empty weight, and a machine tool handling various workpieces, this varying load condition must be taken into account in service life calculation.

The average load (P_m) is a constant load under which the service life of an operating Ball Spline with its spline nut receiving a fluctuation load in varying conditions is equivalent to the service life under this varying load condition.

The following is the basic equation.

$$\mathbf{P}_{m} = \sqrt[3]{\frac{1}{L}} \cdot \sum_{n=1}^{n} (\mathbf{P}_{n}^{3} \cdot \mathbf{L}_{n})$$

$$\mathbf{P}_{m} = \sqrt[3]{\frac{1}{L}} \cdot \sum_{n=1}^{n} (\mathbf{P}_{n}^{3} \cdot \mathbf{L}_{n})$$

$$\mathbf{P}_{n} : Average Load (N)$$

$$\mathbf{P}_{n} : Varying load (N)$$

$$\mathbf{L} : Total travel distance (mm)$$

$$\mathbf{L}_{n} : Distance traveled under P_{n} (mm)$$

When the Load Fluctuates Stepwise

$$P_{m} = \sqrt[3]{\frac{1}{L} (P_{1}^{3} \cdot L_{1} + P_{2}^{3} \cdot L_{2} \cdot \cdots + P_{n}^{3} \cdot L_{n})} \cdots (1)$$

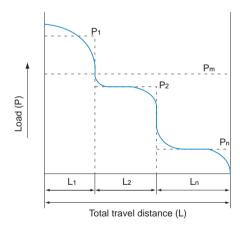


Fig.2

When the Load Fluctuates Monotonically

$$P_m \doteq \frac{1}{3} (P_{min} + 2 \cdot P_{max}) \cdot \cdot \cdot \cdot \cdot (2)$$

P_{min}: Minimum load (N) : Maximum load (N)

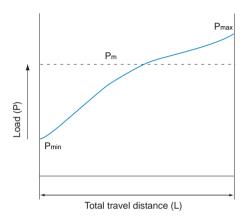
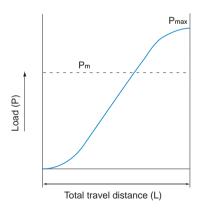
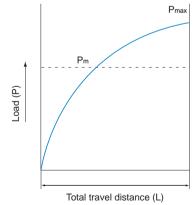



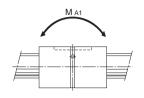
Fig.3

When the Load Fluctuates Sinusoidally

(a)
$$P_m = 0.65P_{max} \cdots (3)$$

(b)
$$P_m = 0.75 P_{max} \cdots (4)$$




Fig.4

Flowchart for Selecting a Ball Spline

[Equivalent Factor]

Table9 below and Table10 on A-472 show equivalent radial load factors calculated under a moment load.

Table of Equivalent Factors for Ball Spline Model LBS

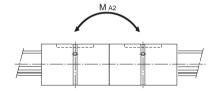
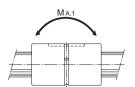


Table9

	Equivalent factor: K					
Model No.	Single spline nut	Two spline nuts in close contact with each other				
LBS 6	0.61	0.074				
LBS 8	0.46	0.060				
LBS 10	0.54	0.049				
LBS 15	0.22	0.022				
LBS 20	0.24	0.03				
LBST 20	0.17	0.027				
LBS 25	0.19	0.026				
LBST 25	0.14	0.023				
LBS 30	0.16	0.022				
LBST 30	0.12	0.02				
LBS 40	0.12	0.017				
LBST 40	0.1	0.016				
LBS 50	0.11	0.015				
LBST 50	0.09	0.014				
LBS 60	0.08	0.013				
LBS 70	0.1	0.013				
LBST 70	0.08	0.012				
LBS 85	0.08	0.011				
LBST 85	0.07	0.01				
LBS 100	0.08	0.009				
LBST 100	0.06	0.009				
LBST 120	0.05	0.008				
LBST 150	0.045	0.006				


Note1) Values of equivalent factor K for model LBF are the same as that for model LBS.

Note2) Values of equivalent factor K for models LBR, LBG, LBGT and LBH are the same as that for model LBST.

However the values of model LBF60 are the same as that for model LBST60.

The values of model LBH15 are the same as that for model LBS15.

• Table of Equivalent Factors for Ball Spline Model LT

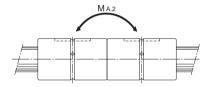


Table10

Model No.	Equivalent factor: K							
Woder No.	Single spline nut	Two spline nuts in close contact with each other						
LT 4	0.65	0.096						
LT 5	0.55	0.076						
LT 6	0.47	0.06						
LT 8	0.47	0.058						
LT 10	0.31	0.045						
LT 13	0.3	0.042						
LT 16	0.19	0.032						
LT 20	0.16	0.026						
LT 25	0.13	0.023						
LT 30	0.12	0.02						
LT 40	0.088	0.016						
LT 50	0.071	0.013						
LT 60	0.07	0.011						
LT 80	0.062	0.009						
LT100	0.057	0.008						

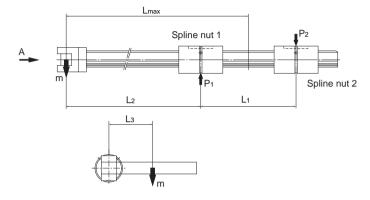
Note) Values of equivalent factor K for model LF are the same as that for model LT.

Flowchart for Selecting a Ball Spline

[Example of Calculating the Service Life]

Example of Calculation - 1

An industrial robot arm (horizontal)


[Conditions]

Mass applied to the arm end m=50kqStroke ls=200mm

Spline nut mounting span (estimate)L₁=150mm

Arm length at maximum stroke Lmax=400mm L₂=325mm

L₃=50mm

A arrow view

(The Ball Spline type is LBS in this example.)

Fig.5

■Shaft Strength Calculation

Calculate the bending moment (M) and the torsion moment (T) applied on the shaft.

 $M=m \times 9.8 \times L_{max} = 196000N-mm$

 $T=m \times 9.8 \times L_3 = 24500N-mm$

Since the bending and torsion moments are applied simultaneously, obtain the corresponding bending moment (M_e) and torsion moment (T_e), and then determine the shaft diameter based on the greater value. From equations (3) and (4) on A-459,

$$\begin{split} M_{\text{e}} &= \frac{M + \sqrt{M^2 + T^2}}{2} \ \ \ \ \, \stackrel{\cdot}{=} \ \, 196762.7 N \cdot mm \\ T_{\text{e}} &= \sqrt{M^2 + T^2} \qquad \ \ \, \stackrel{\cdot}{=} \ \, 197525.3 N \cdot mm \end{split}$$

$$M_{\text{e}} < T_{\text{e}}$$

∴
$$T_e = \tau_a \times Z_P$$
 Hence,

$$Z_P = \frac{T_e}{T_a} = 4031 \text{mm}^3$$

Thus, judging from Table3 on A-463, the nominal shaft diameter that meets Z_p is at least 40 mm.

■Average Load P_m

Obtain an applied load value when the arm is extended to the maximum length (Pmax), and another when the arm is contracted (Pmin). Based on the values obtained, calculate the average load on the spline shaft nut.

$$P_{1max} = \frac{m \times 9.8(L_1 + L_2)}{L_1} = 1551.7N$$

$$P_{2max} = \frac{m \times 9.8 \times L_2}{I_1} \quad \div 1061.7N$$

When the arm is contracted

$$P_{\text{1min}} = \frac{m \times 9.8 \times \left(\left(L_2 - \ell_s\right) + L_1\right)}{L_1} \stackrel{.}{=} 898.3 N$$

$$P_{2min} = \frac{M \times 9.8 \times (L_2 - \ell_s)}{L_1} = 408.3N$$

As this load is monotonically varying as shown in the Fig.3 on A-470, calculate the average load using the equation (2) on A-470.

The average load (P_{1m}) on spline nut 1

$$P_{1m} = \frac{1}{3} (P_{1min} + 2P_{1max}) = 1333.9N$$

The average load (P_{2m}) on spline nut 2

$$P_{2m} = \frac{1}{3}(P_{2min} + 2P_{2max}) = 843.9N$$

Obtain the torque applied on one spline nut.

$$T = \frac{m \times 9.8 \times L_3}{2} = 12250N \cdot mm$$

Since the radial load and the torque are simultaneously applied, calculate the equivalent radial load using equation (9) on A-466.

$$P_{1E} = P_{1m} + \frac{4 \times T}{3 \times dp \times cos\alpha} = 1911.4N$$

$$P_{2E} = P_{2m} + \frac{4 \times T}{3 \times dp \times cos\alpha} = 1421.4N$$

■Nominal Life L_n

Based on the nominal life equation (8) on A-465, each nominal life is obtained as follows.

Nominal life of the spline nut L₁ =
$$\left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_{1E}}\right)^3 \times 50 = 68867.4$$
km

Nominal life of the spline nut
$$L_2 = \left(\frac{f_T \times f_C}{f_W} \times \frac{C}{P_{2E}}\right)^3 \times 50 = 167463.2 \text{km}$$

Flowchart for Selecting a Ball Spline

fr: Temperature factor = 1 (from Fig.1 on A-467) fc: Contact factor = 1 (from Table5 on A-467) fw: Load factor = 1.5 (from Table6 on A-467)

C: Basic dynamic load rating = 31.9 kN (model LBS40)

Given the nominal life obtained for each spline nut above, the nominal life of the Ball Spline unit is equal to that of spline nut 1, which is 68867.4km.

Example of Calculation - 2

[Conditions]

Thrust position: Fs

Stroke velocity: V_{max} = 0.25m/sec

Acceleration: a=0.36m/sec2 (from the respective

velocity diagram)
Stroke: S=700mm
Housing mass: m₁=30kg
Arm mass: m₂=20kg
Head mass: m₃=15kg

Work mass: m₄=12kg

Distance from the thrust position to each mass

 ℓ_1 =200mm ℓ_2 =500mm

ℓ₃=1276mm

Cycle (1 cycle: 30 sec)

- 1. Descent (3.5sec) 2.Dwell (1sec): with a work
- 3. Ascend (3.5sec) 4.Dwell (7sec)
- 5. Descent (3.5sec) 6.Dwell (1sec): without a work
- 7. Ascend (3.5sec) 8.Dwell (7sec)

(The Ball Spline type is LBF in this example.)

Fig.6

■Shaft Strength Calculation

Calculate the shaft strength while assuming the shaft diameter to be 60 mm. (with double spline nut in contact with each other)

■Calculating the Moment (M_n) Applying on the Spline Nut during Acceleration, Uniform Motion and Deceleration with Different Masses (mn)

Applied moment during deceleration: M₁

$$M_1 = m_n \times 9.8 \left(1 \pm \frac{a}{g}\right) \times \ell_n \quad \cdots \quad (a)$$

Applied moment during uniform motion: M2

$$M_2 = m_n \times 9.8 \times \ell_n$$
(b)

Applied moment during deceleration: M3

$$M_3 = m_n \times 9.8 \left(1 \pm \frac{a}{g}\right) \times \ell_n$$
 ······(c)

mn: Mass

(kg)

a : Acceleration

(m/sec2)

g: Gravitational acceleration(m/sec2)

ℓ_n: Offset from each loading point to the trust center(mm)

Assume:

$$A = \left(1 + \frac{a}{g}\right), B = \left(1 - \frac{a}{g}\right)$$

During descent

From equation (c), during acceleration

$$M_{\text{m1}} = m_1 \times 9.8 \times B \times \ell_1 + m_2 \times 9.8 \times B \times (\ell_1 + \ell_2) + m_3 \times 9.8 \times B \times (\ell_1 + \ell_3)$$

=398105.01N-mm

From equation (b), during uniform motion

$$M_{m2} = m_1 \times 9.8 \times \ell_1 + m_2 \times 9.8 \times (\ell_1 + \ell_2) + m_3 \times 9.8 \times (\ell_1 + \ell_3)$$

=412972N-mm

From equation (a), during deceleration

$$M_{m3} = m_1 \times 9.8 \times A \times \ell_1 + m_2 \times 9.8 \times A \times (\ell_1 + \ell_2) + m_3 \times 9.8 \times A \times (\ell_1 + \ell_3)$$

=427838.99N-mm

During ascent

From equation (a), during acceleration

$$\begin{array}{ll} M_{m1}' &= m_1 \times 9.8 \times A \times \ell_1 + m_2 \times 9.8 \times A \times (\ell_1 + \ell_2) + m_3 \times 9.8 \times A \times (\ell_1 + \ell_3) \\ &= 427838 \ 99N - mm \end{array}$$

=427838.99N-mm

From equation (b), during uniform motion

$$M_{m2}' = m_1 \times 9.8 \times \ell_1 + m_2 \times 9.8 \times (\ell_1 + \ell_2) + m_3 \times (\ell_1 + \ell_3)$$

=412972N-mm

Flowchart for Selecting a Ball Spline

From equation (c), during deceleration

 $\begin{array}{ll} M_{m3}{}' &= m_1 \times 9.8 \times B \times \ell_1 + m_2 \times 9.8 \times B \times (\ell_1 + \ell_2) + m_3 \times 9.8 \times B \times (\ell_1 + \ell_3) \\ &= 398105.01 N - mm \end{array}$

During descent (with a work loaded)

From equation (c), during acceleration

 M_{m1} " = $M_{m1}+m_4\times9.8\times B\times (\ell_1+\ell_3)$ =565433.83N-mm

From equation (b), during uniform motion

 M_{m2} " = $M_{m2}+m_4 \times 9.8 \times (\ell_1 + \ell_3)$ =586549.6N-mm

From equation (a), during deceleration

 M_{m3} " = $M_{m3}+m_4 \times 9.8 \times A \times (\ell_1 + \ell_3)$ =607665.37N-mm

During ascent (with a work loaded)

From equation (a), during acceleration

 $M_{m1}^{""} = M_{m1}' + m_4 \times 9.8 \times A \times (\ell_1 + \ell_3)$ = 607665.37N • mm

From equation (b), during uniform motion

 $M_{m2}^{""} = M_{m2}^{"} + m_4 \times 9.8 \times (\ell_1 + \ell_3)$ = 586549.6N-mm

From equation (c), during deceleration

 $M_{m3}^{""} = M_{m3}^{'} + m_4 \times 9.8 \times B \times (\ell_1 + \ell_3)$ = 565433.83N-mm

 $..M_1=M_{m1}=M_{m3}'=398105.01N-mm$

 $M_2=M_{m2}=M_{m2}'=412972N-mm$

M₃=M_{m3}=M_{m1}'=427838.99N-mm

 $M_1'=M_{m1}''=M_{m3}'''=565433.83N-mm$

 $M_2'=M_{m2}''=M_{m2}'''=586549.6N-mm$

 $M_3'=M_{m3}''=M_{m1}'''=607665.37N-mm$

■Calculating the Equivalent Radial Load Considered to be Applied to the Spline Nut with Different Moments Relational expression between moment Mn and Pn

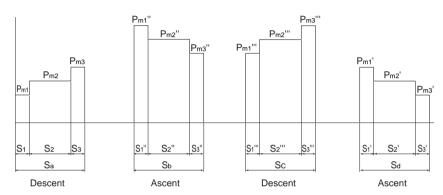
 $P_n = M_n \times K$

P. : Equivalent radial load (N) : Applied moment M_n (N-mm)

K : Equivalent factor (from Table9 to A-471) (If two spline nuts of LBF60 contact with each other. K = 0.013)

Calculate the equivalent radial load with different applied moments using equation (d).

 $P_{m1} = P_{m3}' = M_1 \times 0.013 = 5175.4N$


 $P_{m2} = P_{m2}' = M_2 \times 0.013 = 5368.6N$

 $P_{m3} = P_{m1}' = M_3 \times 0.013 = 5561.9N$

 $P_{m1}'' = P_{m3}''' = M_1' \times 0.013 = 7350.7N$

 $P_{m2}'' = P_{m2}''' = M_2' \times 0.013 = 7625.2N$

 $P_{m3}'' = P_{m1}''' = M_3' \times 0.013 = 7899.7N$

$$\begin{cases} P_1 = P_{m1} = P_{m3}' \stackrel{.}{\Rightarrow} 5175.4N \\ P_2 = P_{m2} = P_{m2}' \stackrel{.}{\Rightarrow} 5368.6N \\ P_3 = P_{m3} = P_{m1}' \stackrel{.}{\Rightarrow} 5561.9N \end{cases}$$

$$\begin{cases} S = S_a = S_b = S_c = S_d = 700 mm \\ S_1 = S_1 = S_1' = S_1'' = 87.5 mm \\ S_2 = S_2 = S_2' = S_2'' = 525 mm \\ S_3 = S_3 = S_3' = S_3'' = S_3'' = 87.5 mm \end{cases}$$

■Calculating the Average Load P_m

Using equation (1) on A-469,

$$P_{m} = \sqrt[3]{\frac{1}{4 \times S} \left[2 \left\{ (P_{1}^{3} \times S_{1}) + (P_{2}^{3} \times S_{2}) + (P_{3}^{3} \times S_{3}) \right\} + 2 \left\{ (P_{4}^{3} \times S_{3}) + (P_{5}^{3} \times S_{2}) + (P_{6}^{3} \times S_{1}) \right\} \right]} \\ \stackrel{?}{=} 6689.5N$$

■Calculating the Rated Life L from the Average Load

Using equation (8) on A-465.

$$L = \left(\frac{f_T \cdot f_C}{f_W} \cdot \frac{C}{P_m}\right)^3 \times 50$$

= 7630 km

: Temperature factor = 1

(from Fig.1 on A-467)

: Contact factor=0.81

(from Table5 on A-467)

: Load factor=1.5

(from Table6 on A-467)

C : Basic dynamic load rating = 66.2 kN

(model LBF60)

Given the result above, the nominal life of model LBF60 with double spline nuts used in close contact with each other is 7,630 km.

Point of Selection Selecting a Preload

Selecting a Preload

A preload on the Ball Spline significantly affects its accuracy, load resistance and rigidity. Therefore, it is necessary to select the most appropriate clearance according to the intended use.

Specific clearance values are standardized for each model, allowing you to select a clearance that meets the conditions.

Clearance in the Rotation Direction

With the Ball Spline, the sum of clearances in the circumferential direction is standardized as the clearance in the rotational direction. For models LBS and LT, which are especially suitable for transmission of rotational torque, clearances in the rotational directions are defined.

Clearance in the rotational direction (BCD)

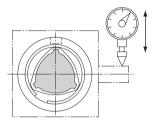


Fig.7 Measurement of Clearance in the Rotational Direction

Preload and Rigidity

Preload is defined as the load preliminarily applied to the ball in order to eliminate angular backlash (clearance in the rotational direction) and increase rigidity. When given a preload, the Ball Spline is capable of increasing its rigidity by eliminating the angular backlash according to the magnitude of the preload. Fig.8 shows the displacement in the rotational direction when a rotational torque is applied.

Thus, the effect of a preload can be obtained up to 2.8 times that of the applied preload. When given the same rotational torque, the displacement when a preload is applied is 0.5 or less of that without a preload. The rigidity with a preload is at least twice greater than that without a preload.

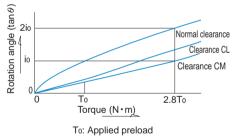


Fig.8

Conditions and Guidelines for Selecting of a Preload

Table11 provides guidelines for selecting a clearance in the rotational direction with given conditions of the Ball Spline.

The rotational clearance of the Ball Spline significantly affects the accuracy and rigidity of the spline nut. Therefore, it is essential to select a correct clearance according to the intended use. Generally, the Ball Spline is provided with a preload. When it is used in repeated circular motion or reciprocating straight motion, the Ball Spline is subject to a large vibration impact, and therefore, its service life and accuracy are significantly increased with a preload.

Table11 Guidelines for Selecting a Clearance in the Rotational Direction for the Ball Spline

Clearance in the rotation direction	('ondition	Examples of applications
Normal grade (No symbol)	 Smooth motion with a small force is desired. A torque is always applied in the same direction. 	Measuring instruments Automatic drafting machine Geometrical measuring equipment Dynamometer Wire winder Automatic welding machine Main shaft of horning machine Automatic packing machine
Light preload (CL)	 An overhang load or moment load is present. High positioning accuracy is required. Alternating load is applied. 	 Industrial robot arm Automatic loaders Guide shaft of automatic coating machine Main shaft of electric discharge machine Guide shaft for press die setting Main shaft of drilling machine
Medium preload (CM)	High rigidity is required and vibrations and impact are applied. Receives a moment load with a single spline nut.	Steering shaft of construction vehicle Shaft of spot-welding machine Indexing shaft of automatic lathe tool rest

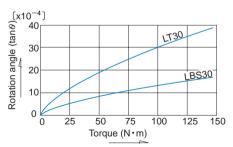


Fig.9 Comparison between LBS and LT for Zero Clearance

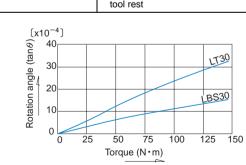


Fig.10 Comparison between LBS and LT for Clearance CL

Point of Selection

Selecting a Preload

Unit:	μm

Symbol	Normal	Light preload	Medium preload
Nominal shaft diameter	No Symbol	CL	СМ
6 8	-2 to +1	-6 to -2	_
10 15	-3 to +2	-9 to -3	-15 to -9
20 25 30	-4 to +2	-12 to -4	-20 to -12
40 50 60	-6 to +3	−18 to −6	-30 to -18
70 85	-8 to +4	-24 to -8	-40 to -24
100 120	-10 to +5	-30 to -10	-50 to -30
150	-15 to +7	-40 to -15	-70 to -40

Table13 Clearance in the Rotational Direction for Models LT and LF

Unit: µm

Symbol	Normal	Light preload	Medium preload
Nominal shaft diameter	No Symbol	CL	СМ
4 5 6 8 10 13	-2 to +1	-6 to -2	_
16 20	-2 to +1	-6 to -2	−9 to −5
25 30	-3 to +2	-10 to -4	-14 to -8
40 50	-4 to +2	-16 to -8	-22 to -14
60 80	-5 to +2	-22 to -12	-30 to -20
100	-6 to +3	-26 to -14	-36 to -24

Table14 Clearance in the Rotational Direction for Models LBG and LBGT

Unit: μm

Symbol	Normal	Light preload	Medium preload
Nominal shaft diameter	No Symbol	CL	СМ
20 25 30	-4 to +2	-12 to -4	-20 to -12
40 50 60	-6 to +3	-18 to -6	-30 to -18
70 85	-8 to +4	-24 to -8	-40 to -24

Table15 Clearance in the Rotational Direction for Model LTR

Unit: µm

Symbol	Normal	Light preload	Medium preload
Nominal shaft diameter	No Symbol	CL	СМ
8 10	-2 to +1	-6 to -2	_
16 20	-2 to +1	-6 to -2	−9 to −5
25 32	-3 to +2	-10 to -4	−14 to −8
40 50	-4 to +2	-16 to -8	-22 to -14
60	-5 to +2	-22 to -12	-30 to -20

Determining the Accuracy

Accuracy Grades

The accuracy of the Ball Spline is classified into three grades: normal grade (no symbol), high accuracy grade (H) and precision grade (P), according to the runout of spline nut circumference in relation to the support of the spline shaft. Fig.11 shows measurement items.

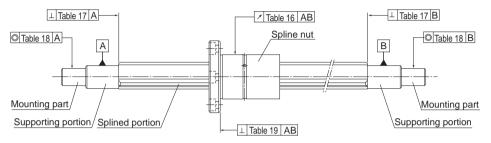


Fig.11 Accuracy Measurement Items of the Ball Spline

Accuracy Standards

Table16 to Table19 show measurement items of the Ball Spline.

Table16 Runout of the Spline Nut Circumference in Relation to the Support of the Spline Shaft

Unit: µm

Accu	ıracy		Runout(max)																						
Nomina diam Overall	neter I spline				4 to 8 Note 10			13	13 to 20 25 t			25 to 32 40, 50			60 to 80			85 to 120			150				
shaft len	gth (mm)			_			_			_			_			_			_			_			_
Above	Or less	Normal	Upper	Precision	Normal	Upper	Precision	Normal	Upper	Precision	Normal	Upper	Precision	Normal	Upper	Precision	Normal	Upper	Precision	Normal	Upper	Precision	Normal	Upper	Precision
_	200	72	46	26	59	36	20	56	34	18	53	32	18	53	32	16	51	30	16	51	30	16	_	-	-
200	315	133	(89)	_	83	54	32	71	45	25	58	39	21	58	36	19	55	34	17	53	32	17	_	1	_
315	400	_	_	_	103	68	_	83	53	31	70	44	25	63	39	21	58	36	19	55	34	17	_	_	_
400	500	1	_	_	123	_	_	95	62	38	78	50	29	68	43	24	61	38	21	57	35	19	46	36	19
500	630	1		_		-	-	112	-		88	57	34	74	47	27	65	41	23	60	37	20	49	39	21
630	800	1	-	-	1	-	1	1	-	-	103	68	42	84	54	32	71	45	26	64	40	22	53	43	24
800	1000	1	_	_	1	-	1	1	-	_	124	83	_	97	63	38	79	51	30	69	43	24	58	48	27
1000	1250	-	_	_	1	_	_	-	_	_	_	_	_	114	76	47	90	59	35	76	48	28	63	55	32
1250	1600	-	_	_	-	_	_	-	_	_	_	_	_	139	93	_	106	70	43	86	55	33	80	65	40
1600	2000	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	128	86	54	99	65	40	100	80	50
2000	2500	-	_	_	-		-	_	_	_	_	-	_	_	_	_	156		_	117	78	49	125	100	68
2500	3000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	143	96	61	150	129	84

Note) Dimensions in parentheses do not apply to nominal shaft diameter of 4. Note) Applicable to models LBS, LBST, LBF, LBR, LT and LF.

Point of Selection

Determining the Accuracy

Table17 Perpendicularity of the Spline Shaft End Face in Relation to the Support of the Spline Shaft Unit: µm

Accuracy	Perpendicularity (max)									
Nominal shaft diameter	Normal grade (No symbol)	High accuracy grade (H)	Precision Grade (P)							
4 5 6 8 10	22	9	6							
13 15 16 20	27	11	8							
25 30 32	33	9								
40 50	39	16	11							
60 70 80	46	19	13							
85 100 120	54	22	15							
150	63	25	18							

Table18 Concentricity of the Part-mounting in Relation to the Support of the Spline Shaft

Accuracy		Concentricity (max)	
Nominal shaft diameter	Normal grade (No symbol)	High accuracy grade (H)	Precision Grade (P)
4 5 6 8	33	14	8
10	41	17	10
13 15 16 20	46	19	12
25 30 32	53	22	13
40 50	62	25	15
60 70 80	73	29	17
85 100 120	86	34	20
150	100	40	23

Table19 Straightness of the Flange-mounting Surface of the Spline Nut in Relation to the Support of the Spline Shaft Unit: µm

Accuracy	Perpendicularity (max)							
Nominal shaft diameter	Normal grade (No symbol)	High accuracy grade (H)	Precision Grade (P)					
6 8	27	11	8					
10 13	33	13	9					
15 16 20 25 30	39	16	11					
40 50	46	19	13					
60 70 80 85	54	22	15					
100	63	25	18					

Note) This table does not apply to models LBG, LBGT, LTR and LTR-A.

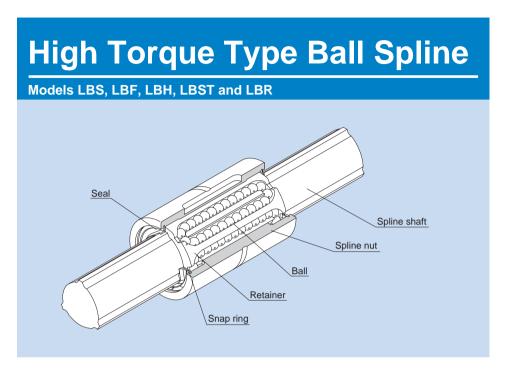


Fig.1 Structure of High Torque Type Ball Spline Model LBS

Structure and Features

With the high torque type Ball Spline, the spline shaft has three crests positioned equidistantly at 120°, and along both sides of each crest, two rows of balls (six rows in total) are arranged so as to hold the crest, as shown in Fig.1.

The raceways are precision ground into R-shaped grooves whose diameters are approximate to the ball diameter. When a torque is generated from the spline shaft or the spline nut, the three rows of balls on the load-bearing side evenly receive the torque, and the center of rotation is automatically determined. When the rotation reverses, the remaining three rows of balls on the unloaded side receive the torque.

The rows of balls are held in a retainer incorporated in the spline nut so that they smoothly roll and circulate. With this design, balls will not fall even if the spline shaft is removed from the nut.

[No Angular Backlash]

With the high torque type Ball Spline, a single spline nut provides a preload to eliminate angular backlash and increase the rigidity.

Unlike conventional ball splines with circular-arc groove or Gothic-arch groove, the high torque type Ball Spline eliminates the need for twisting two spline nuts to provide a preload, thus allowing compact design to be achieved easily.

Features of Each Model

High Torque Type Ball Spline

[High Rigidity and Accurate Positioning]

Since this model has a large contact angle and provides a preload from a single spline nut, the initial displacement is minimal and high rigidity and high positioning accuracy are achieved.

[High-speed Motion, High-speed Rotation]

Adoption of a structure with high grease retention and a rigid retainer enables the ball spline to operate over a long period with grease lubrication even in high-speed straight motion. Since the distance in the radius direction is almost uniform between the loaded balls and the unloaded balls, the balls are little affected by the centrifugal force and smooth straight motion is achieved even during high-speed rotation.

[Compact Design]

Unlike conventional ball splines, unloaded balls do not circulate on the outer surface of the spline nut with this model. As a result, the outer diameter of the spline nut is reduced and a space-saving and compact design is achieved.

[Ball Retaining Type]

Use of a retainer prevents the balls from falling even if the spline shaft is pulled out of the spline nut.

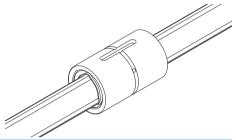
[Can be Used as a Linear Bushing for Heavy Loads]

Since the raceways are machined into R grooves whose diameter is almost equal to the ball diameter, the contact area of the ball is large and the load capacity is large also in the radial direction.

[Double, Parallel Shafts can be Replaced with a Single Shaft]

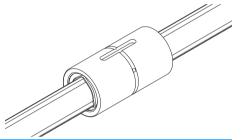
Since a single shaft is capable of receiving a load in the torque direction and the radial direction, double shafts in parallel configuration can be replaced with a single-shaft configuration. This allows easy installation and achieves space-saving design.

Applications


The high torque type Ball Spline is a reliable straight motion system used in a wide array of applications such as the columns and arms of industrial robot, automatic loader, transfer machine, automatic conveyance system, tire forming machine, spindle of spot welding machine, guide shaft of high-speed automatic coating machine, riveting machine, wire winder, work head of electric discharge machine, spindle drive shaft of grinding machine, speed gears and precision indexing shaft.

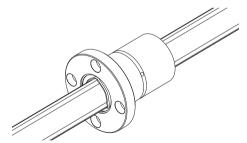
Types and Features

[Types of Spline Nuts]


Cylindrical Type Ball Spline Model LBS (Medium Load Type) Specification Table⇒B-368

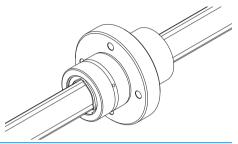
The most compact type with a straight cylindrical spline nut. When transmitting a torque, a key is driven into the body. The outer surface of the spline nut is provided with anti-carbonation treatment.

Cylindrical Type Ball Spline Model LBST (Heavy Load Type) Specification Table⇒B-372


A heavy load type that has the same spline nut diameter as model LBS, but has a longer spline nut length. It is optimal for locations where the space is small, a large torque is applied, and an overhang load or moment load is applied.

Flanged Type Ball Spline Model LBF

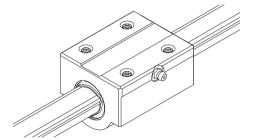
The spline nut can be attached to the housing via the flange, making assembly simple. It is optimal for locations where the housing may be deformed if a keyway is machined on its surface, and where the housing width is small. Since it allows a dowel pin to be driven into the flange, angular backlash occurring in the fitting can completely be eliminated.


dammy

dammv

Flanged Type Ball Spline Model LBR

Based on the heavy load type model LBST, this model has a flange in the central area, making itself optimal for locations under a moment load such as arms of industrial robots.


Specification Table⇒B-376

Rectangular Type Ball Spline Model LBH

Its rigid rectangular spline nut does not require a housing and can be directly mounted on the machine body. Thus, a compact, highly rigid linear guide system is achieved.

Specification Table⇒B-378

[Types of Spline Shafts]

Precision Solid Spline Shaft (Standard Type)

The spline shaft is cold-drawn and its raceway is precision ground. It is used in combination with a spline nut.

Special Spline Shaft

THK manufactures a spline shaft with thicker ends or thicker middle area through special processing at your request.

Hollow Spline Shaft (Type K)

A drawn, hollow spline shaft is available for requirements such as piping, wiring, air-vent and weight reduction.

Features of Each Model High Torque Type Ball Spline

Service Life

For details, see A-465.

Clearance in the Rotation Direction

For details, see A-481.

Accuracy Standards

For details, see A-482.

Housing Inner-diameter Tolerance

When fitting the Ball Spline with the housing, tight fitting is normally recommended. If the accuracy of the Ball Spline does not need to be very high, clearance fitting is also acceptable.

Table1 Housing Inner-diameter Tolerance

Housing Inner-diameter	General conditions	H7
Tolerance	When clearance needs to be small	J6

Spline Shaft

Spline shafts are divided in shape into precision solid spline shaft, special spline shaft and hollow spline shaft (type K), as described on A-488.

For details, see B-381 to B-383.

Accessories

Ball Spline models LBS and LBST are provided with a standard key.

For detailed dimensions, see B-384.

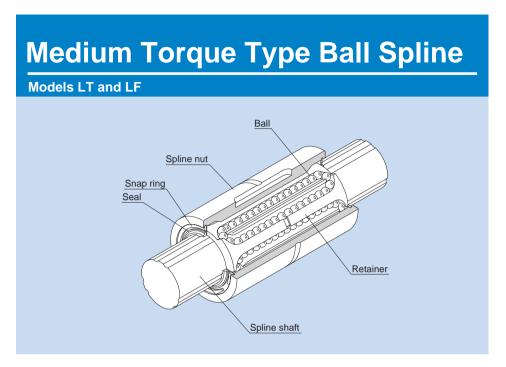


Fig.1 Structure of Medium Torque Type Ball Spline Model LT

Structure and Features

With the medium torque type Ball Spline, the spline shaft has two to three crests on the circumference, and along both sides of each crest, two rows of balls (four or six rows in total) are arranged to hold the crest so that a reasonable preload is applied.

The rows of balls are held in a special resin retainer incorporated in the spline nut so that they smoothly roll and circulate. With this design, balls will not fall even if the nut is removed from the spline shaft.

[Large Load Capacity]

The raceways are formed into circular-arc grooves approximate to the ball curvature and ensure angular contact. Thus, this model has a large load capacity in the radial and torque directions.

[No Angular Backlash]

Two rows of balls facing one another hold a crest, formed on the circumference of the spline nut, at a contact angle of 20° to provide a preload in an angular-contact structure. This eliminates an angular backlash in the rotational direction and increases the rigidity.

Features of Each Model

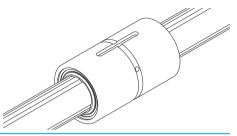
Medium Torque Type Ball Spline

[High Rigidity]

Since the contact angle is large and an appropriate preload is given, high rigidity against torque and moment is achieved.

[Ball Retaining Type]

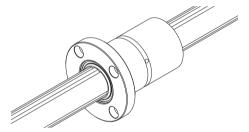
Use of a retainer prevents the balls from falling even if the spline shaft is pulled out of the spline nut. (except for models LT4 and 5)


Types and Features

[Types of Spline Nuts]

Cylindrical Type Ball Spline Model LT

Specification Table⇒B-386


The most compact type with a straight cylindrical spline nut. When transmitting a torque, a key is driven into the body.

Flanged Type Ball Spline Model LF

Specification Table⇒B-388

The spline nut can be attached to the housing via the flange, making assembly simple. It is optimal for locations where the housing may be deformed if a keyway is machined on its surface, and where the housing width is small. Since it allows a dowel pin to be driven into the flange, angular backlash occurring in the fitting can completely be eliminated.

dammy

Features of Each Model

Medium Torque Type Ball Spline

[Types of Spline Shafts]

Precision Solid Spline Shaft (Standard Type)

The raceway of the spline shaft is precision ground. It is used in combination with a spline nut.

Special Spline Shaft

THK manufactures a spline shaft with thicker ends or thicker middle area through special processing at your request.

Hollow Spline Shaft (Type K)

A drawn, hollow spline shaft is available for requirements such as piping, wiring, air-vent and weight reduction.

Hollow Spline Shaft (Type N)

A drawn, hollow spline shaft is available for requirements such as piping, wiring, air-vent and weight reduction.

Service Life

For details, see A-465.

Clearance in the Rotation Direction

For details, see A-481.

Accuracy Standards

For details, see A-482.

Housing Inner-diameter Tolerance

When fitting the Ball Spline with the housing, tight fitting is normally recommended. If the accuracy of the Ball Spline does not need to be very high, clearance fitting is also acceptable.

Table1 Housing Inner-diameter Tolerance

Housing Inner-diameter	General conditions	H7
Tolerance	When clearance needs to be small	J6

Spline Shaft

Spline shafts are divided in shape into precision solid spline shaft, special spline shaft and hollow spline shaft (types K and N), as described on A-493. For details, see B-391 to B-392.

Accessories

Ball Spline model LT is provided with a standard key.

For detailed dimensions, see B-393.

Features of Each Model

Medium Torque Type Ball Spline

Rotary Ball Spline With Geared type

Models LBG and LBGT

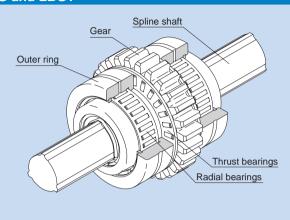


Fig.1 Structure of Rotary Ball Spline Model LBG

Structure and Features

With the Rotary Ball Spline, the spline shaft has three crests, and along both sides of each crest, two rows of balls (six rows in total) are arranged to hold the crest so that a reasonable preload is applied. These models are unit types based on model LBR, but have gear teeth on the flange circumference and radial and thrust bearings on the spline nut, all compactly integrated.

The rows of balls are held in a special resin retainer so that they smoothly roll and circulate. With this design, balls will not fall even if the spline shaft is removed.

[No Angular Backlash]

The spline shaft has three crests positioned equidistantly at 120° and along both sides of each crest, two rows of balls (six rows in total) are arranged so as to hold the crest at a contact angle of 45° and provide a preload. As a result, backlash in the rotational direction is eliminated and the rigidity is increased.

[Compact Design]

The spline nut is compactly integrated with radial and thrust bearings, allowing compact design to be achieved.

Features of Each Model

Rotary Ball Spline

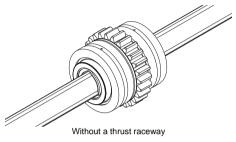
[High Rigidity]

Since the contact angle is large and an appropriate preload is given, high rigidity against torque and moment is achieved.

Use of needle bearings in the support unit achieves a rigid nut support strong against a radial load.

[Optimal for Torque Transmission with Spline Nut Drive]

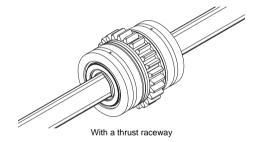
Since the support bearings allow a rigid nut support, these models are optimal for torque transmission with spline nut drive.


Types and Features

[Types of Spline Nuts]

Ball Spline with Gears Model LBG

These models are unit types based on model LBR, but have gear teeth on the flange circumference and radial and thrust bearings on the spline nut, all compactly integrated. It is optimal for a torque transmission mechanism with spline nut drive.



Ball Spline with Gears Model LBGT

These models are unit types based on model LBR, but have gear teeth on the flange circumference and radial and thrust bearings on the spline nut, all compactly integrated. It is optimal for a torque transmission mechanism with spline nut drive.

Specification Table⇒B-398

[Types of Spline Shafts]

For details, see A-488.

Features of Each Model

Rotary Ball Spline

Service Life

For details, see A-465.

Clearance in the Rotation Direction

For details, see A-481.

Accuracy Standards

For details, see A-482.

Housing Inner-diameter Tolerance

Table1 shows housing inner-diameter tolerance for models LBG and LBGT.

Table1 Housing Inner-diameter Tolerance

Housing Inner-diameter	General conditions	H7
Tolerance	When clearance needs to be small	J6

Spline Shaft

Spline shafts are divided in shape into precision solid spline shaft, special spline shaft and hollow spline shaft (type K), as described on A-488.

For details, see B-400 to B-401.

Rotary Ball Spline With Support Bearing Type

Models LTR and LTR-A

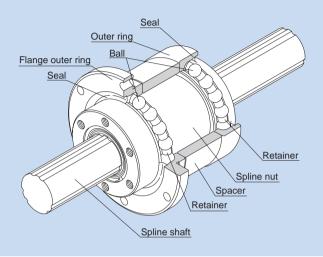


Fig.1 Structure of Rotary Ball Spline Model LTR

Structure and Features

With the Rotary Ball Spline model LTR, the spline shaft has three crests on the circumference, and along both sides of each crest, two rows of balls (six rows in total) are arranged to hold the crest so that a reasonable preload is applied.

Angular-contact ball raceways are machined on the outer surface of the spline nut to constitute support bearings, allowing the whole body to be compactly and lightly designed.

The rows of balls are held in a special resin retainer so that they smoothly roll and circulate. With this design, balls will not fall even if the spline shaft is removed.

In addition, a dedicated seal for preventing foreign material from entering the support bearings is available.

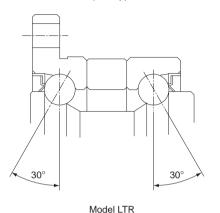
[No Angular Backlash]

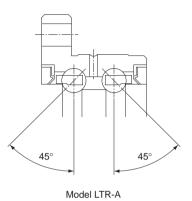
Two rows of balls facing one another hold a crest, formed on the circumference of the spline nut, at a contact angle of 20° to provide a preload in an angular-contact structure. This eliminates an angular backlash in the rotational direction and increases the rigidity.

[Compact Design]

The spline nut is integrated with the support bearings, allowing highly accurate, compact design to be achieved.

[Easy Installation]

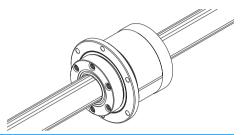

This ball spline can easily be installed by simply securing it to the housing using bolts.


[High Rigidity]

Since the contact angle is large and an appropriate preload is given, high rigidity against torque and moment is achieved.

The support bearing has a contact angle of 30° to secure high rigidity against a moment load, thus to achieve a rigid shaft support.

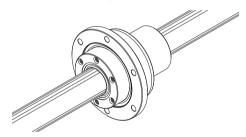
Model LTR-A, a compact type of LTR, has a contact angle of 45°.


Types and Features

[Types of Spline Nuts]

Ball Spline Model LTR

A compact unit type whose support bearings are directly integrated with the outer surface of the spline nut.



Ball Spline Model LTR-A

A compact type even smaller than LTR.

Specification Table⇒B-404

[Types of Spline Shafts]

For details, see A-493.

Features of Each Model Rotary Ball Spline

Service Life

For details, see A-465.

Clearance in the Rotation Direction

For details, see A-481.

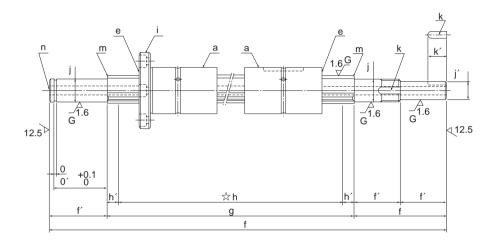
Accuracy Standards

For details, see A-482.

Housing Inner-diameter Tolerance

For the housing inner-diameter tolerance for model LTR, class H7 is recommended.

Spline Shaft


Spline shafts are divided in shape into precision solid spline shaft, special spline shaft and hollow spline shaft (types K and N), as described on A-493.

For details, see B-408 to B-409.

Checking List for Spline Shaft End Shape

If desiring a ball spline type with its end specially machined, check the following items when placing an order.

The diagram below shows a basic configuration of the Ball Spline.

[Check Items]

- a. Type of the spline nut to be fit
- b. Number of spline nuts
- c. Clearance in the rotation direction
- d. Accuracy
- e. With/without a seal (for a single seal, check its orientation)
- f. Overall length (including all dimensions? Total value correct?)
- g. Effective spline length
- h. Hardened area (mark the location with symbol ☆ and indicate the purpose of hardening)
- i. Orientation of the flange (for flanged type)

- j. Spline shaft end shape (thicker than the minimum spline diameter?) (black, mill scale)
- k. Positional relationship between the spline nut and the spline shaft end shape (keyway of the spline nut, flange mounting hole)
- I. Indication of chamfering for each part
- m. Shape of chamfer on the spline shaft end (see B-382)
- Intended purpose of the though hole in the spline shaft if any
- o. o'. Snap ring groove
- p. Maximum length
- q. Precedented or not

Point of Design

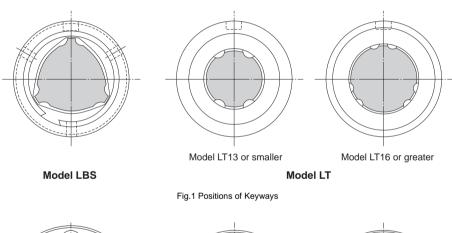
Housing Inner-diameter Tolerance

Housing Inner-diameter Tolerance

When fitting the spline nut with the housing, tight fitting is normally recommended. If the accuracy of the Ball Spline does not need to be very high, clearance fitting is also acceptable.

Table1 Housing Inner-diameter Tolerance

Housing Inner-diameter	General conditions	H7
Tolerance	When clearance needs to be small	J6


Note) For the housing inner-diameter tolerance of Rotary Ball Spline model LTR, H7 is recommended.

Positions of the Spline-nut Keyway and Mounting Holes

The keyways formed on the outer surface of straight nuts for Ball Spline models are positioned where balls under a load are placed as shown in Fig.1.

The flange-mounting holes of the flange types are positioned as shown in Fig.2.

When placing an order, indicate their positions in relation to the keyway or the like to be formed on the spline shaft.

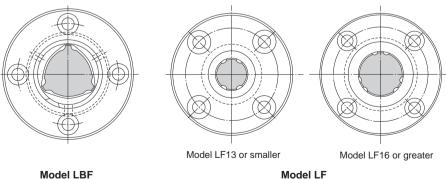


Fig.2 Positions of Flange Mounting Holes

Mounting Procedure and Maintenance

Ball Spline

Assembling the Ball Spline

Mounting the Spline

Fig.1 and Fig.2 shows examples of mounting the spline nut. Although the Ball Spline does not require a large strength for securing it in the spline shaft direction, do not support the spline only with driving fitting.

Straight nut type

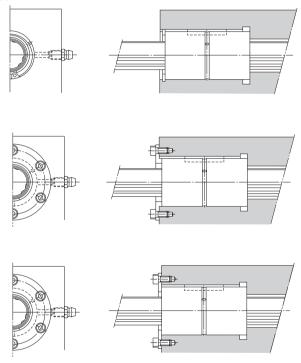
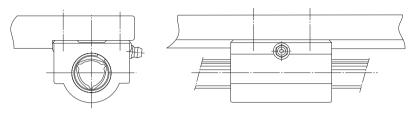
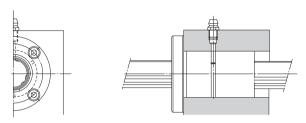
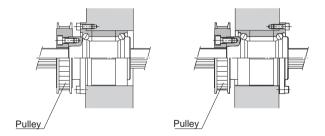



Fig.1 Examples of Fitting the Spline Nut


Mounting Procedure and Maintenance

Assembling the Ball Spline


Model LBH

Flanged type

Model LTR

Model LBG

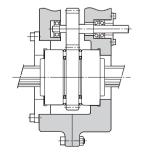


Fig.2 Examples of Fitting the Spline Nut

Installing the Spline Nut

When installing the spline nut into the housing, do not hit the side plate or the seal, but gently insert it using a jig (Fig.3).

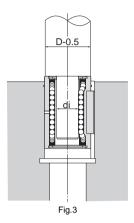


Table1 Dimensions of the Jig for Model LBS

Unit: mm

							•					
Nominal shaft diameter	15	20	25	30	40	50	60	70	85	100	120	150
di	12.5	16.1	20.3	24.4	32.4	40.1	47.8	55.9	69.3	83.8	103.8	131.8

Table2 Dimensions of the Jig for Model LT

Unit: mm

Nominal shaft diameter	6	8	10	13	16	20	25	30	40	50	60	80	100
di	5.0	7	8.5	11.5	14.5	18.5	23	28	37.5	46.5	56	75.5	94.5

Installation of the Spline Shaft

When installing the spline shaft into the spline nut, identify the matching marks (Fig.4) on the spline shaft and the spline nut, and then insert the shaft straightforward while checking their relative positions.

Note that forcibly inserting the shaft may cause balls to fall off.

If the spline nut is attached with a seal or given a preload, apply a lubricant to the outer surface of the spline shaft.

Options

Ball Spline (Options)

Lubrication

To prevent foreign material from entering the spline nut and the lubricant from leaking, special synthetic resin seals with high wear resistance are available for the Ball Spline.

Spline nuts with seals (seal for both ends type UU, and seal for one end) contain high-quality lithium-soap group grease No. 2. However, if using them at high speed or with a long stroke, replenish grease of the same type through the greasing hole on the spline nut after running in.

Afterward, replenish grease of the same type as necessary according to the service conditions.

The greasing interval differs depending on the conditions. Normally, replenish the lubricant (or replace the product) roughly every 100 km of travel distance (six months to one year) as a rule of thumb.

For a Ball Spline model type without a seal, apply grease to the interior of the spline nut or to the raceways of the spline shaft.

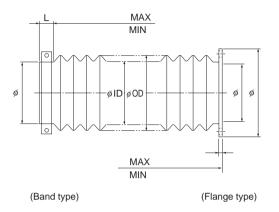
Material and Surface Treatment

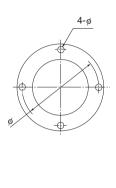
Depending on the service environment, the Ball Spline requires anticorrosive treatment or a different material. For details of anticorrosive treatment and material change, contact THK.

Contamination Protection

Entrance of dust or other foreign material into the spline nut will cause abnormal wear or shorten the service life. Therefore, it is necessary to prevent detrimental foreign material from entering the Ball Spline. When entrance of dust or other foreign material is predicted, it is important to select an effective sealing device or dust-control device that meets the environment conditions.

For the Ball Spline, a special synthetic rubber seal that is highly resistant to wear is available as a contamination protection accessory. If desiring a higher contamination protection effect, a felt seal is also available for some types. For details about the felt seal, contact THK.


In addition, THK produces round bellows. Contact us for details.


Table1 Contamination protection accessory symbol

Symbol	Contamination protection accessory					
No Symbol	Without seal					
UU	Rubber seal attached on both ends of spline nut					
U	Rubber seal attached on either end of spline nut					
DD	Felt seal attached on both ends of spline nut					
D	Felt seal attached on either end of spline nut					
ZZ	Rubber seal attached on both ends of support bearings					
Z	Rubber seal attached on either end of support bearings					

Specifications of the Bellows

Bellows are available as a contamination protection accessory. Use this specification sheet.

Specifications of the Bellows

Supported Ball Screw models:

Dimensions of the Bellows

MAX:(MIN:(Stroke:() mm) mm) mm Permissible outer diameter: (ØOD)) Desired inner diameter:(ØID

How It Is Used

Installation direction:(horizontal, vertical, slant) Speed: ()mm/sec. min. Motion:(reciprocation, vibration)

Conditions

Resistance to oil and water: (necessary, unnecessary) Oil name () × ()% Chemical resistance: Name (Location: (indoor, outdoor)

Remarks:

Number of Units To Be Manufactured:

Precautions on Use

Ball Spline

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Tilting a spline nut or spline shaft may cause them to fall by their own weight.
- (3) Dropping or hitting the Ball Spline may damage it. Giving an impact to the product could also cause damage to its function even if the product looks intact.

[Lubrication]

- (1) Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (2) Do not mix lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.
- (5) When adopting oil lubrication, the lubricant may not be distributed throughout the product depending on the mounting orientation of the system. Contact THK for details.
- (6) Lubrication interval varies according to the conditions. Contact THK for details.

[Precautions on Use]

- (1) Entrance of foreign material may cause damage to the ball circulating component or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (2) Contact THK if you desire to use the product at a temperature of 80°C or higher.
- (3) When planning to use the product in an environment where the coolant penetrates the spline nut, it may cause trouble to product functions depending on the type of the coolant. Contact THK for details.
- (4) If foreign material adheres to the product, replenish the lubricant after cleaning the product.
- (5) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.
- (6) Do not remove the spline nut from the spline shaft unnecessarily. If you inevitably reassemble the product, check the relative positions of the spline nut and the spline shaft by identifying the matching marks on them. Be sure not to twist the spline nut and the spline shaft when inserting the shaft into the nut. Forcibly inserting it may cause balls to fall. For a type equipped with seals, apply a lubricant to the circumference of the shaft.
- (7) When installing the spline shaft into the housing, do not hit the seal section or the stop ring section. Doing so may cause malfunction.
- (8) Giving a shock to the product may cause a functional loss. Do not drop the product or hit it with a tool.
- (9) Take care not to let the spline nut run on the incomplete spline section. Doing so may cause malfunction.

[Storage]

When storing the Ball Spline, enclose it in a package designated by THK and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity. If the product is stored in an inappropriate position, the spline shaft could bend.

[Other]

If you have any trouble or question when handling the product, contact THK.

Spline Nut

冗出K General Catalog

A Technical Descriptions of the Products

Features	A-514
Features of the Spline Nut	
Structure and features	A-514
 Features of the Special Rolled Shafts 	A-515
High Strength Zinc Alloy	A-515
Clearance in the Rotation Direction	A-516
Point of Selection	
Selecting a Spline Nut	A-517
Point of Design	
Fit	A-520
Mounting Procedure and Maintenance	
nstallation	
Lubrication	A-521

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	B-411
Model DPM	
Model DP	B-414

^{*} Please see the separate "B Product Specifications".

Features Spline Nut

Features of the Spline Nut

Structure and Features

Spline Nut models DPM and DP are low price bearings that are made of a special alloy (see A-515) formed by die casting and use highly accurate spline shafts as the core. Unlike conventional machined spline nuts, the sliding surface of these models maintains a chill layer formed in the rolling process, thus achieving high wear resistance.

The surface of the spline shafts to be used in combination with the nuts is hardened through rolling and is mirror-finished. Accordingly, smooth sliding motion is achieved.

The specially designed teeth of the spline have large contact areas, as well as concentricity, which enable the shaft to automatically establish the center as a torque is applied. Therefore, the teeth demonstrate stable performance in transmitting a torque.

Features of the Spline Nut

Features of the Special Rolled Shafts

Dedicated rolled shafts with standardized lengths are available for the Spline Nut.

[Increased Wear Resistance]

The shaft teeth are formed by cold gear rolling, and the surface of the tooth surface is hardened to over 250 HV and mirror-finished. As a result, the shafts are highly wear resistant and achieve significantly smooth motion when used in combination with nuts.

[Improved Mechanical Properties]

Inside the teeth of the rolled shaft, a fiber flow occurs along the contour of the tooth surface of the shaft, making the structure around the teeth roots dense. As a result, the fatigue strength is increased.

[Additional Machining of the Shaft End Support]

Since each shaft is rolled, additional machining of the support bearing of the shaft end can easily be performed by lathing or milling.

High Strength Zinc Alloy

The high strength zinc alloy used in the spline nuts is a material that is highly resistant to seizure and wear and has a high load carrying capacity. Its composition, mechanical properties, physical properties and wear resistance are given below.

[Composition]

Table1 Composition of the High Strength Zinc Alloy

Unit: %

Item	Description
Αℓ	3 to 4
Cu	3 to 4
Mg	0.03 to 0.06
Ве	0.02 to 0.06
Ti	0.04 to 0.12
Zn	Remaining portion

[Mechanical Properties]

Item	Description	
Tensile strength	275 to 314 N/mm ²	
Tensile yield strength (0.2%)	216 to 245 N/mm ²	
Compressive strength	539 to 686 N/mm ²	
Compressive yield strength (0.2%)	294 to 343 N/mm ²	
Fatigue strength	132 N/mm ² × 10 ⁷ (Schenk bending test)	
Charpy impact	0.098 to 0.49 N-m/mm ²	
Elongation	1 to 5 %	
Hardness	120 to 145 HV	

[Physical Properties]

Item	Description
Specific gravity	6.8
Specific heat	460 J/ (kg•K)
Melting point	390 ℃
Thermal expansion coefficient	24×10 ⁻⁶

[Wear Resistance]

[Test conditions: Amsler wear-tester]

Item	Description
Test piece rotational speed	185 min ⁻¹
Load	392 N
Lubricant	Dynamo oil

Fig.1 Wear Resistance of the High Strength Zinc Alloy

Clearance in the Rotation Direction

Clearance in the rotational direction: $\alpha \leq 20'$ MAX

Point of Selection

Selecting a Spline Nut

[Dynamic Permissible Torque T and Dynamic Permissible Thrust F]

The dynamic permissible torque (T) and the dynamic permissible thrust (F) are the torque and the thrust at which the contact surface pressure on the tooth surface of the bearing is 9.8 N/mm². These values are used as a measuring stick for the strength of the spline nut.

[pV Value]

With a sliding bearing, a pV value, which is the product of the contact surface pressure (p) and the sliding speed (V), is used as a measuring stick to judge whether the assumed model can be used. Use the corresponding pV value indicated in Fig.1 as a guide for selecting a spline nut. The pV value also varies according to the lubrication conditions.

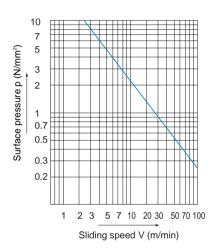


Fig.1 pV Value

Table1 Safety Factor (fs)

Type of load	Lower limit of fs
For a static load less frequently used	1 to 2
For an ordinary single-directional load	2 to 3
For a load accompanied by vibrations/impact	4 or greater

fs: Safety Factor

To calculate a load applied to the spline nut, it is necessary to accurately obtain the effect of the inertia that changes with the weight and dynamic speed of an object. In general, with reciprocating or rotating machines, it is not easy to accurately obtain all the factors such as the effect of the start and stop, which are always repeated. Therefore, if the actual load cannot be obtained, it is necessary to select a bearing while taking into account the empirically obtained safety factors (fs) shown in Table1.

● f_T:Temperature Factor

If the temperature of the spline nut exceeds the normal temperature range, the seizure resistance of the nut and the strength of the material will decrease. Therefore, it is necessary to multiply the dynamic permissible torque (T) and the dynamic permissible thrust (F) by the corresponding temperature factor indicated in Fig.2. Accordingly, when selecting a spline nut, the following equations need to be met in terms of its strenath.

Dynamic permissible torque (T)

$$f_s \leq \frac{f_T \cdot T}{P_T}$$

Static permissible thrust (F)

$$f_s \leq \frac{f_T \cdot F}{P_F}$$

: Static safety factor fs

(see Table1 on A-517)

f⊤ : Temperature factor (see Fig.2) Т : Dynamic permissible torque (N-m) Р⊤ : Applied torque (N-m) F : Dynamic permissible thrust (N) P_F : Axial load (N)

Hardness of the Surface and Wear Resistance

The hardness of the shaft significantly affects the wear resistance of the spline nut. If the hardness is equal to or less than 250 HV, the abrasion loss increases as indicated in Fig.3. The roughness of the surface should preferably be 0.80a or less.

A specially rolled shaft achieves surface hardness of 250 HV or greater, through hardening as a result of rolling, and a surface roughness of 0.20a or less. Thus, the dedicated rolled shaft is highly wear resistant.

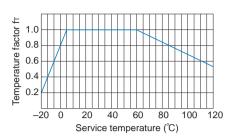


Fig.2 Temperature factor

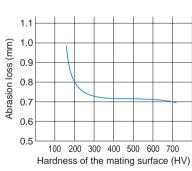


Fig.3 Hardness of the Surface and Wear Resistance

[Calculating the Contact Surface Pressure p]

$$p = \frac{P_{\tau}}{T} \times 9.8$$

: Contact surface pressure on the tooth under a load torque (P_T) (N/mm²)

Т : Dynamic permissible torque (N-m) Рт : Applied torque (N-m)

Selecting a Spline Nut

[Calculating the Sliding Speed]

With splines, the sliding speed of the tooth surface is equal to the feeding speed.

: Sliding speed of the tooth (m/min)

[Example of calculation]

Use Spline Nut DPM and reciprocate it at a speed in the axial direction of 5 m/min while transmitting a load torque of 78 N-m. Since the applied torque is not consistent in direction, it is important to select a spline nut that can be used in locations accompanied by vibrations and impact.

First, select a nut that has a dynamic permissible torque (T) at which it can be used.

$$T \ge \frac{f_s \cdot P_T}{f_T} = \frac{4 \times 78}{1} = 312 N \cdot m$$

Safety factor (fs) =4 Temperature factor (f_T) = 1 Applied torque (P_T) =78 N-m

Select Spline Nut model DPM3560 (dynamic permissible torque T = 443 N-m), which satisfies the dynamic permissible torque (T) above.

Obtain the pV value. Obtain the contact surface pressure (p).

$$p = \frac{P_T}{T} \times 9.8 = \frac{78}{443} \times 9.8 = 1.73 \text{ N/mm}^2$$

Obtain the sliding speed (V).

$$V = 5m/min$$

From the diagram of pV values (see Fig.1 on A-517), it is judged that there will be no abnormal wear if the sliding speed (V) is 13.5 m/min or below against the "p" value of 1.73 N/mm2. Therefore, it is appropriate to select model DPM3560.

Spline Nut

Point of Design

Fit

For the fitting between the spline nut circumference and the housing, we recommend loose fitting or tight fitting.

Housing inner-diameter tolerance: H8 or J8

Mounting Procedure and Maintenance

Spline Nut

Installation

[About Chamfer of the Housing's Mouth]

To increase the strength of the root of the flange of the spline nut, the corner is machined to have an R shape. Therefore, it is necessary to chamfer the inner edge of the housing's mouth.

Table1 Chamfer of the Housing's Mouth

Unit: mm

C chamfer	
P	
<u></u>	

Model No.	Chamfer of the mouth C	
DPM	(Min.)	
12		
15	2	
17	_	
20		
25	2.5	
30	2.5	
35		
40	3	
45]	
50		

Fig.1

Lubrication

Select a lubrication method according to the conditions of the spline nut.

[Oil Lubrication]

For the lubrication of the spline nut, oil lubrication is recommended. Specifically, oil-bath lubrication or drop lubrication is particularly effective. Oil-bath lubrication is the most appropriate method since it meets harsh conditions such as high speed, heavy load or external heat transmission, and it cools the spline nut. Drop lubrication suits low to medium speed and a light to medium load. Select a lubricant according to the conditions as indicated in Table2.

Table2 Selection of a Lubricant

Condition	Types of Lubricants
Low speed, high load, high temperature	High-viscosity sliding surface oil or turbine oil
Low speed, light load, low temperature	Low-viscosity sliding surface oil or turbine oil

[Grease Lubrication]

In low-speed feed, which occurs less frequently, the user can lubricate the slide system by manually applying grease to the shaft on a regular basis or using the greasing hole on the spline nut. We recommend using lithium-soap group grease No. 2.

Linear Bushing

玩出ば General Catalog

A Technical Descriptions of the Products

Features and Types A-524 Features of the Linear Bushing A-524 Structure and features..... A-524 Dedicated Shafts for Model LM..... A-526 Standard LM Shafts A-526 Specially Machined Types A-526 • Table of Rows of Balls and Masses for Clearance-adjustable Types and Open Types of the Linear Bushing..... A-527 Types of the Linear Bushing A-528 Types and Features..... A-528 Classification Table A-534 Point of Selection..... A-536 Flowchart for Selecting a Linear Bushing ... A-536 • Steps for Selecting a Linear Bushing... A-536 Rated Load and Nominal Life..... A-537 Table of Equivalent Factors A-540 Accuracy Standards A-541 Point of Design...... A-542 Assembling the Linear Bushing...... A-542 Options..... A-549 Lubrication A-549 Material, surface treatment A-549 Contamination Protection..... A-550 Felt Seal Model FLM..... A-550 Precautions on Use..... A-551

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	B-417
Model LM	B-418
Model LM-GA (Metal Retainer Type)	B-420
Model LM-MG (Stainless Steel Type)	B-422
Model LME	B-424
Model LM-L	B-426
Model LMF	B-428
Model LMF-M (Stainless Steel Type)	B-430
Model LMK	B-432
Model LMK-M (Stainless Steel Type)	B-434
Model LMF-LModel LMF-ML (Stainless Steel Type).	B-436
Model LMF-ML (Stainless Steel Type).	B-438
Model LMK-L	B-440
Model LMK-ML (stainless steel type)	B-442
Model LMH	B-444
Model LMH-L	B-446
Models SC6 to 30	B-448
Models SC35 to 50	B-450
Model SL	B-452
Model SH	B-454
Model SH-L	B-456
Model SK	B-458
Dedicated Shafts for Model LM	B-459
Standard LM Shafts	B-460
Options	B-461
Felt Seal Model FLM	B-461

Please see the separate "B Product Specifications".

Features and Types

Linear Bushing

Features of the Linear Bushing

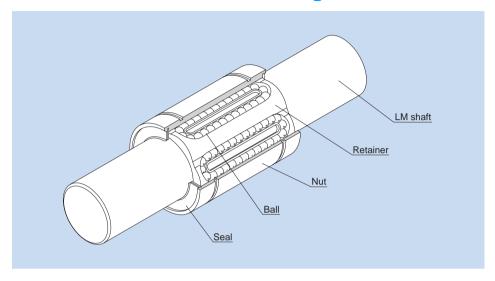


Fig.1 Structure of Linear Bushing Model LM···UU

Structure and Features

Linear Bushing model LM is a linear motion system used in combination with a cylindrical LM shaft to perform infinite straight motion. The balls in the loaded area of the nut are in point contact with the LM shaft. This allows straight motion with minimal friction resistance and achieves highly accurate and smooth motion despite the small permissible load.

The nut uses high-carbon chromium bearing steel and its outer and inner surfaces are ground after being heat-treated.

The Linear Bushing is used in a broad array of applications, such as slide units of precision equipment including OA equipment and peripherals, measuring instruments, automatic recorders and digital 3D measuring instruments, industrial machines including multi-spindle drilling machine, punching press, tool grinder, automatic gas cutting apparatus, printing machine, card selector and food packing machine.

Features and Types

Linear Bushing

[Interchangeability]

Since the dimensional tolerances of the Linear Bush's components are standardized, they are interchangeable. The LM shaft is machined through cylindrical grinding, which can easily be performed, and it allows highly accurate fitting clearance to be achieved.

[Highly Accurate Retainer Plate]

Since the retainer, which guides three to eight rows of balls, is integrally molded, it is capable of accurately guiding the balls in the traveling direction and achieving stable running accuracy. Small-diameter types use integrally molded retainers made of synthetic resin. It reduces noise generated during operation and allows for superb lubrication.

[Wide Array of Types]

A wide array of types are available, such as standard type, clearance-adjustable type, open type, long type and flanged linear bushing, allowing the user to select a type that meets the intended use.

Dedicated Shafts for Model LM

The LM shaft of the Linear Bushing needs to be manufactured with much consideration for hardness, surface roughness and dimensional accuracy of the shaft since balls roll directly on it. THK manufactures dedicated LM shafts for the Linear Bushing.

Standard LM Shafts

THK manufactures high quality, dedicated LM shafts for Linear Bushing model LM series.

Specially Machined Types

THK also supports special machining processes such as tapping, milling, threading, through hole and joggling, as shown in the Fig.2, at your request.

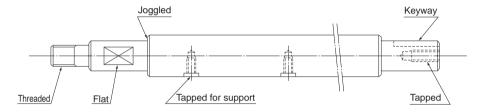


Fig.2

Table of Rows of Balls and Masses for Clearance-adjustable Types and Open Types of the Linear Bushing

Shaft	Clearance-adjustable type		Open type			
diameter	Model No.	Rows of balls	Mass g	Model No.	Rows of balls	Mass g
6	LM 6-AJ	4	7.8	_	_	_
8	LM 8S-AJ	4	10	_	_	_
0	LM 8-AJ	4	14.7	_	_	_
10	LM 10-AJ	4	29	_	_	_
12	LM 12-AJ	4	31	LM 12-OP	3	25
13	LM 13-AJ	4	42	LM 13-OP	3	34
16	LM 16-AJ	5(4)	68	LM 16-OP	4(3)	52
20	LM 20-AJ	5	85	LM 20-OP	4	69
25	LM 25-AJ	6(5)	216	LM 25-OP	5(4)	188
30	LM 30-AJ	6	245	LM 30-OP	5	210
35	LM 35-AJ	6	384	LM 35-OP	5	350
38	LM 38-AJ	6	475	LM 38-OP	5	400
40	LM 40-AJ	6	579	LM 40-OP	5	500
50	LM 50-AJ	6	1560	LM 50-OP	5	1340
60	LM 60-AJ	6	1820	LM 60-OP	5	1650
80	LM 80-AJ	6	4320	LM 80-OP	5	3750
100	LM 100-AJ	6	8540	LM 100-OP	5	7200
120	LM 120-AJ	8	14900	LM 120-OP	6	11600

Note) The numbers of ball rows in the table apply to types using a resin retainer. Those of types using a metal retainer are indicated in parentheses.

Linear Bushing Types

Types and Features

Standard Type

With the Linear Bushing nut having the most accurate cylindrical shape, this type is widely used.

There are two series of the Linear Bushing in dimensional group.

- Model LM
 Metric units series used most widely in Japan
- Model LM-MG Stainless steel version of type LM
- Model LME
 Metric units series commonly used in Europe

Standard Type

Open Type

The nut is partially cut open by one row of balls $(50^{\circ}$ to $80^{\circ})$. This enables the Linear Bushing to be used even in locations where the LM shaft is supported by a column or fulcrum. In addition, a clearance can easily be adjusted.

Models LM-OP/LME-OP Model LM-MG-OP

Open Type

Features and Types Linear Bushing Types

Clearance-adjustable Type

This type has the same dimensions as the standard type, but the nut has a slit in the direction of the LM shaft. This allows the linear bushing to be installed in a housing whose inner diameter is adjustable, and enables the clearance between the LM shaft and the housing to easily be adjusted.

Models LM-AJ/LME-AJ Model LM-MG-AJ

Clearance-adjustable Type

Long Type

Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present and reduces man-hours in installation.

Model LM-L....Standard type

Long Type

Flanged Type (Round)

The nut of the standard type Linear Bushing is integrated with a flange. This enables the Linear Bushing to be directly mounted onto the housing with bolts, thus achieving easy installation.

Model LMF·····Standard type

Model LMF-M·····Made of stainless steel

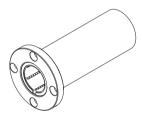
Flanged Type (Round)

Flanged Type (Square)

Like model LMF, this type also has a flange, but the flange is cut to a square shape. Since the height is lower than the circular flange type, compact design is allowed.

Model LMK·····Standard type

Model LMK-M·····Made of stainless steel

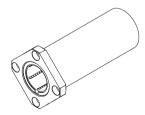

Flanged Type (Square)

Flanged Type (Round) - Long

The nut of the long type Linear Bushing is integrated with a flange. This enables the Linear Bushing to be directly mounted onto the housing with bolts, thus achieving easy installation. Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present.

Model LMF-L····Standard type

Model LMF-ML·····Made of stainless steel


Flanged Type (Round) - Long

Flanged Type (Square) - Long

Like model LMF-L, this type also has a flange, but the flange is cut to a square shape. Since the height is lower than the circular flange type, compact design is allowed.

Model LMK-L····Standard type

Model LMK-ML·····Made of stainless steel

Flanged Type (Square) - Long

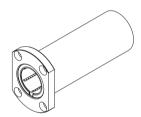
Features and Types

Linear Bushing Types

Flanged Type (Cut Flange)

The nut is integrated with a cut flange. Since the height is lower than model LMK, compact design is allowed. Since the rows of balls in the Linear Bushing are arranged so that two rows receive the load from the flat side, a long service life can be achieved.

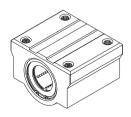
Model LMH·····Standard type



Flanged Type (Cut Flange)

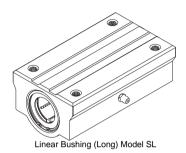
Flanged Type (Cut Flange) - Long

The flange is a cut flange and lower than model LMK-L, allowing compact design. Containing two units of the standard retainer plate, this type is optimal for locations where a moment load is present. Since the rows of balls in the Linear Bushing are arranged so that two rows receive the load from the flat side, a long service life can be achieved.

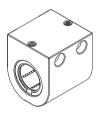

Model LMH-L·····Standard type

Flanged Type (Cut Flange) - Long

Linear Bushing Model SC

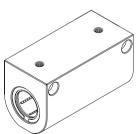

It is a case unit where the standard type of Linear Bushing is incorporated into a small, light-weight aluminum casing. This model can easily be mounted simply by securing it to the table with bolts.

Linear Bushing Model SC


Linear Bushing (Long) Model SL

A long version of model SC, this model contains two units of the standard type Linear Bushing in an aluminum casing.

Linear Bushing Model SH


It is a case unit where the standard type of Linear Bushing is incorporated into a smaller and lighter aluminum casing than model SC. This model allows even more compact design than model SC. It also has flexibility in mounting orientation. Additionally, it is structured so that two rows of balls receive the load from the top of the casing, allowing a long service life to be achieved

Linear Bushing Model SH

Linear Bushing (Long) Model SH-L

A long version of model SH, this model is a case unit that contains two units of the standard type Linear Bushing in an aluminum casing.

Linear Bushing (Long) Model SH-L

Features and Types

Linear Bushing Types

LM Shaft End Support Model SK

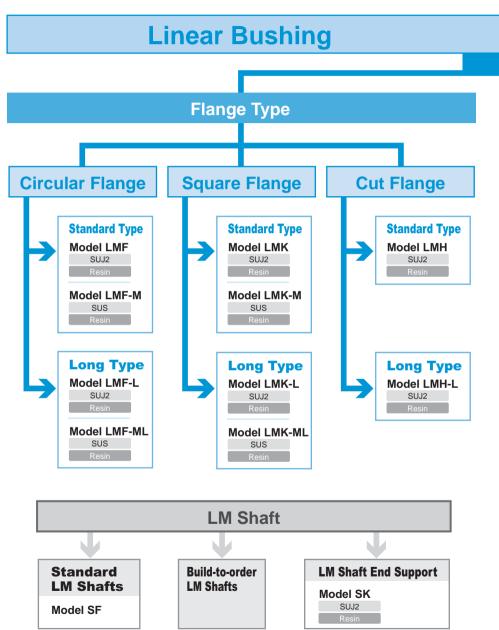
An aluminum-made light fulcrum for securing an LM shaft. The LM shaft mounting section has a slit, enabling the linear bushing to firmly secure an LM shaft using bolts.

LM Shaft End Support Model SK

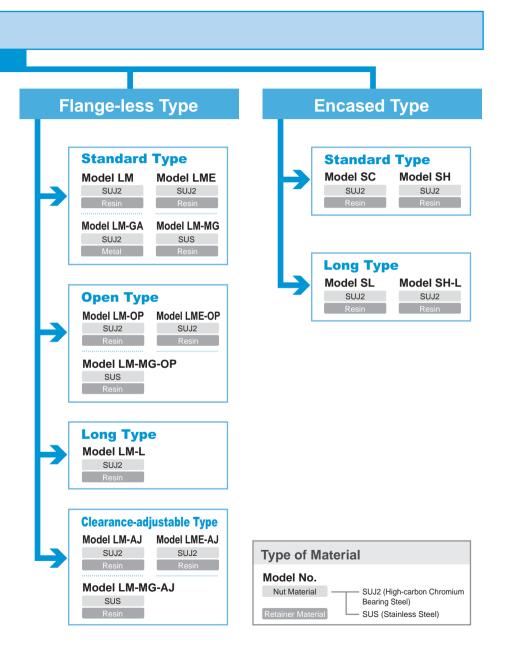
Standard LM Shafts

THK manufactures high quality, dedicated LM shafts for Linear Bushing model LM series.

Standard LM Shafts


Build-to-order LM Shafts

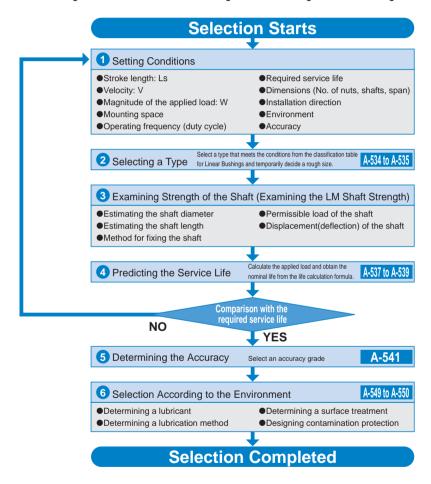
THK also manufactures hollow LM shafts and specially machined shafts at your request.


Build-to-order LM Shafts

Classification Table

Features and Types

Classification Table


Point of Selection

Linear Bushing

Flowchart for Selecting a Linear Bushing

Steps for Selecting a Linear Bushing

The following flowchart should be used as a guide for selecting a Linear Bushing.

Point of Selection

Rated Load and Nominal Life

Rated Load and Nominal Life

[Load Rating]

The rated load of the Linear Bushing varies according to the position of balls in relation to the load direction. The basic load ratings indicated in the specification tables each indicate the value when one row of balls receiving a load are directly under the load.

If the Linear Bushing is mounted so that two rows of balls evenly receive the load in the load direction, the rated load changes as shown in table 1.

Table1

Rows of balls	Ball position	Load Rating
3 rows		1×C
4 rows		1.41×C
5 rows		1.46×C
6 rows		1.28×C

For specific values for "C" above, see the respective specification table

(km)

[Calculating the Nominal Life]

The nominal life of the Linear Bushing is obtained using the following equation.

$$L = \left(\frac{f_{\text{H}} \cdot f_{\text{T}} \cdot f_{\text{c}}}{f_{\text{W}}} \cdot \frac{C}{P_{\text{c}}}\right)^{3} \times 50$$

: Nominal life

 $\begin{array}{lll} f_T & : Temperature factor \ \, (see \ \, Fig.2 \ on \ \, A-539) \\ f_C & : Contact factor & (see \ \, Table2 \ on \ \, A-539) \\ f_W & : Load factor & (see \ \, Table3 \ on \ \, A-539) \\ f_H & : Hardness factor & (see \ \, Fig.1) \\ \end{array}$

When a Moment Load is Applied to a Single Nut or Two Nuts in Close Contact with Each Other

When a moment load is applied to a single nut or two nuts in close contact with each other, calculate the equivalent radial load at the time the moment is applied.

$P_u = K \cdot M$

P_u : Equivalent radial load (N)

(with a moment applied)

K : Equivalent factors

(see Table4 to Table6 on A-540)

M : Applied moment (N-mm)

However, "P_u" is assumed to be within the basic static load rating (C₀).

• When a Moment Load and a Radial Load are Simultaneously Applied

When a moment and a radial load are applied simultaneously, calculate the service life based on the sum of the radial load and the equivalent radial load.

■f_H: Hardness Factor

To maximize the load capacity of the Linear Bushing, the hardness of the raceways needs to be between 58 to 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor (f_H).

Normally, $f_H=1.0$ since the Linear Bushing has sufficient hardness.

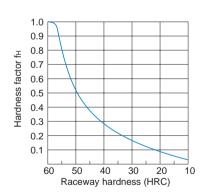


Fig.1 Hardness Factor (fH)

Point of Selection

Rated Load and Nominal Life

■f_T:Temperature Factor

If the temperature of the environment surrounding the operating Linear Bushing exceeds 100°C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.2. Also note that the Linear Bushing itself must be of high temperature type.

Note) If the environment temperature exceeds 80 °C , use a Linear Bushing type equipped with metal retainer plates.

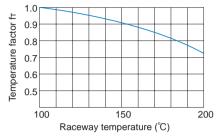


Fig.2 Temperature Factor (f₁)

Table2 Contact Factor (fc)

Table2 Contact Lactor (1c)			
Number of nuts in close contact with each other	Contact factor fc		
2	0.81		
3	0.72		
4	0.66		
5	0.61		
Normal use	1		

■fc: Contact Factor

When multiple nuts are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C₀) by the corresponding contact factor in Table2.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table2.

■fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop motion. Therefore, when loads applied on a Linear Bushing cannot be measured, or when speed and impact have a significant influence, divide the basic load rating (C or C₀), by the corresponding load factor in Table3.

Table3 Load Factor (fw)

Tablee Lead Table (III)			
Vibrations/ impact	Speed(V)	fw	
Faint	Very low V≦0.25m/s	1 to 1.2	
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5	
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2	
Strong	High V>2m/s	2 to 3.5	

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^3}{2 \times \ell_s \times n_t \times 60}$$

L_h : Service life time (h)

 ℓ_s : Stroke length (m)

n₁ : Number of reciprocations per minute

(min⁻¹)

Table of Equivalent Factors

Table4 Equivalent Factors of Model LM

M. LINI.	Equivalent factor: K		
Model No.	Single nut	Double blocks	
LM 3	1.566	0.26	
LM 4	1.566	0.21	
LM 5	1.253	0.178	
LM 6	0.553	0.162	
LM 8S	0.708	0.166	
LM 8	0.442	0.128	
LM 10	0.389	0.101	
LM 12	0.389	0.097	
LM 13	0.343	0.093	
LM 16	0.279	0.084	
LM 20	0.257	0.071	
LM 25	0.163	0.054	
LM 30	0.153	0.049	
LM 35	0.143	0.045	
LM 38	0.127	0.042	
LM 40	0.117	0.04	
LM 50	0.096	0.032	
LM 60	0.093	0.028	
LM 80	0.077	0.022	
LM 100	0.065	0.017	
LM 120	0.051	0.015	

Note) Equivalent factors for models LMF, LMK, LMH and SC are the same as that for model LM.

Table5 Equivalent Factors of Model I M-I

Tables Equivalent Factors of Model Livi-L		
Model No.	Equivalent factor: K	
	Single nut	
LM 3L	0.654	
LM 4L	0.578	
LM 5L	0.446	
LM 6L	0.402	
LM 8L	0.302	
LM 10L	0.236	
LM 12L	0.226	
LM 13L	0.214	
LM 16L	0.192	
LM 20L	0.164	
LM 25L	0.12	
LM 30L	0.106	
LM 35L	0.1	
LM 40L	0.086	
LM 50L	0.068	
LM 60L	0.062	

Note) Equivalent factors for models LMF-L, LMK-L and LMH-L are the same as that for model LM-L.

Table6 Equivalent Factors of Model LME

Model No.	Equivalent factor: K		
woder No.	Single nut	Double blocks	
LME 5	0.669	0.123	
LME 8	0.514	0.116	
LME 12	0.389	0.09	
LME 16	0.343	0.081	
LME 20	0.291	0.063	
LME 25	0.209	0.052	
LME 30	0.167	0.045	
LME 40	0.127	0.039	
LME 50	0.105	0.031	
LME 60	0.093	0.024	
LME 80	0.077	0.018	

Accuracy Standards

The accuracy of the Linear Bushing in inscribed bore diameter, outer diameter, width and eccentricity is described in the corresponding specification table. The accuracy of mode LM in inscribed bore diameter and eccentricity is classified into high accuracy grade (no symbol) and precision grade (P). (Accuracy symbol is expressed at the end of the model number.)

The accuracy of clearance-adjustable types (-AJ) and open types (-OP) in inscribed bore diameter and outer diameter indicates the value before division.

Point of Design

Linear Bushing

Assembling the Linear Bushing

[Inner Diameter of the Housing]

Table1 shows recommended housing inner-diameter tolerance for the Linear Bushing. When fitting the Linear Bushing with the housing, loose fit is normally recommended. If the clearance needs to be smaller, provide transition fit.

Table1 Housing Inner-diameter Tolerance

Туре		Housing		
Model No.	Accuracy	Loose fit Transition		
LM	High accuracy grade (no symbol)	H7	J7	
	Precision Grade (P)	H6	J6	
LME	_	H7	K6, J6	
LMF				
LMK		H7	J7	
LMH	High accuracy			
LM-L	grade			
LMF-L	(no symbol)			
LMK-L				
LMH-L				

[Clearance between the Nut and the LM Shaft]

When using the Linear Bushing in combination with an LM shaft, use normal clearance in ordinary use and small gap if the clearance is to be minimized.

Note1) If the clearance after installation is to be negative, it is preferable not to exceed the radial clearance tolerance indicated in the specification table.

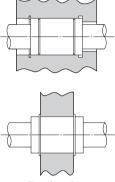
in the specification table.

Note2) The shaft tolerance for Linear Bushing models SC, SL SH and SH-L falls under high accuracy grade (no symbol).

Table2 Shaft Outer-diameter Tolerance

Туре		LM Shaft		
Model No.	Accuracy	Normal clearance	Small gap	
LM	High accuracy grade (no symbol)	f6, g6	h6	
	Precision Grade (P)	f5, g5	h5	
LME	_	h7	k6	
LMF		f6, g6	h6	
LMK				
LMH	High accuracy			
LM-L	grade			
LMF-L	(no symbol)			
LMK-L				
LMH-L				

Point of Design


Assembling the Linear Bushing

[Mounting the Nut]

Although the Linear Bushing does not require a large amount of strength for securing it in the axial direction, do not rely only on a press fit to support the nut. For the housing inner-diameter tolerance, see Table1 on A-542.

Installing the Standard Type

Fig.1 and Fig.2 show examples of installing the standard type Linear Bushing. When securing the Linear Bushing, use snap rings or stopper plates.

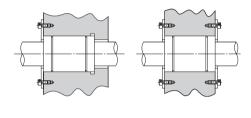


Fig.2 Stopper Plate

■Snap Ring for Installation

To secure Linear Bushing model LM, snap rings indicated in Table3 are available.

Note1) For models indicated with parentheses, use C-shape

Concentric snap rings.

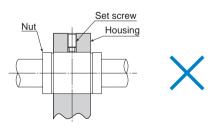
Note2) The Table3 commonly applies to models LM, LM-GA, LM-MG and LM-L.

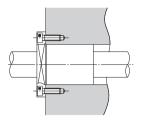
Table3 Types of Snap Rings

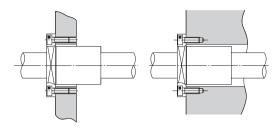
	Snap ring			
	For outer surface		For inner surface	
Model No.	Needle snap ring	C-shape snap ring	Needle snap ring	C-shape snap ring
LM 3	I	ı	AR 7	_
LM 4	1	-	8	_
LM 5	WR 10	10	10	10
LM 6	12	12	12	12
LM 8	_	15	15	15
LM 8S	_	15	15	15
LM 10	19	19	19	19
LM 12	21	21	21	21
LM 13	23	22	23	_
LM 16	28	_	28	28
LM 20	32	_	32	32
LM 25	40	40	40	40
LM 30	45	45	45	45
LM 35	52	52	52	52
LM 38	_	56 • 58	57	_
LM 40	_	60	60	60
LM 50	_	80	80	80
LM 60	_	90	90	90
LM 80A	_	120	120	120
LM 100A	_	(150)	150	_
LM 120A		(180)	180	_

■Set Screws Not Allowed

Securing the nut by pressing the outer surface with one set screw as shown in Fig.3 will cause the nut to be deformed.



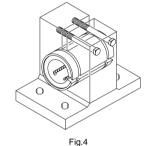

Fig.3


Point of Design

Assembling the Linear Bushing

Installing a Flanged Type

With models LMF, LMK and LMH, the nut is integrated with a flange. Therefore, the Linear Bushing can be mounted only via the flange.



Nut mounted via socket and spigot joint

Mounted via a flange only

Installing a Clearance-adjustable Type

To adjust the clearance of a clearance-adjustable type (-AJ), use a housing that allows adjustment of the nut outer diameter so as to facilitate the adjustment of the clearance between the Linear Bushing and the LM shaft. Positioning the slit of the Linear Bushing at an angle of 90° with the housing's slit will provide uniform deformation in the circumferential direction. (See Fig.4.)

Mounting an Open Type

For an open type (-OP), also use a housing that allows adjustment of the nut outer diameter as shown in Fig.5.

Open types are normally used with a light preload. Be sure not to give an excessive preload.

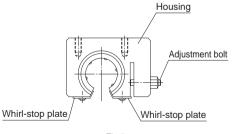
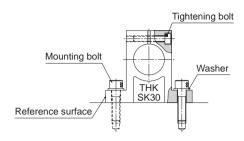
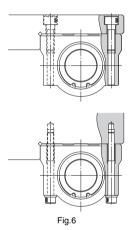
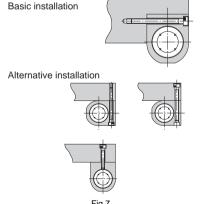



Fig.5

[Mounting the Shaft End Support]


Shaft end support model SK can easily be secured to the table using mounting bolts. Model SK enables the LM shaft to firmly be secured using tightening bolts.

[Installing an LM Case Unit]


Attaching Model SC (SL)

Since models SC and SL can be attached from the top or bottom by simply tightening it using bolts, the installation time can be shortened. (See Fig.6.)

Attaching Model SH (SH-L)

Since models SH and SH-L can be attached from the top or bottom by simply tightening it using bolts, the installation time can be shortened.(See Fig.7.)

Point of Design

Assembling the Linear Bushing

[Incorporating the Nut]

When incorporating the standard Linear Bushing into a housing, use a jig and drive in the nut, or use a flatter plate and gently hit the nut, instead of directly hitting the side plate or the seal. (See Fig.8.)

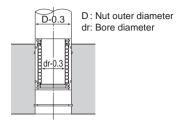


Fig.8

[Inserting the LM Shaft]

When inserting the LM shaft into the Linear Bushing, align the center of the shaft with that of the nut and gently insert the shaft straightforward into the nut. If the shaft is slanted while it is inserted, balls may fall off or the retainer may be deformed. (See Fig.9.)

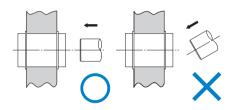


Fig.9

[When Under a Moment Load]

When using the Linear Bushing, make sure the load is evenly distributed on the whole ball raceway. In particular, if a moment load is applied, use two or more Linear Bushing units on the same LM shaft and secure an adequately large distance between the units.

If using the Linear Bushing under a moment load, also calculate the equivalent radial load and identify the correct model number. (See A-538.)

[Rotational Use Not Allowed]

The Linear Bushing is not suitable for rotational use for a structural reason. (See Fig.10.) Forcibly rotating it may cause an unexpected accident.

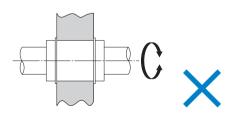


Fig.10

[Precautions on Installing an Open Three-ball-row Type Linear Bushing]

When installing an open three-ball-row type Linear Bushing, mount it while taking into account the load distribution as indicated in Fig.11.

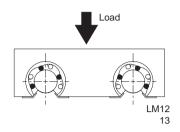


Fig.11

[Attaching Felt Seal Model FLM]

The felt seal can be press-fit into a housing finished to H7, but cannot be used as a stopper for preventing the Linear Bushing from coming off. Be sure to use the felt seal by attaching it as indicated in the Fig.12.

Also make sure to impregnate the felt with sufficient lubricant before attaching it.

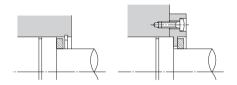


Fig.12

Linear Bushing (Options)

Options

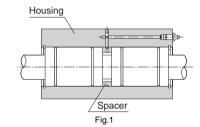
Lubrication

The Linear Bushing requires grease or oil as a lubricant for its operation.

[Grease Lubrication]

When installing a type attached with seals on both sides (...UU) to the LM shaft, apply grease to rows of balls in the Linear Bushing.

When installing standard types (without seal), perform the same as above or apply grease to the LM shaft.


Afterward, replenish grease of the same type as necessary according to the service conditions.

We recommend using high-quality lithium-soap group grease No. 2.

[Oil Lubrication]

Turbine oil, machine oil and spindle oil are commonly used as a lubricant.

When oiling the Linear Bushing, drop oil on the LM shaft, or infuse it from the greasing hole on the housing as shown in Fig.1.

Material and Surface Treatment

For the Linear Bushing and the LM shaft, highly corrosion-resistant stainless steel types are available for some models.

Although the LM shaft can be surface treated, some types may not be suitable for the treatment. Contact THK for details.

Contamination Protection

Entrance of dust or other foreign material into the Linear Bushing will cause abnormal wear or shorten the service life. When nut contamination is expected, it is important to select an effective sealing device or dust-control device that meets the environment conditions.

For the Linear Bushing, a special synthetic rubber seal that is highly resistant to wear and a felt seal (highly dust preventive with low seal resistance) are available as contamination protection accesso-

In addition, THK produces round bellows. Contact us for details.

Felt Seal Model FLM

• For detailed dimensions, see B-461,

Linear Bushing model LM series include types equipped with a special synthetic rubber seal (LM... UU, U). If desiring to have an additional contamination protection measure, or desiring to lower the seal resistance, use the felt seal model FLM.

Precautions on Use

Linear Bushing

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Dropping or hitting the Linear Bushing may damage it. Giving an impact force to the bushing could also cause damage even if the product looks intact.

[Lubrication]

- (1) Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (2) Do not mix lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.

[Precautions on Use]

- (1) Entrance of foreign material may cause damage to the ball circulating component or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (2) Do not use the product at temperature of 80 °C or higher. Contact THK if you desire to use the product at a temperature of 80 °C or higher.
- (3) Please be careful when using the product in an environment with excessive coolant. The coolant may cause premature failure if it penetrates the bushing nut. Contact THK for further details.
- (4) If foreign material adheres to the product, replenish the lubricant after cleaning the product.
- (5) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.

[Storage]

When storing the Linear Bushing, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

LM Stroke

冗岩K General Catalog

A Technical Descriptions of the Products

LM Stroke Models ST, ST-B, STI	A-554
Structure and features	
Types and Features	A-555
Rated Load and Nominal Life	
Accuracy Standards	A-558
Fit	A-559
ST shaft	A-559
Installation of the ST Shaft	A-559
Miniature Stroke Model MST	A-560
Structure and features	
Fit	A-561
Travel Distance of the Ball Cage	
Die-setting Ball Cage Models KS and BS	A-562
Structure and features	A-562
Rated Load and Service Life	A-562
Fit	
Installation of the Ball Cage	
Precautions on Use	Δ-564

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table LM Stroke Models ST, ST-B and STI	B-463
Models ST and ST-B Models ST…UU and ST…UUB	B-464 B-468
Miniature Stroke Model MST • Model MST	B-472
Die-setting Ball Cage Models KS and BS • Models KS / BS	B-474

^{*} Please see the separate "B Product Specifications".

LM Stroke Models ST, ST-B and STI

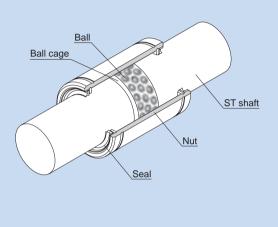


Fig.1 Structure of LM Stroke Model ST

Structure and Features

Model ST has a ball cage and balls both incorporated into a precision-ground cylindrical nut as shown in Fig.1. The balls are arranged in zigzags so as to evenly receive a load. The ball cage is a drilled cage made of a light alloy with high rigidity, and is capable of high-speed motion. A thrust ring and a snap ring are installed on both sides of the inner surface of the nut to prevent the ball cage from overshooting.

This structure allows rotational motion, reciprocal motion and complex motion with a small friction coefficient. Model ST has a stroke length up to twice the range within which the ball cage can travel. Since high accuracy can be obtained at a low price, this model is used in a broad array of applications such as press die setting, ink roll unit of printing machine, workpiece chuck unit of punching press, press feeder, work head of electric discharge machine, wound roll corrector, spinning and weaving machine, distortion measuring equipment, spindle of optical measuring instrument, and photocopiers.

Features of Each Model

LM Stroke

[Minimal Friction Coefficient]

The balls and the ball raceway are in point contact, which causes the smallest rolling loss, and the balls are individually retained in the ball cage. This allows the LM stroke to perform rolling motion at a minimal friction coefficient (μ =0.0006 to 0.0012).

[Compact Design]

Since it consists only of a thin nut and balls, the outer diameter of the bearing is minimized and a light, space-saving, compact design is achieved.

[High Accuracy at a Low Price]

A highly accurate slide unit can be produced at a low price.

Types and Features

Light Load Type Model ST

Model ST is a light load type that allows for a long stroke.

Shaft diameter: ø6 to ø100

In addition, a type attached with seal is available. Model ST-UU

Specification Table⇒B-464

Model ST

Medium Load Type Model ST-B

It has the same dimensions as model ST, but has a shorter stroke and achieves a rated load twice that of ST.

Shaft diameter: ø8 to ø100

In addition, a type attached with seal is available, Model ST-UUB

Specification Table⇒B-464

Model ST-B

Inner Ring Type Model STI

If the LM shaft cannot be hard quenched, STI allows an inner ring to be incorporated. The inner ring is available build-to-order.

Rated Load and Nominal Life

[Load Rating]

The basic load ratings for model ST are indicated in the respective specification tables.

The nominal life of model ST is obtained using the following equation.

$$\mathbf{L} = \left(\frac{\mathbf{f}_{\mathsf{H}} \cdot \mathbf{f}_{\mathsf{T}} \cdot \mathbf{f}_{\mathsf{C}}}{\mathbf{f}_{\mathsf{W}}} \cdot \frac{\mathbf{C}}{\mathbf{P}_{\mathsf{C}}}\right)^{3}$$

L : Nominal life (rotating 10⁶ times)

> (The total number of revolutions that 90% of a group of identical LM strokes independently operating under the same conditions can achieve without showing flaking)

C : Basic dynamic load rating (kN) : Calculated radial load (kN) fн : Hardness factor (see Fig.2 on A-557) f⊤ : Temperature factor (see Fig.3 on A-557) (see Table1 on A-558) : Contact factor : Load factor (see Table2 on A-558)

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the number of revolutions per minute and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

(h)

(min-1)

For Rotating Motion or Complex Motion

$$L_h = \frac{10^6 \times L}{60 \sqrt{(dm \cdot n)^2 + (10 \times \alpha \cdot \ell_s \cdot n_1)^2/dm}}$$

For Reciprocating Motion

$$L_h = \frac{10^6 \times L}{60 \times 10 \times \alpha \cdot \ell_s \cdot n_1 / (\pi \cdot dm)}$$

$$L_h : Service life time$$

$$n : Revolutions per minute$$

: Number of reciprocations per minute n₁ (min-1) ls

: Stroke length (mm) : Pitch circle diameter dm (mm)

(dm = 1.15 × dr)

dr : Ball inscribed bore diameter (mm)

: Factor for cage material α $(\alpha=0.7)$

[Tolerance Value in Rotation and Reciprocating Speed]

The permissible speed limit of model ST is obtained using the following equation.

$DN \ge dm \cdot n + 10 \times \ell_s \cdot n_1$

For the DN value above, the following value applies as a standard value.

For oil lubrication DN=600000
For grease lubrication DN=300000

However, the following points must be taken into account.

n₁ ≦5000 ℓs•n₁ ≤50000

● f_H: Hardness Factor

To maximize the load capacity of model ST, the hardness of the raceways needs to be between 58 to 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor (f_H).

Normally, $f_H=1.0$ since model ST has sufficient hardness.

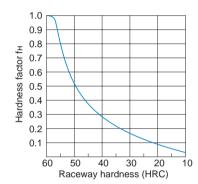


Fig.2 Hardness Factor (f_H)

● f_T: Temperature Factor

If the temperature of the environment surrounding the operating model ST exceeds 100°C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.3.

Note) If the environment temperature exceeds 80°C, contact THK

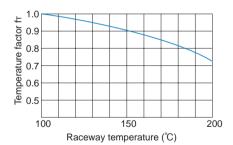


Fig.3 Temperature Factor (f_T)

● fc: Contact Factor

When multiple nuts of model ST are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C₀) by the corresponding contact factor in Table1.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in table 1.

• fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, when speed and vibrations have a significant influence, divide the basic dynamic load rating (C or C_0), by the corresponding load factor in Table2 of empirically obtained data.

Table1 Contact Factor (f_c)

Number of nuts in close contact with each other	Contact factor f₅
2	0.81
3	0.72
4	0.66
5	0.61
Normal use	1

Table2 Load Factor (fw)

Vibrations/ impact	Speed(V)	f _w
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

Accuracy Standards

The tolerance value in inscribed bore diameter (dr), nut outer diameter (D) and nut length (L) is indicated in the corresponding specification table.

The end of the nut may be deformed due to tension of the snap ring. Therefore, when measuring the nut outer diameter, it is necessary to calculate the measurement range using the following equation, and obtain the average diameter value within the range.

The tolerance value in the nut outer diameter is equal to the calculated average value of the maximum diameter and the minimum diameter obtained through two-point measurement of the outer diameter.

W : Length out of the measurement range

(mm)

L : Nut length (mm)

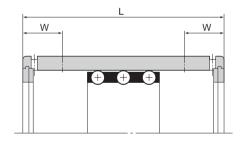


Fig.4 Measurement Range of the Nut

Features of Each Model

Fit

In theory, the ball cage of model ST moves in the same direction as the ST shaft by 1/2 of the shaft (or nut). However, to minimize the travel distance error caused by uneven load distribution or vibrations, it is necessary to reduce the clearance. If high accuracy is required or if the LM Stroke is used on a vertical shaft, we recommend setting the radial clearance between 0 and $10~\mu m$.

Item	Normal conditions	Vertical shaft or high accuracy
ST shaft	k5, m5	n5, p5
Housing	H6, H7	J6, J7

ST Shaft

With the ST shaft, used in model ST, balls roll directly on the shaft surface. Therefore, it is necessary to pay much attention to the hardness, surface roughness and dimensional accuracy when manufacturing it.

Since the hardness of the ST shaft has especially large impact on the service life, use much care in selecting a material and heat treatment method.

THK also manufactures high-quality ST shafts. Contact us for details.

[Material]

Generally, the following materials are used as suitable for surface hardening through induction-hardening.

- SUJ2 (JIS G 4805: high-carbon chromium bearing steel)
- SK3 to 6 (JIS G 4401: carbon tool steel)
- S55C (JIS G 4051: carbon steel for machine structural use)

[Hardness]

We recommend surface hardness of 58 HRC (\pm 653 HV) or higher. The depth of the hardened layer is determined by the shaft diameter; we recommend approximately 2 mm for general use.

The ST shaft can have a hardened inner ring attached on the shaft raceway.

[Surface Roughness]

To achieve smooth motion, the surface is normally finished to 0.40a or less. If higher wear resistance is required, finish the surface to 0.20a or less.

Installation of the ST Shaft

To install the ST shaft, drive it in to the designated depth. If the clearance is negative, a large driving force is required. However, do not forcibly hammer the shaft. Instead, apply a lubricant on the ST shaft first, and then gradually drive it in with a slight back action.

Miniature Stroke

Model MST

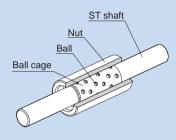


Fig.1 Structure of Miniature Stroke Model MST

Structure and Features

Model MST consists of an ST shaft, ball cage and nut. These components can freely be combined according to the application. The sectional shape is small, the clearance is minimal and the motion is extremely light and smooth. Accordingly, model MST can be used in a variety of small, precision measuring equipment such as optic measuring instrument's spindle, pen plotter, OA equipment, computer terminals, automatic scale, digital length measuring machine and solenoid valve.

[Highly Accurate Bearing]

Precision steel balls (sphericity in mutual difference: 0.0003 mm) compliant with JIS B 1501 are incorporated in a copper alloy ball cage to ensure high accuracy. The ball cage serves to prevent the balls from falling off with a unique ball-retaining design.

[Highly Durable Bearing]

The nut of the ST shaft uses a selected material, and is heat-treated and ground. In addition, the raceways are finished with ultra fine finish. The rows of balls are densely arranged in the ball cage, and the balls are placed so that the ball raceways do not overlap with each other. It enables this model to be used over a long period without wear and to demonstrate high durability.

[Compact Bearing]

Use of a combination of balls with a 1 mm diameter and a thin nut allows a small sectional shape and space-saving design.

[Bearing with Extremely Low Frictional Resistance]

Since the balls are in point-contact with the raceways, rolling loss is minimal and rolling motion with low-friction is achieved.

Fit

The inner surface of the housing must be finished to H6 to H7, and secured with an adhesive after the nut is inserted.

When press fitting is required, mounting the nut to the hole will reduce the inner diameter. Therefore, be sure to check the inner diameter after press fitting the nut and adjust the shaft diameter so that a correct preload is achieved. Also make sure that the preload must not exceed -2µm.

Travel Distance of the Ball Cage

The ball cage can travel up to 1/2 of the stroke length (ℓ_s) of the nut or the ST shaft in the same direction.

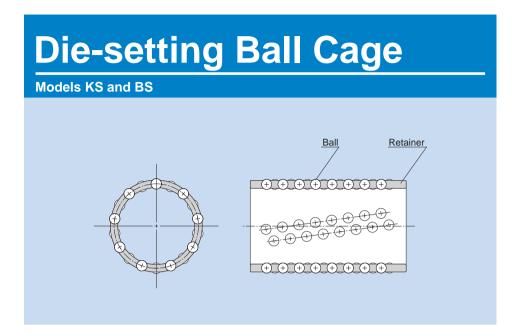


Fig.1 Structure of Die-setting Ball Cage Model KS

Structure and Features

With models KS and BS, a large number of precision steel balls (sphericity in mutual difference: 0.0005 mm) compliant with JIS B 1501 are incorporated in a lightweight, highly rigid ball cage. The balls are arranged along the circumference of the ball cage in spirals so that the ball raceways do not overlap with each other. It enables these models to be used over a long period without wear and to demonstrate high durability.

In addition, the ball pockets, which hold the balls, are finished with precision and continuously caulked with a unique process, enabling them to prevent the balls from falling. It allows the system to travel smoothly even if the ball cage is longer than the housing.

These ball cages are used in precision press die set, spinning and weaving machine, precision measuring instrument, automatic recorder, medical equipment and various machine tools.

Rated Load and Service Life

The rated loads of models KS and BS are indicated in the respective specification tables. Their service lives are obtained using the service life equation for LM Stroke model ST on A-556.

Features of Each Model

Die-setting Ball Cage

Fit

When using the Die-setting Ball Cage in the guide unit of the guide post of a precision press die set, normally select a negative clearance in order to increase the accuracy and the ball cage rigidity. Table1 shows typical fitting between the hole and the shaft. Select a combination of a hole and a shaft so that the clearance does not exceed the tolerance value of the radial clearance indicated in the specification table.

Table1 Fitting between Holes and Shaft

Tolerance in hole dimensions: D	K5
Dimensional tolerance of the shaft: d	h5

Installation of the Ball Cage

Fig.2 shows examples of mounting the Die-setting Ball Cage.

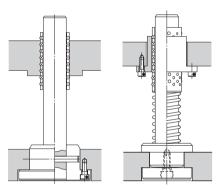


Fig.2 Example of Installation

Precautions on Use

LM Stroke

[Handling]

- (1) Disassembling components may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Dropping or hitting the LM Stroke may damage it. Giving an impact force to the product could also cause damage even if the product looks intact.

[Lubrication]

- (1) LM Stroke model ST can use either oil or grease as a lubricant. Select either lubricant according to the DN value. When using grease, we recommend high-quality lithium-soap group grease No. 2.
- (2) Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (3) Do not mix lubricants of different physical properties.
- (4) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (5) When planning to use a special lubricant, contact THK before using it.

[Precautions on Use]

- (1) Entrance of foreign material into LM Stroke model ST may cause abnormal wear or shorten the service life. When entrance of foreign material is predicted, it is important to select an effective sealing device or dust-control device that meets the environment conditions. For LM Stroke model ST, a special synthetic rubber seal (ST···UU) that is highly resistant to wear and a felt seal with high contamination protection effect and low seal resistance (ST···DD) are available for some types as contamination protection accessories.
- (2) If foreign material adheres to the product, replenish the lubricant after cleaning the product.
- (3) Contact THK if you desire to use the product at a temperature of 80°C or higher.
- (4) Please be careful when using the product in an environment with excessive coolant. The coolant may cause premature failure if it penetrates the bushing nut. Contact THK for further details.
- (5) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.

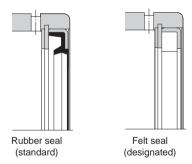


Fig.1 Types of the Seal for the LM Stroke

[Storage]

When storing the LM Stroke, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

Precision Linear Pack

冗出版 General Catalog

A Technical Descriptions of the Products

Features	A-566
Features of the Precision Linear Pack	
Structure and features	A-566
Rated Load and Nominal Life	A-567
Accuracy Standards	A-569
Radial Clearance	A-569
December 11 and	

B Product Specifications (Separate)

* Please see the separate "B Product Speci	<i>.</i>

Features

Precision Linear Pack

Features of the Precision Linear Pack

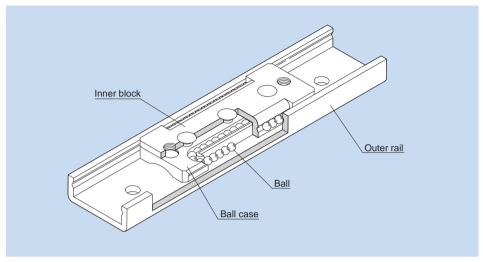


Fig.1 Structure of Precision Linear Pack Model ER

Structure and Features

Model ER is a slide unit using a stainless steel plate that is precision formed, heat-treated and then ground. It has a structure where balls roll between the V-shaped grooves machined on the outer rail and the inner block to allow the system to slide. It is an ultra-thin, lightweight unit in which the balls circulate in a ball case incorporated in the inner block to perform infinite straight motion.

This model is used in extensive applications such as magnetic disc devices, electronic equipment, semiconductor manufacturing equipment, medical equipment, measuring equipment, plotting machines and photocopiers.

[Reduced Design and Assembly Costs]

It provides a highly accurate linear guide system with lower design cost and fewer assembly manhours than the conventional miniature ball bearings used in precision machines and other equipment.

[Maintains Long-term Stability]

It is a ball-circulating type slide unit with an extremely small friction coefficient. This slide unit maintains stable performance over a long period of time.

[Lightweight, Compact Design and High-speed Response]

The outer rail and the inner block are composed of very thin stainless steel plates.

Since the linear pack is light, it has a small inertial moment and demonstrates superb high-speed response.

Rated Load and Nominal Life

Rated Load and Nominal Life

[Rated Loads in All Directions]

The basic load rating in the specification table indicates the rated load in the radial direction as shown in Fig.2. The rated loads in the reverse radial and lateral directions are obtained from Table1 below.

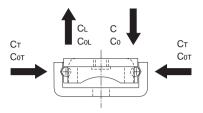


Fig.2 Rated Loads in All Directions

Table1 Rated Loads in All Directions

	Basic dynamic load rating	Basic static load rating
Radial direction	rection C (indicated in the specification table) C ₀ (indicated in the specification tal	
Reverse radial direction	C _L =C	$C_{\alpha}=C_{0}$
Lateral directions	C₁=1.47C	Сот=1.73Со

[Static Safety Factor fs]

Model ER may receive an unexpected external force while it is stationary or operative due to the generation of an inertia caused by vibrations and impact or start and stop. It is necessary to consider a static safety factor against such a working load.

$$f_s = \frac{f_c \cdot C_o}{P_c}$$

: Static safety factor fs (see Table2)

: Contact factor

(see Table3 on A-568)

Co : Basic static load rating (N) P_{c} : Calculated load (N)

Reference Value of Static Safety Factor

The static safety factors indicated in Table2 are the lower limits of reference values in the respective conditions.

Table2 Reference Value of Static Safety Factors (fs)

Machine using the LM system		Lower limit of fs
General industrial	Without vibration or impact	1 to 1.3
machinery	With vibration or impact	2 to 7

[Nominal Life]

The nominal life of model ER is obtained using the following equation.

$$L = \left(\frac{f_c}{f_w} \cdot \frac{C}{P_c}\right)^3 \times 50$$

L : Nominal life (km)

(The total number of revolutions that 90% of a group of identical ER units independently operating under the same conditions can achieve without showing flaking)

C : Basic dynamic load rating (N)
Pc : Calculated load (N)
fc : Contact factor (see Table3)
fw : Load factor (see Table4 on A-569)

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

 L_h : Service life time (h) ℓ_s : Stroke length (mm)

n₁: Number of reciprocations

per minute (min⁻¹)

• fc: Contact Factor

When multiple inner blocks are used in close contact with each other, their linear motion is affected by a moment load and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C₀) by the corresponding contact factor in Table3.

Table3 Contact Factor (fc)

Number of inner blocks in close contact with each other	Contact factor fc
2	0.81
3	0.72
Normal use 1	1

Features

Accuracy Standards

fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, when the actual load applied on model ER cannot be obtained, or when speed and vibrations have a significant influence, divide the basic dynamic load rating (C) by the corresponding load factor in Table4 of empirically obtained data.

Table4 Load Factor (fw)

Vibrations/ impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5

Accuracy Standards

The running straightness of model ER is indicated in Table5. (See Fig.3.)

Table5 Running Straightness

Unit: mm

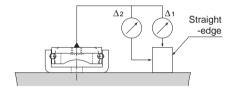


Fig.3 Method for Measuring Running Straightness

Stroke	length	Running straight- ness of inner	Running straight- ness of inner	
Above	Or less	block in vertical directions Δ1	block in horizontal directions $\Delta 2$	
_	20	0.002	0.004	
20	40	0.003	0.006	
40	60	0.004	0.008	
60	80	0.005	0.010	
80	100	0.006	0.012	
100	120	0.008	0.016	

Radial Clearance

The radial clearance of model ER means the value for the motion of the central part of the inner block when the inner block is slightly moved with a vertically constant force in the middle of the outer rail in the longitudinal direction. The negative values in table 6 indicate that the respective models are provided with a preload when assembled and have no clearance between their inner blocks and the outer rails.

Table6 Radial Clearance

Unit: µm

Model No.	Radial clearance			
Wodel No.	Normal	C1		
ER 513	±2	-2 to 0		
ER 616	±2	-3 to 0		
ER 920	±2	-4 to 0		
ER 1025	±3	-6 to 0		

Note) When desiring normal clearance, add no symbol; when desiring C1 clearance, indicate "C1" in the model number. (see "Model number coding" on B-476)

Precautions on Use

Precision Linear Pack

[Handling]

- (1) Disassembling components may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Dropping or hitting the Precision Linear Pack may damage it. Giving an impact to the product could also cause damage to its function even if the product looks intact.
- (3) Removing the inner block of the Precision Linear Pack from the outer rail or letting it overshoot will cause balls to fall off.

[Lubrication]

- (1) Thoroughly remove anti-rust oil with a cleaning detergent and apply lubricant before using the product. As the most suitable grease, we recommend THK AFC Grease, which maintains lubricity over a long period of time. For lubrication in a clean room, low dust generation THK AFE-CA Grease and THK AFF Grease are recommended.
- (2) Do not mix lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.

[Installation]

The mounting surface of Precision Linear Pack model ER must be finished to the maximum accuracy.

For securing the outer rail of models ER513 and ER613, also purchase and use No. 0 screws for precision equipment (see Table1). (If using ordinary screws, the inner block may hit the screw head.)

Table1 Outer Rail Fixing Screws for Models ER513 and ER616

Model No. 1 Type 1		Nominal name of screw × pitch
ER 513	No. 0 pan-head	M2×0.4
ER 616	screw (class 1)	M2.6×0.45

Japan Camera Industry Association Standard JCIS 10-70 Cross-recessed screw for precision equipment (No. 0 screw)

[Precautions on Use]

- (1) Entrance of foreign material may cause damage to the ball circulating component or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (2) If foreign material such as dust of cutting chips adheres to the product, replenish the lubricant after cleaning the product with pure white kerosene.
- (3) Contact THK if you desire to use the product at a temperature of 80°C or higher.
- (4) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.

[Storage]

When storing the Precision Linear Pack, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

Cross Roller Guide/Ball Guide

玩出ば General Catalog

A Technical Descriptions of the Products

Features and Types A-572 Features of the Cross Roller Guide/Ball Guide A-572 Structure and features..... A-572 Types of the Cross Roller Guide/Ball Guide ... A-574 Types and Features..... A-574 Point of Selection A-575 Rated Load and Nominal Life..... A-575 Accuracy Standards A-578 Point of Design A-579 Installation procedure...... A-579 Example of Clearance Adjustment.... A-580 Preload...... A-580 Accuracy of the Mounting Surface A-580 Options.... A-581 Dedicated Mounting Bolt A-581 Precautions on Use..... A-582

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	B-479
Cross Roller Guide Model VR (VR1)	B-480
Cross Roller Guide Model VR (VR2)	B-482
Cross Roller Guide Model VR (VR3)	B-484
Cross Roller Guide Model VR (VR4)	B-486
Cross Roller Guide Model VR (VR6)	B-488
Cross Roller Guide Model VR (VR9)	B-490
Cross Roller Guide Model VR (VR12)	B-492
Cross Roller Guide Model VR (VR15)	B-494
Cross Roller Guide Model VR (VR18)	B-496
Ball Cage Model B	B-498
Options	B-499
Dedicated Mounting Bolt	B-499

^{*} Please see the separate "B Product Specifications".

Features and Types

Cross Roller Guide/Ball Guide

Features of the Cross Roller Guide/Ball Guide

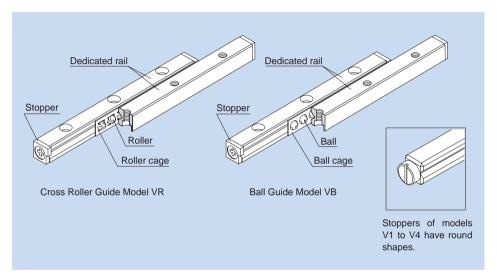


Fig.1 Structure of Cross Roller Guide Model VR and Ball Guide Model VB

Structure and Features

In model VR, precision rollers are orthogonally aligned one after another in a roller cage that is combined with a dedicated rail having a raceway cut into a V-shape groove. When two units of the Cross Roller Guide are mounted in parallel, the guide system is capable of receiving loads in the four directions. In addition, since the Cross Roller Guide can be given a preload, a clearance-free, highly rigid and smooth slide mechanism is achieved.

Model VB is a low-friction, high-accuracy, finite LM system consisting of precision steel balls, arranged in short pitches in a ball cage model B, and a dedicated rail model V.

The Cross Roller Guide and the Ball Guide are used in the slide unit of various devices such as OA equipment and its peripherals, measuring instruments, precision equipment including a printed circuit board drilling machine, optic measuring machines, optic stages, handling mechanisms and X-Ray machines.

Features and Types

Features of the Cross Roller Guide/Ball Guide

[Long Service Life, High Rigidity]

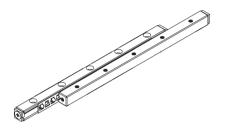
With a unique roller retaining mechanism, the effective contact length of the rollers is 1.7 times greater than the conventional type. Furthermore, the roller pitch interval is short and a sufficient number of rollers are installed, thus increasing the rigidity by two and the service life by six times greater than the conventional type. As a result, a safety-oriented design against vibrations and impact, which commonly occur in ordinary straight motion mechanisms, can be achieved.

[Smooth Motion]

With model VR, the rollers are individually held in a cage and roller pockets formed on the cage are in surface contact with the rollers to increase grease retention. Thus, smooth motion with little wear and friction is achieved.

[Highly Corrosion Resistant]

Model VR series and model VB series both include types made of stainless steel, which is highly corrosion resistant.


Types of the Cross Roller Guide/Ball Guide

Types and Features

Cross Roller Guide Model VR

A compact, highly rigid LM system whose roller cage holding precision rollers orthogonally aligned one after another travels by half the stroke on a V-shaped groove formed on a rail.


Specification Table⇒B-480

Model VR

Ball Guide Model VB

A low-friction, highly accurate LM system whose ball cage holding precision balls in short pitches travels by half the stroke on a V-shaped groove formed on a rail. Specification Table⇒B-498

Model VB

Point of Selection

Cross Roller Guide/Ball Guide

Rated Load and Nominal Life

[Rated Loads in All Directions]

The basic load ratings (C_z and C_{oz}) in the specification table indicate the values per rolling element in the directions shown in Fig.1. When obtaining the nominal life, calculate the basic load ratings (C and C_o) of the actually used rolling elements from the equation below.

For Model VR

$$C = C_L = \left(\frac{Z}{2}\right)^{\frac{3}{4}} \times C_Z, C_T = 2C$$

$$C_0 = C_{0L} = \frac{Z}{2} \times C_{0Z}, C_{0T} = 2C_0$$

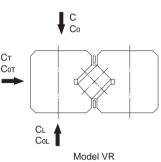
For
$$\frac{\mathbf{Z}}{\mathbf{2}}$$
, truncate the decimals.

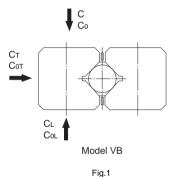
For Model VB

$$C = C_L = Z^{\frac{2}{3}} \times C_z$$
, $C_T = 2C$

$$C_0 = C_{0L} = Z \times C_{0Z}, C_{0T} = 2C_0$$

C : Basic dynamic load rating (kN)


 $C_{\scriptscriptstyle 0}$: Basic static load rating (kN)


Cz : Basic dynamic load rating in the specification table (kN)

specification table (k C_{oz} : Basic static load rating in the

z : Number of rolling elements used (number of rolling elements within

the effective load range)

(kN)

[Static Safety Factor fs]

Models VR and VB may receive an unexpected external force while it is stationary or operative due to the generation of an inertia caused by vibrations and impact or start and stop. It is necessary to consider a static safety factor against such a working load.

 $f_s = \frac{C_0}{P_c}$

fs : Static safety factor (see Table1)

Co : Basic static load rating (kN)

Pc : Calculated load (kN)

Table1 Reference Values of Static Safety Factor (fs)

Machine using the LM system	Basic dynamic load rating	Lower limit of fs
General industrial	Without vibration or impact	1 to 1.3
machinery	With vibration or impact	2 to 3

[Nominal Life]

When the basic dynamic load ratings have been obtained, the rated lives of model VR and model VB are obtained using the following equations.

For Model VR

$$L = \left(\frac{f_{\tau}}{f_{w}} \cdot \frac{C}{P_{c}}\right)^{\frac{10}{3}} \times 100$$

For Model VB

$$L = \left(\frac{f_{\tau}}{f_{w}} \cdot \frac{C}{P_{c}}\right)^{3} \times 50$$

L : Nominal life (km)

(The total number of revolutions that 90% of a group of identical VR (VB) units independently operating under the same conditions can achieve without showing flaking)

C : Basic dynamic load rating (kN)
Pc : Calculated load (kN)
fr : Temperature factor (see Fig.2 on A-577)
fw : Load factor (see Table2 on A-577)

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

Point of Selection

Rated Load and Nominal Life

● f_T: Temperature Factor

If the temperature of the environment surrounding the operating model VR or VB exceeds 100 °C , take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.2. Note) If the environment temperature exceeds 100 °C , contact THK

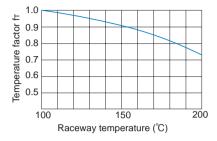
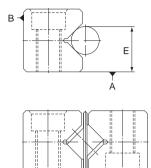


Fig.2 Temperature Factor (f_T)

Table2 Load Factor (fw)


Vibrations/ impact	Speed(V)	f _w
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5

fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, when the actual load applied on model VR or VB cannot be obtained, or when speed and vibrations have a significant influence, divide the basic load rating (C or Co), by the corresponding load factor in Table2 of empirically obtained data.

Accuracy Standards

The accuracy of the dedicated rail for the Cross Roller Guide is classified into high accuracy grade (H) and precision grade (P) as shown in Table3.

M Fig.3

Table3 Accuracy Standards for Dedicated Rail Model V Unit: mm

Accuracy grades	High-accuracy grade	Precision grade	
Symbol	Н	P	
Item	- 11		
Parallelism of the raceway against surfaces A and B	As per Fig.4		
Dimensional toler- ance in height E	±0.02	±0.01	
Difference in height E (note)	0.01 0.005		
Dimensional toler- ance in width M	-0.2	-0.1	

Note) The difference in height E applies to four rails used on the same plane.

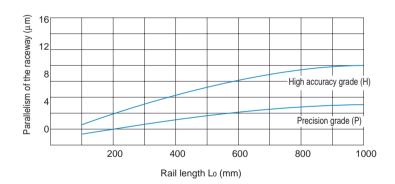


Fig.4 Rail Length and Parallelism of the Raceway

Point of Design

Cross Roller Guide/Ball Guide

Installation Procedure

When using clearance adjustment bolts:

- Closely contact rails 2 and 3 onto the base, and rail 1 onto the table, and then firmly tighten the rail mounting bolts.
- (2) Temporarily fasten rail 4 to the table.
 - Note) The rail mounting bolts must be designed so that they can be fully fastened while maintaining the rail installed.
- (3) Place the base and the tables as shown in Fig.1, and then insert the roller cage from the end. If the cage does not enter because there is no clearance, slide rail 4 toward the adjustment bolt first, and then insert the cage again.
- (4) Place a dial gauge as shown in Fig.1. Then, lightly screw all adjustment bolts evenly until the clearance is almost eliminated while gently pressing the table sideways.
- (5) Attach the stopper to the rail end.
- (6) Slide the table and adjust the cage position so as to achieve the required stroke.
- (7) Position the roller cage in the center of the rail as shown in Fig.2-1. Then, evenly tighten the adjustment bolts (b, c and d) that are within the area where the roller is present until the dial gauge indicates the required displacement. Fully fasten the mounting bolts where adjustment was performed.
 - Note) The displacement indicated on the gauge represents the preload per roller cage.
- (8) Slide the table as shown in Fig.2-2, and adjust the remaining adjustment bolts (a and e) in the same manner.

Note) When installing two or more units, first measure the tightening torque of the adjustment bolts for the first unit or the sliding resistance of the fist unit. Then, install the second (and later) unit so that its/their tightening torque(s) or sliding resistance(s) equal(s) that of the first unit. In this way, almost uniform preloads can be provided.

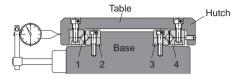
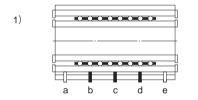



Fig.1 Installation of the Cross Roller Guide

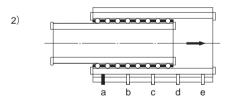
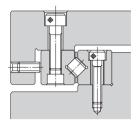
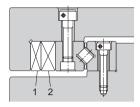



Fig.2 Sequence of Tightening the Adjustment Bolts

Example of Clearance Adjustment


Design the adjustment bolt so that it presses the rail on the same level as the roller.

Normally, press the rail with the adjustment bolt.

When a certain level of accuracy and rigidity is required, use a presser plate.

When high accuracy and high rigidity are required, use tapered gibs 1 and 2.

Fig.3 Example of Clearance Adjustment

Preload

An excessive preload may cause indentation, shorten the service life or cause trouble. The permissible preload per roller cage is indicated in the specification table. Tighten the adjustment bolts while monitoring the displacement of the roller contact area.

Accuracy of the Mounting Surface

To achieve a high level of running accuracy, it is also necessary to establish a certain level of accuracy in parallelism and straightness. Preferably, the parallelism and the flatness of the rail-mounting surface should be finished by grinding or similar machining to at least the same degree as the parallelism of the rail (see A-578). Also, mount the rail so that it closely contacts the mounting surface.

Options

Cross Roller Guide/Ball Guide (Options)

www.technobearing.ru

Dedicated Mounting Bolt

To mount the rail where normal clearance is to be adjusted, use the screw hole drilled on the rail as shown in Fig.1. The holes of the bolt (d1 and D₁) must be machined so that they are greater by the adjustment allowance.

If it is inevitable to adopt a mounting method like the one shown in Fig.2 for a structural reason, use the dedicated mounting bolt (S) indicated in Fig.3.

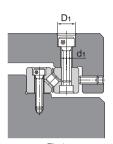


Fig.1

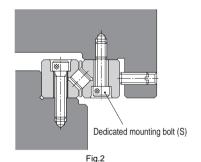


Table1 Dedicated Mounting Bolt

Unit: mm

Model No.	S	d	D	Н	L	В	Supported rail
S 3	МЗ	2.3	5	3	12	2.5	V3
S 4	M4	3.1	5.8	4	15	3	V4
S 6	M5	3.9	8	5	20	4	V6
S 9	M6	4.6	8.5	6	30	5	V9
S 12	M8	6.25	11.3	8	40	6	V12
S 15	M10	7.9	13.9	10	45	8	V15
S 18	M12	9.6	15.8	12	50	10	V18

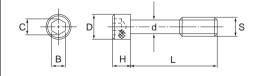


Fig.3 Dedicated Mounting Bolt

Precautions on Use

Cross Roller Guide/Ball Guide

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Dropping or hitting the Cross Roller Guide/Ball Guide may damage it. Giving an impact to it could also cause damage to its function even if the product looks intact.


[Lubrication]

- (1) Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (2) Do not mix lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.

[Rail Length]

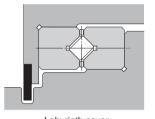
The roller cage and the ball cage move half the travel distance of the table in the same direction. To prevent the cage from overhanging from the raceway base when the cage length is " ℓ " and the stroke length is " ℓ s", the rail length (Lk) must be at least the following.

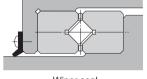
$$\mathsf{Lk} \underline{\geq} \ell + \frac{\ell_\mathsf{s}}{2}$$

[Offset of the Cage]

The cage, which retains rollers (or balls), demonstrates extremely accurate motion. However, it may be offset as affected by driving vibrations, inertia or impact.

If using the Cross Roller Guide or Ball Guide in the following conditions, contact THK.


- Vertical use
- Pneumatic cylinder drive
- Cam drive
- High speed crank drive
- Under a large moment load
- Butting the guide's external stopper with the table


[Stopper]

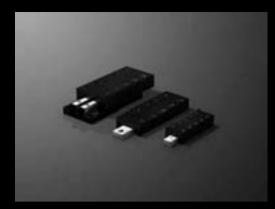
Stoppers are attached to the rail ends in order to prevent the cage from falling off. Note, however, that frequently colliding the cage with the stopper may cause wear of the stopper and loosening of the stopper fastening screws, and may cause the cage to fall off.

[Contamination Protection]

As a means to prevent foreign material from entering the Cross Roller Guide or the Ball Guide, contamination protection accessories for the side faces as shown in Fig.1 are available. For contamination protection in the front and rear directions, consider using a bellows or a telescopic cover.

Labyrinth cover

Wiper seal


Fig.1 Contamination Protection Methods

[Precautions on Use]

- (1) If foreign material adheres to the product, replenish the lubricant after cleaning the product.
- (2) Contact THK if you desire to use the product at a temperature of 100°C or higher.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.

[Storage]

When storing the Cross Roller Guide/Ball Guide, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

Cross Roller Table

冗出K General Catalog

A Technical Descriptions of the Products

Features and Types Features of the Cross Roller Table • Structure and features	A-586
Point of Selection	A-588
Precautions on Use	Δ-59

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table Model VRT Miniature Type (Tapped Base Type) Model VRT-A Miniature Type (Tapped Base Type) Model VRU	B-502
---	-------

^{*} Please see the separate "B Product Specifications".

Features and Types

Cross Roller Table

Features of the Cross Roller Table

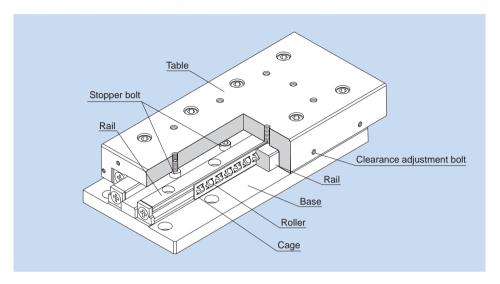


Fig.1 Structure of the Cross Roller Table

Structure and Features

The Cross Roller Table is a compact, highly rigid finite linear guide unit that has the Cross Roller Guide(s) between the precision-machined table and base.

There are two types of the Cross Roller Table: model VRU, and a miniature type model VRT. The Cross Roller Table is used in extensive applications such as OA equipment and peripherals, measuring instruments and printed circuit board drilling machines.

Features and Types

Features of the Cross Roller Table

[Easy Installation]

Since the Cross Roller Guide(s) is installed between the precision-machined table and base, a highly accurate linear guide mechanism is achieved simply by mounting the product with bolts.

[Large Permissible Load]

Since rollers with large rated loads are installed in short pitches, the cross roller guide is capable of bearing a heavy load, achieving a highly rigid linear guide mechanism and gaining a long service life.

[Diversified Usage]

Since the rollers are orthogonally arranged one after another, the guide system is capable of evenly receiving loads in the four directions applied on the table. (See Fig.2.)

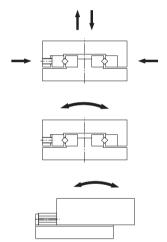
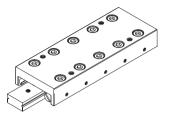
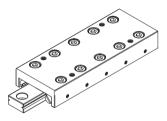
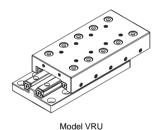



Fig.2 Load Directions


[Highly Corrosion Resistant]

The base and the table of models VRT-M and VRT-AM use stainless steel. Their rails, rollers, roller cages and screws are also made of stainless steel. As a result, these guide systems have significantly high corrosion resistance.


The base and the table of model VRU-M are made of aluminum.

Model VRT

Model VRT-A

ПНК А-587 8 (800) 700-72-07 (бесплатно)

Point of Selection

Cross Roller Table

Rated Load and Nominal Life

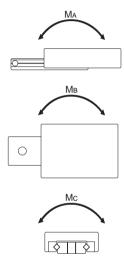
[Rated Loads in All Directions]

The rated loads of models VRT, VRT-A and VRU are equal in four directions (radial, reverse radial and lateral directions), and their values are expressed as C and C_0 in the corresponding specification tables.

[Static Safety Factor fs]

The Cross Roller Table may receive an unexpected external force while it is stationary or operative due to the generation of an inertia caused by vibrations and impact or start and stop. It is necessary to consider a static safety factor against such a working load.

$$f_s = \frac{C_o}{P_c}$$
 or $f_s = \frac{M_o}{M}$


fs : Static safety factor

C₀: Basic static load rating (kN)

M₀ : Static permissible moment

(MA, MB and Mc)

 P_{c} : Calculated load (kN) M : Calculated moment (kN)

Reference value of static safety factor

The static safety factors indicated in Table1 are the lower limits of reference values in the respective conditions.

Table1 Reference Values of Static Safety Factor (fs)

Machine using the LM system	Basic dynamic load rating	Lower limit of fs
General industrial	Without vibration or impact	1 to 1.3
	With vibration or impact	

[Nominal Life]

The nominal life of the Cross Roller Table is obtained using the following equation.

(km)

$$\mathbf{L} = \left(\frac{\mathbf{f}_{\mathsf{T}}}{\mathbf{f}_{\mathsf{W}}} \cdot \frac{\mathbf{C}}{\mathbf{P}_{\mathsf{c}}}\right)^{\frac{10}{3}} \times \mathbf{100}$$

L : Nominal life

(The total number of revolutions that 90% of a group of identical VRT, VRT-A or VRU units independently operating under the same conditions can achieve without showing flaking)

 $\begin{array}{lll} C & : Basic \ dynamic \ load \ rating & (kN) \\ P_c & : Calculated \ radial \ load & (kN) \\ f_T & : Temperature \ factor \\ \end{array}$

(see Fig.1 on A-590)

fw : Load factor (see Table2 on A-590)

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

 L_h : Service life time (h) ℓ_S : Stroke length (mm)

n₁: Number of reciprocations

per minute (min-1)

● f_T: Temperature Factor

If the temperature of the environment surrounding the operating model VRT, VRT-A or VRU exceeds 100 °C , take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.1.

Note) If the environment temperature exceeds 100 $^{\circ}\text{C}$, contact THK.

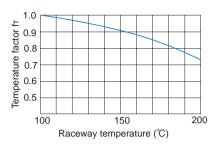


Fig.1 Temperature Factor (f_T)

• fw: Load Factor

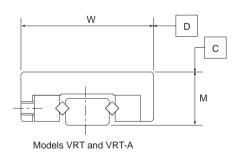

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, when the actual load applied on model VRT, VRT-A or VRU cannot be obtained, or when speed and vibrations have a significant influence, divide the basic load rating (C or Co), by the corresponding load factor in Table2 of empirically obtained data.

Table2 Load Factor (fw)

Vibrations/ impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5

Accuracy Standards

The dimensional tolerances of Cross Roller Table models VRT, VRT-A and VRU in height (M) and width (W), and the running accuracy of the base against the mounting surfaces C and D are indicated in the corresponding specification tables.

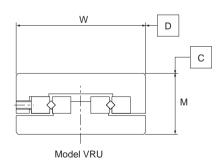


Fig.2 Accuracy Standards

Precautions on Use

Cross Roller Table

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Dropping or hitting the Cross Roller Table may damage it. Giving an impact to it could also cause damage to its function even if the product looks intact.

[Lubrication]

- For lubrication of the Cross Roller Table, use lithium-soap group grease or oil when it is necessary as with ordinary bearings.
- (2) Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (3) Do not mix lubricants of different physical properties.
- (4) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (5) When planning to use a special lubricant, contact THK before using it.

[Additional Machining of the Table and the Base]

When additionally machining the table and the base of the Cross Roller Table according to the conditions such as drilling mounting holes, adhere to the following precautions.

- (1) Do not let cutting chips enter the Cross Roller Guide unit.
- (2) Machine the mounting holes as blind holes, not though holes.

THK can perform additional machining such as mounting holes as requested.

The clearance of the Cross Roller Table is adjusted to the appropriate preload. Do not touch the clearance adjustment screw.

[Offset of the Cage]

The cage, which retains rollers (or balls), demonstrates extremely accurate motion. However, it may be offset as affected by driving vibrations, inertia or impact.

If using the Cross Roller Guide or Ball Guide in the following conditions, contact THK.

- Vertical use
- Pneumatic cylinder drive
- Cam drive
- High speed crank drive
- Under a large moment load
- Butting the guide's external stopper with the table

www.technobearing.ru

[Precautions on Use]

- (1) Entrance of foreign material may cause damage to the ball circulating component or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (2) If foreign material adheres to the product, replenish the lubricant after cleaning the product.
- (3) Contact THK if you desire to use the product at a temperature of 100°C or higher.
- (4) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.

[Storage]

When storing the Cross Roller Table, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

Linear Ball Slide

冗出K General Catalog

A Technical Descriptions of the Products

Features and Types	A-594
Features of the Linear Ball Slide	
Structure and features	
Types of the Linear Ball Slide	
Types and Features	A-596
Point of Selection	A-599
Rated Load and Nominal Life	A-599
Accuracy Standards	A-601
Precautions on Use	۸ 603

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table Model LSP Model LS Model LSC	B-514 B-516
Speed Controller Dedicated Unit Base Model B Limit Switch	B-520

^{*} Please see the separate "B Product Specifications".

Features and Types

Linear Ball Slide

Features of the Linear Ball Slide

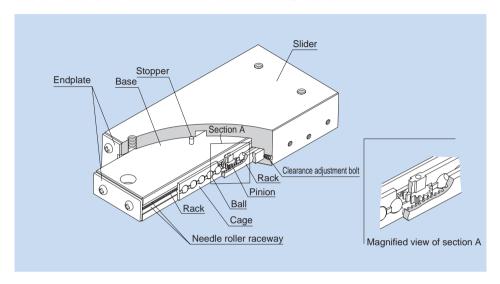


Fig.1 Structure of Linear Ball Slide Model LSP

Structure and Features

The Linear Ball Slide is a highly corrosion resistant slide unit that has an extremely low friction coefficient because stainless steel balls roll on four stainless steel needle roller raceways that are hardened and ground.

In addition, model LSP has a pinion gear in the center and a rack on the base to prevent the cage from slipping.

A ball slide equipped with a cylinder model LSC has a cylinder for drive in the base to downsize the system and reduce the space and the weight.

Its components are all made of stainless steel, which is highly corrosion resistant. Furthermore, since its inertia is small, the slide system is highly responsive to high speed. By simply securing the Linear Ball Slide on the mounting surface, the user can easily achieve a linear guide mechanism. Thus, this slide system is optimal for locations requiring high accuracy, such as optic measuring machines, automatic recorders, small electronic-parts assembling machines, OA equipment and its peripherals.

Features of the Linear Ball Slide

[A Unit Type That Allows Easy Installation]

The clearance and motion of the slider is adjusted to the best state. Therefore, a highly accurate slide mechanism can be gained by simply mounting the unit on the flat-finished mounting surface.

[Lightweight and Compact]

A light aluminum alloy is used in the base and the slider to reduce the weight.

[Smooth Motion]

The balls and the raceway (needle roller raceway) are in point contact, which causes the smallest rolling loss, and the balls are evenly retained in the ball cage. This allows the slide system to perform rolling motion at a minimal coefficient of friction ($\mu = 0.0006$ to 0.0012).

[Highly Corrosion Resistant]

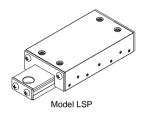
The base and the slider are made of an aluminum alloy and their surfaces are treated with alumite (anodization processing), which is highly resistant to corrosion and wear.

The balls, needle roller raceways and screws are made of stainless steel, making the system highly corrosion resistant.

Linear Ball Slide

Types of the Linear Ball Slide

Types and Features

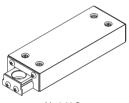

Linear Ball Slide with a Rack Model LSP

Specification Table⇒B-514

With model LSP, the cage has a rack and pinion mechanism, thus to prevent the cage from slipping.

Also, since the cage does not slip even in vertical mount, this model is used in an even broader range of applications.

Note) Do not use the stopper as a mechanical stopper.


Specification Table⇒B-516

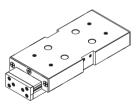
Linear Ball Slide Model LS

Model LS is a unit-type linear system for finite motion that has a structure where balls are arranged between the base and the slider via a needle roller raceway.

It is incorporated with a stopper mechanism, thus to prevent damage deformation caused by collision between the cage and the endplate.

Note) Do not use the stopper as a mechanical stopper.

Model LS


Linear Ball Slide with a Cylinder Model LSC

Specification Table⇒B-518

Model LSC contains an air cylinder for drive inside the base. Feeding air from the two ports on the side face of the base allows the slide to perform reciprocating motion. Since the cylinder is of double-acting type, horizontal traveling speed can be adjusted using the speed controller. The cylinder and the piston are made of a corrosion resistant aluminum alloy, and their surfaces are specially treated to increase wear resistance and durability. Additionally, the cage has a rack and pinion mechanism, thus enabling the cage to operate without slipping.

Air-feeding ports for piping are provided on one side face, ensuring a certain degree of operability and easy assembly even if the installation site has a limited space and is complex.

The table on the right shows the specifications of the air cylinder incorporated in model LSC. Note) Do not use the stopper as a mechanical stopper.

Model LSC

<Cylinder specifications>

Type of action	Double-acting
Fluid used	air (no lubrication)
Working pressure	100 kPa to 700 kPa (1 kgf/cm² to 7 kgf/cm²)
Stroke velocity	50 to 300mm/s

Features and Types

[Speed Controller]

Fig.2 shows the shape of the speed controller.

Note) The speed controller is optional. (control method: meter out)

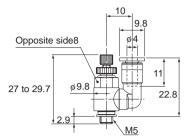


Fig.2 Shape of the Speed Controller (common to all model numbers)

[Dedicated Unit Base Model B]

With Linear Ball Slide model LSC, a limit switch for detecting the stroke end can be mounted using a dedicated unit base (Fig.3). When fine positioning is required, a dedicated stopper can be mounted on the unit base to adjust the position. (excluding model LSC1015)

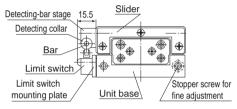
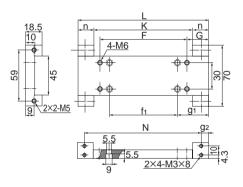
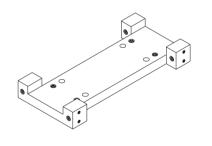
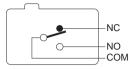




Fig.3 Unit Base and Limit Switch Installation

Unit: mm

	Unit base dimensions									
Unit base Model B	Length									Mass
	L	F	G	f ₁	g ₁	K	n	N	g_2	kg
LSC1515	80	40	21	23	29.5	56	12	68	6	0.12
LSC1530	110	60	25	40	35	74	18	94	8	0.16
LSC1550	150	100	25	78	36	114	18	134	8	0.21


www.technobearing.ru

[Limit Switch]

The specifications of the limit switch are as follows.

<Limit switch specifications>

Туре	D2VW-5L2A-1 (Omron)
Contact type	contact (1C contact)

<Rated Specifications>

	Type Rated voltage (V)			Non-induct	Inductive load (A)			
Type			Resistance load		Ramp load		Inductive load	
			Normally closed	Normally open	Normally closed	Normally open	Normally closed	Normally open
	AC -	125	5		0.5		4	
D2VW-5		250	į	5	0	.5	4	1
D2 V VV-3	DC _	30	5		3		4	
		125	0.4		0.1		0.4	

Note1) The above figures indicate the constant current.

Note2) Inductive load refers to power factor of 0.7 or greater (alternate current) and time constant of 7 ms or less (direct current).

Note3) Ramp load implies a rush current 10 times greater.

Note4) The above rated values apply when a test is conducted with the following conditions in accordance with JIS C 4505.

(1) Ambient temperature: 20 C± 2 C.

Ambient humidity: 65% ± 5% RH

Operating frequency: 30 times/min

Note) For applications under a minute load (5 to 24 VDC), a minute-load type is available. Contact THK for details.

Point of Selection

Linear Ball Slide

Rated Load and Nominal Life

[Rated Loads in All Directions]

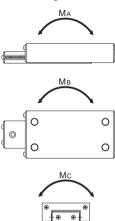
The rated loads of models LS, LSP and LSC are identical in the vertical and horizontal directions.

[Static Safety Factor fs]

Linear Ball Slide models LS, LSP or LSC may receive an unexpected external force while it is stationary or operative due to the generation of an inertia caused by vibrations and impact or start and stop. It is necessary to consider a static safety factor against such a working load.

$$f_s = \frac{C_o}{P_c}$$
 or $f_s = \frac{M_o}{M}$

fs : Static safety factor


 C_0 : Basic static load rating (N)

: Static permissible moment

(M_A, M_B and M_C) (N-m)

Pc : Calculated load (N)

М : Calculated moment (N-m)

Reference Value of Static Safety Factor

The static safety factors indicated in Table1 are the lower limits of reference values in the respective conditions.

Table1 Reference Value of Static Safety Factors (fs)

	-	
Machine using the LM system	Load conditions	Lower limit of fs
General industrial	Without vibration or impact	1 to 1.3
	With vibration or impact	2 to 7

[Nominal Life]

The service life of the Linear Ball Slide is obtained using the following equation.

$$L = \left(\frac{1}{f_w} \cdot \frac{C}{P_c}\right)^3 \times 50$$

: Nominal life (km)

> (The total number of revolutions that 90% of a group of identical Linear Ball Slide units independently operating under the same conditions can achieve without showing flaking)

C : Basic dynamic load rating (N) Pc : Calculated load (N) : Load factor (see Table2)

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

: Service life time (h)

: Stroke length (mm)

: Number of reciprocations

per minute (min-1)

fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, when the actual load applied on model VR or VB cannot be obtained, or when speed and vibrations have a significant influence, divide the basic load rating (C or C₀), by the corresponding load factor in Table2 of empirically obtained data.

Table2 Load Factor (fw)

Vibrations/ impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5

Point of Selection

Accuracy Standards

Accuracy Standards

The accuracies of Linear Ball Slide models LS, LSP and LSC are defined as follows.

Running parallelism of the top face of the slide : 0.010mm MAX/10mm Positioning repeatability of the top face of the slide : 0.0015mm MAX

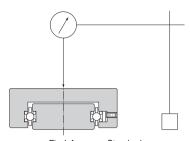


Fig.1 Accuracy Standards

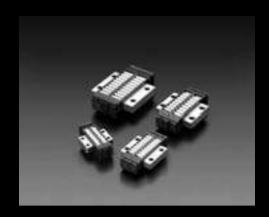
Precautions on Use

Linear Ball Slide

[Handling]

- (1) Disassembling components may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Dropping or hitting the Linear Ball Slide may damage it. Giving an impact to the product could also cause damage to its function even if the product looks intact.

[Lubrication]


- (1) Apply lubricant before using the product.
- (2) Do not mix lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.

[Precautions on Use]

- (1) Entrance of foreign material may cause damage to the ball circulating component or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (2) If foreign material such as dust of cutting chips adheres to the product, replenish the lubricant after cleaning the product with pure white kerosene.
- (3) Contact THK if you desire to use the product at a temperature of 80°C or higher.
- (4) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.
- (5) The Linear Ball Slide is incorporated with a stopper mechanism that prevents the slider from coming off. If impact is given, the stopper may be damaged. Do not use this stopper as a mechanical stopper.

[Storage]

When storing the Linear Ball Slide, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

LM Roller

冗岩K General Catalog

A Technical Descriptions of the Products

Features and Types	A-604
Features of the LM Roller	A-604
Structure and features	A-604
Types of the LM Roller	A-606
Types and Features	A-606
Point of Selection	A-608
Nominal Life	
Accuracy Standards	A-611
Point of Design	A-612
Raceway	A-612
Installing the LM Roller	A-613
Guidance for Adjusting the Clearance.	A-614
Examples of Arranging LM Roller Units	A-615
Examples of Installing the LM Roller.	A-616
Options	A-617
Spring Pad Model PA	
Fixture Models SM/SMB and SE/SEB	A-618
Precautions on Use	A-619

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table Models LR and LR-Z Models LRA and LRA-Z Models LRB and LRB-Z Model LRU	
Options	

^{*} Please see the separate "B Product Specifications".

Features and Types

LM Roller

Features of the LM Roller

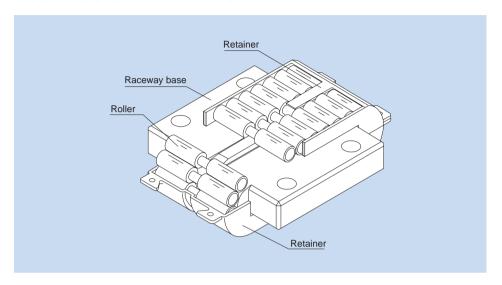


Fig.1 Structure of LM Roller Model LR

Structure and Features

In the LM Roller, dual rollers assembled on the circumference of the precision-ground, rigid raceway base travel in infinite circulation while being held by a retainer. A center guide integrated with the raceway base is formed in the central part of the loaded area of the raceway base to constantly correct skewing of the rollers. This unique structure ensures smooth rolling motion. The LM Roller is used in applications such as the XYZ guide of NC machine tools, precision press ram guides, press dies changers and heavy-load conveyance systems.

[Supports an Ultra Heavy Load and Ensures Smooth Motion]

The LM Roller is compact and capable of carrying a heavy load, and one unit of model LR50130 (length: 130 mm; width: 82 mm; height: 42 mm) is capable of receiving a 255 kN load. Moreover, because of rolling motion, this model has a low friction coefficient ($\mu = 0.005$ to 0.01) and is free from stick-slip, thus achieving highly accurate straight motion.

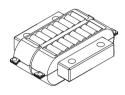
[High Combined Accuracy]

In general, when supporting a single plane with LM rollers, multiple units of LM rollers are combined on the same plane, and therefore, the height difference between the rollers significantly affects the machine accuracy and service life. With THK LM Roller, the user can select a combination of models with a height difference of up to 2 µm.

[Rational Skewing-preventing Structure]

With an LM system using rollers, once the rollers skew, it increases friction resistance or decreases running accuracy.

To prevent skewing, the LM Roller has roller guides on the center of the retainer full circle, and in the center of the loaded area on the raceway base. This structure enables the LM Roller to automatically correct skewing caused by a mounting accuracy error and the rollers to travel in an orderly manner. It also allows the LM Roller to be installed with slant mount or wall mount while demonstrating high performance.

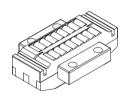

Types of the LM Roller

Types and Features

Model LR

This model is designed to be fit into a groove machined on the mounting surface. By screwing bolts into four holes on the raceway base, it is secured on the mounting surface. (Fixture models SM and SE are also available.)

Specification Table⇒B-524



Model LR

Model LR-Z

A lighter type that uses a resin retainer and is designed to be mounted in the same manner as model LR. Since it has a groove for installing a seal, a special rubber seal with a high contamination protection effect can easily be attached. In addition, this model is capable of high-speed traveling at 1 m/s.

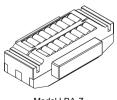
Specification Table⇒B-524

Model I R-7

Model LRA

Just like model LR, this model is also designed to be fit into a groove. It is a compact type that can be mounted using fixture model SM or SE and bolts.

Specification Table⇒B-525



Model LRA

Model LRA-Z

A lighter type that uses a resin retainer and is designed to be mounted in the same manner as model LRA. Since it has a groove for installing a seal, a special rubber seal with a high contamination protection effect can easily be attached. In addition, this model is capable of high-speed traveling at 1 m/s.

Specification Table⇒B-525

Model LRA-Z

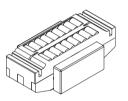
Features and Types

Types of the LM Roller

Model LRB

Since this model does not require a groove on the mounting surface, man-hours for machining can be reduced. It can be mounted using fixture model SMB or SE and bolts.

Specification Table⇒B-526

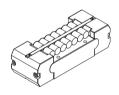


Model LRB

Model LRB-Z

A lighter type that uses a resin retainer and is designed to be mounted in the same manner as model LRB. Since it has a groove for installing a seal, a special rubber seal with a high contamination protection effect can easily be attached. In addition, this model is capable of high-speed traveling at 1 m/s.

Specification Table⇒B-526



Model LRB-Z

Model LRU

Since this model does not require a groove on the mounting surface, man-hours for machining can be reduced. By screwing bolts into four holes on the raceway base, it is secured on the mounting surface.

Specification Table⇒B-527

Model LRU

Point of Selection

LM Roller

Nominal Life

[Static Safety Factor fs]

The LM Roller may receive an unexpected external force while it is stationary or operative due to the generation of an inertia caused by vibrations and impact or start and stop. It is necessary to consider a static safety factor against such a working load.

$$f_s = \frac{f_c \cdot C_o}{P_c}$$

: Static safety factor

: Contact factor fc

(see Table2 on A-610)

Co : Basic static load rating (kN) : Calculated load (kN)

Reference Value of Static Safety Factor

The static safety factors indicated in Table1 are the lower limits of reference values in the respective conditions.

Table1 Reference Value of Static Safety Factors (fs)

Machine using the LM system	Basic dynamic load rating	Lower limit of fs
General industrial	Without vibration or impact	1 to 1.3
machinery	With vibration or impact	2 to 3
Machine tool	Without vibration or impact	1 to 1.5
	With vibration or impact	2.5 to 7

Point of Selection

Nominal Life

[Nominal Life]

The nominal life of the LM Roller is obtained using the basic dynamic load rating (C) indicated in the corresponding specification table, and the following equation.

$$L = \left(\frac{f_{\text{H}} \cdot f_{\text{C}} \cdot f_{\text{T}}}{f_{\text{W}}} \cdot \frac{C}{P_{\text{C}}}\right)^{\frac{10}{3}} \times 100$$

L : Nominal life (km)

> (The total number of revolutions that 90% of a group of identical LM Roller units independently operating under the same conditions can achieve without showing flaking)

С : Basic dynamic load rating (kN) Pc : Calculated radial load (kN) fн : Hardness factor (see Fig.1)

f⊤ : Temperature factor

(see Fig.2 on A-610)

: Contact factor f∩

(see Table2 on A-610)

fw : Load factor (see Table3 on A-610)

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

Lh : Service life time (h) : Stroke length (mm) n₁ : Number of reciprocations

per minute (min-1)

● f_H: Hardness Factor

To maximize the load capacity of the LM system, the hardness of the raceways needs to be between 58 to 64 HRC. If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor (fH).

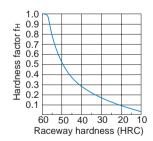


Fig.1 Hardness Factor (f_H)

● f_T: Temperature Factor

If the temperature of the environment surrounding the operating LM Roller exceeds 100°C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.2.

Note) The normal service temperature of the LM Roller is 80 °C at a maximum. If the ambient temperature exceeds 80°C, contact THK.

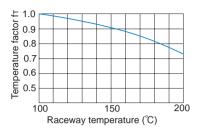


Fig.2 Temperature Factor (f_T)

Table2 Contact Factor (fc)

Number of LM Roller units in close contact with each other	Contact factor fc
2	0.81
3	0.72
4	0.66
5	0.61
Normal use	1

• fc: Contact Factor

When multiple LM Roller units are used in near close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C₀) by the corresponding contact factor in Table2.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table2.

• fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, when the actual load applied to the LM Roller cannot be obtained, or when speed and impact have a significant influence, divide the basic load rating (C or C₀) by the corresponding load factor in Table3 of empirically obtained data.

Table3 Load Factor (fw)

Vibrations/ impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

Point of Selection

Accuracy Standards

Accuracy Standards

When multiple LM Roller units are arranged on the same plane, the mounting heights of the LM Roller units must be identical in order to achieve uniform load distribution. The dimensional tolerance of the LM Roller in height (A) is defined as indicated in Table4. When ordering LM Roller units to be used on the same plane, specify their tolerances with the same classification symbol.

Each classification symbol is marked on the package box and on the side face of the LM Roller's raceway base as indicated in Fig.4. (except for normal grade)

Table4 Classification of Dimensional Tolerances in Height (A)

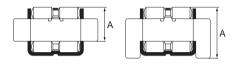


Fig.3 Mounting Height (A) of the LM Roller

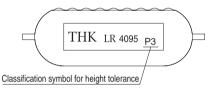


Fig.4

	Unit: µm
Dimensional tolerance for A	Classification symbol
0 to -10	No Symbol
0 to -5	H5
−5 to −10	H10
0 to -3	P3
-3 to -6	P6
-6 to -9	P9
-9 to -12	P12
0 to -2	SP2
-2 to -4	SP4
-4 to -6	SP6
-6 to -8	SP8
-8 to -10	SP10
	tolerance for A 0 to -10 0 to -5 -5 to -10 0 to -3 -3 to -6 -6 to -9 -9 to -12 0 to -2 -2 to -4 -4 to -6 -6 to -8

Point of Design

LM Roller

Raceway

To maximize the performance of the LM Roller, it is necessary to take into account the hardness, surface roughness and accuracy of the raceway, on which the rollers directly roll, when manufacturing the product. In particular, the hardness significantly affects the service life. Therefore, it is important to take much care in selecting a material and heat treatment method.

[Hardness]

We recommend surface hardness of 58 HRC (\rightleftharpoons 653 HV) or higher. The depth of the hardened layer is determined by the size of the LM Roller; we recommend approximately 2 mm for general use. If the hardness of the raceway is lower or the raceway cannot be hardened, multiply the load rating by the corresponding hardness factor (see Fig.1 on A-609).

[Material]

The following materials are generally used as suitable for surface hardening through induction-hardening and flame quenching.

- SUJ2 (JIS G 4805: high-carbon chromium bearing steel)
- SK3 to 6 (JIS G 4401: carbon tool steel)
- S55C (JIS G 4051: carbon steel for machine structural use)

If the machine body is a mold, depending on the conditions, a hardened steel plate may not be used and instead, the surface of mold itself may be hardened.

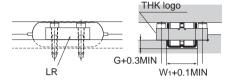
[Surface Roughness]

To achieve smooth motion, the surface should preferably be finished to 0.40a or less. If slight wear is allowed in the initial stage, the surface may be finished to approximately 0.80a.

[Accuracy]

When high accuracy is required, securing a hardened steel plate to the machine body may cause undulation on the raceway. To avoid this, secure the LM Roller with bolts before grinding the hardened steel plate as with when mounting the product, or tightening it to the machine body before grinding and finishing the raceway, to produce a good result.

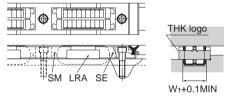
Point of Design


Installing the LM Roller

Installing the LM Roller

Fig.1 shows examples of installing the LM Roller. To minimize the gradient of the LM Roller in the traveling direction, provide a reference surface on the mounting surface and press the LM Roller toward it. The mounting reference surface of the LM Roller is opposite of the THK logo marked on the raceway base.

(a) Installing models LR, LRU and LR-Z


Use the four mounting bolt holes on the raceway base to mount the LM Roller.

For G and W₁, see the specification table.

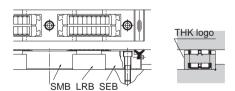
(b) Installing models LRA and LRA-Z

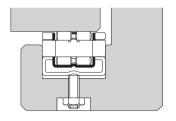
The LM Roller can easily be secured using fixture model SM or SE. SE is provided with a wiper to increase contamination protection effect.

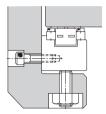
For W₁, see the specification table.

(c) Installing models LRB and LRB-Z

The LM Roller can easily be secured using fixture model SMB or SEB. SEB is provided with a wiper to increase contamination protection effect.



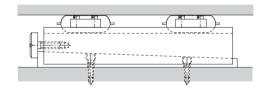

Fig.1 Installing the LM Roller


Guidance for Adjusting the Clearance

To secure stable accuracy during operation, the LM Roller is provided with a light preload. Provision of a preload is especially effective also in increasing the service life for applications where a vibration impact load or overhang load is applied.

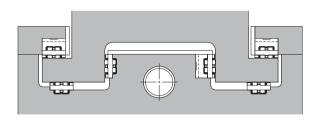
Fig.2 shows clearance adjusting methods that are commonly practiced.

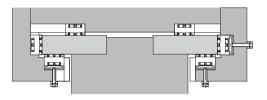
Normally, it is preferable to provide a preload that is approximately 3% of the basic dynamic load rating (C). Providing a preload to the LM Roller will stabilize the accuracy.

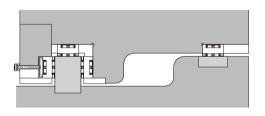


(a) Using a dedicated stopper

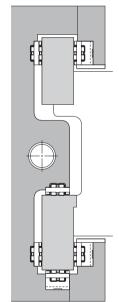
(b) Using a set screw

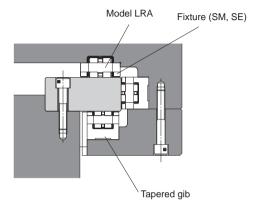

(c) Adjusting a tapered gib

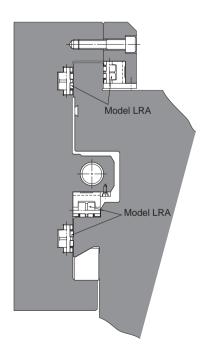

Fig.2 Methods for Adjusting the Clearance of the LM Roller


Point of Design

Examples of Arranging LM Roller Units


Examples of Arranging LM Roller Units





Examples of Installing the LM Roller

Assembling the slide section

Using the cross rail of a vertical lathe

Options

LM Roller (Options)

Spring Pad Model PA

●For detailed dimensions, see B-528.

Item name	Schematic diagram / mounting location	Purpose/location of use
Spring Pad Model PA		By attaching this spring pad to the back of the LM Roller as shown in Fig.2 (a) on A-614 . Turning the adjustment bolt, adjustment of a clearance and a preload can easily be done.

[Guidance for Using the Spring Pad]

Spring pad model PA is a low price item that enables easy adjustment and achieves self-aligning. A preload can easily be adjusted by installing the spring pad to the machine and externally tightening the adjustment bolt using a torque wrench. As a result, the need for troublesome shim adjustment and machining for matching is eliminated.

Example of Using the Spring Pad

- When using the spring pad in the opposite position to provide a preload
 - To prevent the table from lifting or guiding it horizontally, using the spring pad on one side as shown in Fig.1 will easily provide a preload and eliminate vibrations and play of the machine.
- (2) When applying both sliding and rolling on the same plane
 - When desiring to increase friction resistance because the table inertia is large, or desiring to increase rigidity under a heavy load, the spring pad can be used in combination with the sliding surface. To do so, install the LM Roller and the spring pad to several locations on the table as shown in Fig.2, and then tighten the adjustment bolt by the load to be allocated to the LM Roller.

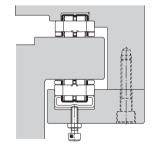


Fig.1

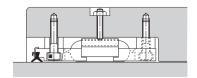


Fig.2

• Guidance for Installing the Spring Pad

Fig.3 shows examples of installing the spring pad model PA to the bottom of the LM Roller and adjusting the clearance and providing a preload.

The dimensions in this example are indicated in the specification table for the spring pad model PA. The following is the procedure for the installation.

- (1) Secure the fixture and the spacer. Adjust them so that the LM Roller can move vertically.
- (2) Turn the adjustment bolt until the LM Roller hits the raceway.
- (3) Turn the adjustment bolt using a torque wrench and tighten it until the desired torque is reached. A preload is provided via the spring pad model PA.

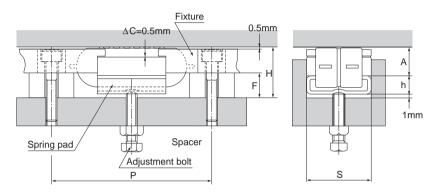


Fig.3

Fixture Models SM/SMB and SE/SEB

For detailed dimensions, see B-529.

Item name	Schematic diagram / mounting location	Purpose/location of use
Fixture Models SM/SMB and SE/SEB		Use of fixture model SM or SE eliminates the need to machine thin tapped holes for mounting the LM Roller, and allows the roller to firmly be secured. Models SE and SEB each have a special rubber wiper with double lips to achieve a high contamination protection effect.

Precautions on Use

LM Roller

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Dropping or hitting the LM Roller may damage it. Giving an impact to the product could also cause damage to its function even if the product looks intact.

[Contamination Protection and Lubrication]

With the LM Roller, once foreign material enters the raceway due to poor contamination protection, it cannot be removed easily and tends to severely damage the raceway or the LM rollers. Therefore, use much care in contamination protection.

Fixture for the LM Roller models SE and SEB each have a special rubber wiper with double lips to achieve a high contamination protection effect. Feeding grease between the double lips when attaching the fixture, as shown in Fig.1, will further increase the effect.

For locations subject to cutting chips or welding spatter, it is necessary to use a contamination protection cover such as a bellows and a telescopic cover, or a wiper reinforced with a metal plate as indicated in Fig.2.

Fig.1 Wiper of Fixture Models SE and SEB

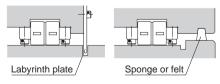
Fig.2 Reinforced Wiper

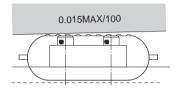
For contamination protection of the side faces, items as shown in Fig.3 are available.

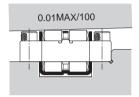
The required quantity of lubricant is much smaller than sliding guides, making the lubrication control easy.

As for the lubricant, the same type of grease or lubricant as that of ordinary bearings will be adequately effective. To achieve a high level of grease retention, it is preferable to use lithium-soap group grease No. 1 or 2, or slightly viscous sliding surface oil or turbine oil.

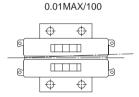
To replenish the lubricant to the LM Roller, drop the lubricant from the greasing hole provided on the back of the retainer as necessary, or directly drop it to the raceway. If the LM Roller is not used frequently, it is also possible to apply grease to the rollers of the product.




Fig.3


[Mounting Reference Surface]

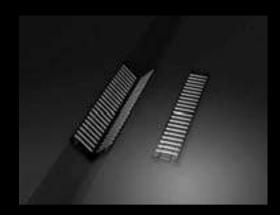
To help correctly mount the LM Roller in the traveling direction, it has a mounting reference surface on the side face of the raceway base. The reference surface is on the opposite side of the THK logo.


[Mounting Precision]

To maximize the performance of the LM Roller, it is necessary to distribute the load as evenly as possible when mounting the product. For the parallelism between the roller and the raceway indicated in Fig.4, we recommend 0.015 mm or less against 100 mm. For the allowable tilt of the roller in the longitudinal direction, 0.01 mm or less against 100 mm is recommended.

(a) Parallelism between the LM Roller and the raceway (b) Allowable tilt of the roller in the longitudinal direction

(c) Parallelism between the LM Roller and the raceway in the horizontal direction


Fig.4 LM Roller and Mounting Precision

[Precautions on Use]

- (1) If foreign material adheres to the product, replenish the lubricant after cleaning the product.
- (2) Do not use the resin retainer for LM Roller model LR (A, B)-Z and seals (including SE and SEB) in an environment at temperature of 80℃ or higher.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.

[Storage]

When storing the LM Roller, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

Flat Roller

玩出ば General Catalog

A Technical Descriptions of the Products

Features and Types A-622 Features of the Flat Roller A-622 • Structure and features A-622 Types of the Flat Roller A-624 • Types and Features A-624 Point of Selection A-625 Rated Load and Nominal Life A-625 Accuracy Standards A-628 Point of Design A-629 Raceway A-630 Precautions on Use A-630

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	B-531
Model FT	B-532
Model FTW	B-533

^{*} Please see the separate "B Product Specifications".

Flat Roller

Features of the Flat Roller

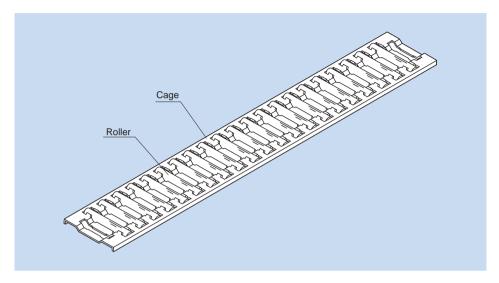


Fig.1 Structure of LM Flat Roller Model FT

Structure and Features

With the Flat Roller, precision rollers compliant with JIS B 1506 are installed in pockets of a cage made of a thin steel plate pressed into M shape (in cross section) to increase its rigidity. Thanks to its structural design, the rollers do not fall off because they are held in cage pockets. Since the cage, which is incorporated with rollers having a diameter of 5 mm or larger, is of roller-lifter type, smooth motion is achieved without damaging the raceway even if the hardness of the raceway is low. The Flat Roller is sandwiched between the two raceways. As the table moves, the Flat Roller travels by half the distance of the table in the same direction. For example, if the table moves 500 mm, the Flat Roller travels 250 mm in the same direction.

The Flat Roller is optimal for large machine tools such as planer, horizontal milling machines and cylindrical grinding machines, and for locations requiring high accuracy such as surface grinding machines, cylindrical grinder and optic measuring machines.

[Large Load Capacity]

Sine rollers are installed in short pitches, the Flat Roller has a large load capacity, and depending on the conditions, it can be used on the raceway of a mold that is little hardened. In addition, the deflection rigidity of the table is almost the same as that of a sliding surface.

[Combined Accuracy of 90° V Surface and Flat Surface Supported as Standard]

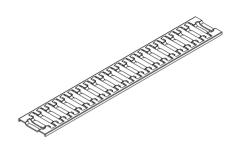
The Flat Roller is designed so that it can be mounted on the 90° V-flat sliding surface, which is the most common configuration among narrow guide types of tables and saddles of machinery. It allows the product to be used without major design change.

[Lowest Friction among Roller Type LM Systems]

Since the rollers are evenly held in a light, rigid cage, friction between rollers is eliminated and skewing of the rollers is minimized. As a result, a small friction coefficient ($\mu = 0.001$ to 0.0025) is achieved, and stick-slip, which is problematic with sliding surfaces, does not occur.

[Instant Connection of the Cage]

When installing the Flat Roller in a large machine, it can easily be connected on the bed. This allows the Flat Roller to be installed even with the longest type.

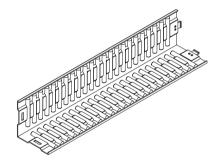

Types of the Flat Roller

Types and Features

Model FT/FT-V

These models have a single row of rollers and are mainly used on the flat surface.

Specification Table⇒B-532



Models FT/FT-V

Model FTW/FTW-V

These models have two or more rows of rollers, and their cages are shaped to bend at 90°. Each model uses rollers with a diameter 0.7071 times greater than that of the rollers on the flat surface so that model FT or FT-V can be mounted on the 90° V surface at the same height if model FT or FT-V is used on the flat surface.

Specification Table⇒B-533

Models FTW/FTW-V

Point of Selection

Flat Roller

Rated Load and Nominal Life

[Static Safety Factor fs]

The Flat Roller may receive an unexpected external force while it is stationary or operative due to the generation of an inertia caused by vibrations and impact or start and stop. It is necessary to consider a static safety factor against such a working load.

$$f_s = \frac{f_c \cdot C_o}{P_c}$$

: Static safety factor fs

: Contact factor

(see [Load Rating] and [Nominal Life] on A-626)

Co : Basic static load rating (kN) : Calculated radial load (kN)

Reference Value of Static Safety Factor

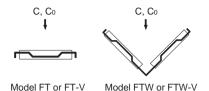

The static safety factors indicated in Table1 are the lower limits of reference values in the respective conditions.

Table1 Reference Value of Static Safety Factors (fs)

Machine using the LM system	Basic dynamic load rating	Lower limit of fs
General industrial	Without vibration or impact	1 to 1.3
	With vibration or impact	2 to 3
Machine tool	Without vibration or impact	1 to 1.5
	With vibration or impact	2.5 to 7

[Load Rating]

The rated loads shown in the specification tables represent the rated loads with a unit length (ℓ) in the directions indicated in the figure below.

If the length of the Flat Roller in the effective load range differs from the unit length (ℓ), approximate rated loads (C_{ℓ} and C_{∞}) can be obtained using the following equation.

$$\mathbf{C}_{t} = \left(\frac{\ell_{o}}{\ell}\right)^{\frac{3}{4}} \times \mathbf{C}$$

$$\mathbf{C}_{ot} = \frac{\ell_{o}}{\ell} \cdot \mathbf{C}_{o}$$

C_l: Basic dynamic load rating

in the effective load range (kN)

ℓ₀ : Length in effective load range (mm)

ℓ : Unit length

(see the specification table) (mm)

Cor : Basic static load rating

in the effective load range (kN)

C : Basic dynamic load rating (kN)

 C_0 : Basic static load rating (kN)

Note) Note that if the hardness of the raceway is lower than 58 HRC, the rated loads will be decreased. (See Fig.2 on A-627.) [Nominal Life]

When the basic dynamic load rating (C_i) of the Flat Roller in the effective load range has been obtained from the equation above, the nominal life is obtained using the following equation.

$$L = \left(\frac{f_{\text{H}} \cdot f_{\text{C}} \cdot f_{\text{T}}}{f_{\text{W}}} \cdot \frac{C_{\ell}}{P_{\text{C}}}\right)^{\frac{10}{3}} \times 100$$

L : Nominal life (km)

(The total number of revolutions that 90% of a group of identical Flat Roller units independently operating under the same conditions can achieve without showing flaking)

C_t: Basic dynamic load rating (kN)
P_c: Calculated radial load (kN)

f_H: Hardness factor (see Fig.2 on A-627)

f_⊤ : Temperature factor

(see Fig.1 on A-627)

fw : Load factor (see Table2 on A-627)

fc : Contact factorNote)

Note) Contact factor is determined according to the contact state of the two planes between which the rollers travel. If the contact ratio between the two planes is 50%, set the contact factor as $f_c = 0.5$ for safety's sake.

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

: Service life time (h) : Stroke length ls (mm) : Number of reciprocations per minute n₁

(min-1)

● f_T: Temperature Factor

If the temperature of the environment surrounding the operating Flat Roller exceeds 100 °C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.1.

Note) If the environment temperature exceeds 100 $^{\circ}$ C , con-

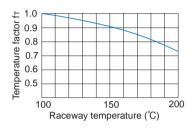


Fig.1 Temperature Factor (f_T)

f_H: Hardness Factor

To maximize the load capacity of the LM system, the hardness of the raceways needs to be between 58 to 64 HRC. If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor (fH).



Fig.2 Hardness Factor (fH)

fw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, when the actual load applied cannot be obtained, or when speed and impact have a significant influence, divide the basic load rating (C or C₀), by the corresponding load factor in Table2 of empirically obtained data.

Table2 Load Factor (fw)

	·	-
Vibrations/ impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

Accuracy Standards

The accuracy of the Flat Roller is classified into normal grade, high accuracy grade and precision grade according to the difference in diameter between the rollers incorporated in a single cage. When it is necessary to specify the dimensional tolerance in the roller diameter for reasons related to the required accuracy or combination, select the desired accuracy from Table3 and specify the corresponding accuracy symbol.

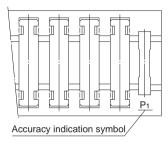


Fig.3

Table3 Classification of Roller Diameters for Selection

Unit: µm

Accuracy grades	Diameter difference	Dimensional tolerance in diameter	Accuracy indication symbol
Normal grade	3	0 to -3	No Symbol
High grade	2	0 to -2	H2
		-2 to -4	H4
		-4 to -6	H6
Precision grade	1	0 to -1	P1

Note) The accuracy indication symbol is marked on the end of the cage as shown in Fig.3.

Point of Design

Flat Roller

Raceway

To maximize the performance of the Flat Roller, it is necessary to take into account the hardness, surface roughness and accuracy of the raceway, on which the rollers directly roll, when manufacturing the product. In particular, the hardness significantly affects the service life. Therefore, it is important to take much care in selecting a material and heat treatment method.

[Hardness]

We recommend surface hardness of 58 HRC (≒ 653 HV) or higher. The depth of the hardened layer is determined by the size of the Flat Roller; we recommend approximately 2 mm for general use. If the hardness of the raceway is lower or the raceway cannot be hardened, multiply the load rating by the corresponding hardness factor indicated in Fig.2 on A-627.

[Material]

The following materials are generally used as suitable for surface hardening through induction-hardening and flame quenching.

- SUJ2 (JIS G 4805: high-carbon chromium bearing steel)
- SK3 to 6 (JIS G 4401: carbon tool steel)
- S55C (JIS G 4051: carbon steel for machine structural use)

If the machine body is a mold, depending on the conditions, a hardened steel plate may not be used and instead, the surface of mold itself may be hardened.

[Surface Roughness]

To achieve smooth motion, the surface should preferably be finished to 0.40a or less. If slight wear is allowed in the initial stage, the surface may be finished to approximately 0.80a.

[Accuracy]

When high accuracy is required, securing a hardened steel plate to the machine body may cause undulation on the raceway. To avoid this, secure the Flat Roller with bolts before grinding the hardened steel plate as with when mounting the product, or tightening it to the machine body before grinding and finishing the raceway, to produce a good result.

Installing the Flat Roller

[Combination of 90° V Surface and Flat Surface]

The Flat Roller can be mounted directly onto the guide surface on the 90° V surface and flat surface. Table1 shows examples of their combinations.

Note) The roller diameter (Da) for model numbers containing symbol V at the end represents the value $\frac{1}{\sqrt{2}}$ times that of types for the same model number with no symbol.

The diameter of the roller to be combined with 90°V surface will be $\frac{1}{\sqrt{2}}$ times that of the roller on the flat surface.

For example, when using model FT4035 (roller diameter: Ø 4) on the flat surface, use model FTW4030V (roller diameter: Ø 2.828) on the V surface. Performance of the Flat Roller is significantly affected by the contact state of the upper and lower raceways. You can check the fit before installing the Flat Roller by designing the raceways as indicated in Fig. 1.

Table1 Example of Combinations

90°V surface		Flat surface	
Model No.	Roller diameter Da	Model No.	Roller diameter Da
FTW 4030V	2.828	FT 4030	4
FTW 4030V	2.828	FT 4035	4
FTW 5035V	3.535	FT 5038	5
FTW 5035V	3.535	FT 5043	5
FTW 5045	5	FT 10060V	7.071
FTW 5050	5	FT 10060V	7.071
FTW 10070V	7.071	FT 10080	10

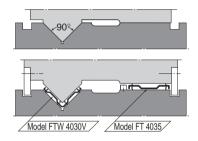


Fig.1 Example of Combinations

[Other Example of Installation]

In locations where a lifting load or an overhang load is applied, the Flat Roller can be installed as shown in Fig.2.

For details on clearance adjustment from the side face, see Example of Clearance Adjustment for the Cross Roller Guide on A-580.

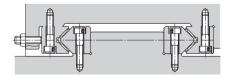


Fig.2 Location where a Lifting Load is Applied

[Determining the Flat Roller Length]

The Flat Roller travels 1/2 of the travel distance of the table in the same direction. Therefore, it is necessary to calculate the stroke length and the Flat Roller length as indicated below.

To keep the Flat Roller under the table, obtain Flat Roller length ℓ_s as follows.

The Flat Roller length:

$$\ell = L_T + \frac{\ell_S}{2} = 0.5(L_B + L_T)$$

[Connecting Flat Roller Units]

When it is necessary to joint two or more Flat Roller units, use a joint plate as shown in Fig.4 to join them on the base. When placing an order, indicate the overall length for actual use. Note, however, that model FT2010 units cannot be joined together.

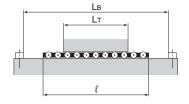


Fig.3

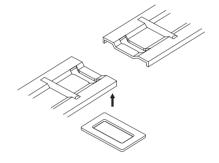
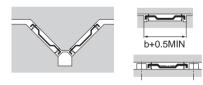



Fig.4 Connection of Model FT Units

[Guiding the Flat Roller]

To guide model FT or FT-V, follow the instruction as shown in Fig.5.

For "b", see the specification table.

Fig.5 Guiding the Flat Roller

Precautions on Use

Flat Roller

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Dropping or hitting the Flat Roller may damage it. Giving an impact to the product could also cause damage to its function even if the product looks intact.

[Contamination Protection and Lubrication]

With the Flat Roller, once foreign material enters the raceway due to poor contamination protection, it cannot be removed easily and tends to severely damage the raceway or the Flat rollers. Therefore, use much care in contamination protection. Normally, for contamination protection of the Flat Roller, a bellows or a telescopic cover that covers the whole sliding surface, as shown in Fig.1, is effective.

The required quantity of lubricant is much smaller than sliding metals, making the lubrication control easy.

Since the Flat Roller has high lubricant retention, it is suitable for grease lubrication. It is preferable to use lithium-soap group grease No. 1 or 2, or slightly viscous sliding surface oil or turbine oil.

(a) Copper cover or telescopic cover

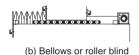


Fig.1 Contamination Protection Methods

[Attaching the Stopper]

Although the Flat Roller performs extremely accurate motion, it may cause a traveling error due to uneven load distribution or non-uniform stop. Therefore, we recommend attaching a stopper on the end of the base or the table.

[Chamfering the End Face of the Table]

If the Flat Roller is longer than the overall table length, finely chamfer the end face of the table so that the rollers are easily fed to the table.

[Mounting Precision]

To maximize the performance of the Flat Roller, it is necessary to distribute the load as evenly as possible when mounting the product. For the allowable tilt as shown in Fig.2, we recommend 0.1 mm or less against 1,000 mm.

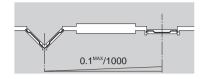


Fig.2 Mounting Precision

[Precautions on Use]

- (1) If foreign material adheres to the product, replenish the lubricant after cleaning the product.
- (2) Contact THK if you desire to use the product at a temperature of 100°C or higher.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.
- (4) The Flat Roller cannot be used as a roller conveyor.
- (5) A moment, vertical mount, uneven contact and machine vibrations may cause the cage to slip. If slippage of the cage is inevitable, we recommend using an LM Guide system designed for infinite motion.

[Storage]

When storing the Flat Roller, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

Slide Pack

冗出版 General Catalog

A Technical Descriptions of the Products

Features and Types	
Features of Slide Pack	A-636
Structure and features	A-636
Types of the Slide Pack	A-638
• Type	A-638
Clearance	A-639
Options	A-640
Contamination Protection	A-640
Metal Dustproof Cover	A-640
Jointed Slide Rails	A-640
Mounting Procedure and Maintenance	A-641
Installation	A-641
Lubrication	
Precautions on Use	۸ 643

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table Models FBW 2560R and 3590R Models FBW 50110R and 50110H	B-536 B-537
Options Metal Dustproof Cover	
Mounting Procedure and Maintenance Installation	

^{*} Please see the separate "B Product Specifications".

Slide Pack

Features of the Slide Pack

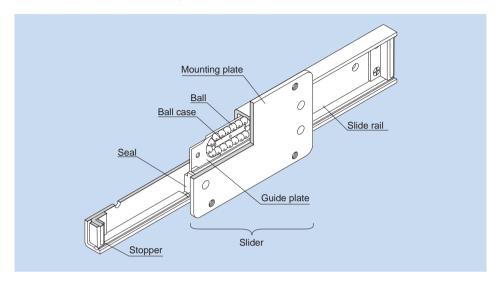


Fig.1 Structure of Slide Pack Model FBW-RUU

Structure and Features

Slide Pack model FBW is an LM system in which a precision press molded slider that contains balls performs infinite straight motion. Used in combination with a slide rail, the Slide Pack achieves lightweight and compact design and smooth straight motion at a low price.

The ball case and the slide rail are nitrided to ensure high wear resistance. (The slide rail of model FBW 2560R is made of stainless steel.)

The Slide Pack is optimal for slide units of photocopiers, tool cabinets, electronic equipment cabinets, moving seats, automatic vending machines, machine tool slide covers, cash registers, heavy doors and curtain walls.

Features of the Slide Pack

[Low Cost, Interchangeable]

Since it is press molded with precision, this LM system achieves stable quality and interchangeability at low cost.

[Infinite Stroke Length]

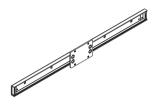
Unlike the conventional finite stroke type, the slider is capable of performing infinite motion. When connected with a slide rail, it can be used in long-stroke applications.

[Easy Installation and Handling]

Because of the structure that prevents balls from falling off even if the slider is removed from the slide rail, this model is easy to handle and can be used in a complex construction where it is impossible to install an LM system unless it is disassembled.

[A Type Equipped with a Contamination Protection Seal Also Standardized]

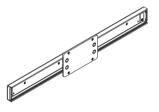
A type equipped with a contamination protection seal is standardized for locations where cutting chips or dust may enter the system.


Types of the Slide Pack

Type

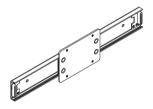
Model FBW 2560R

This model is a compact type.


Specification Table⇒B-536

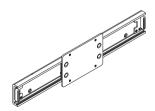
Model FBW 3590R

This model is a standard type.


Specification Table⇒B-536

Model FBW 50110R

This model is a heavy load type.


Specification Table⇒B-537

Model FBW 50110H

This model is a high rigidity type.

Specification Table⇒B-537

Types of the Slide Pack

Clearance

Model FBW is manufactured to the following accuracies.

Vertical clearance: 0.03 mm or less Horizontal clearance: 0.1 mm or less

These specifications are values when the slide rail is attached to a rigid base.

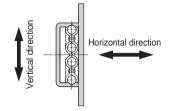


Fig.2

Options

Slide Pack (Options)

Contamination Protection

For Slide Pack model FBW-R (H), a special synthetic rubber seal with high contamination protection characteristics, capable of preventing foreign material from entering the slider and the lubricant from leaking, is available. The seal increases the contamination protection effect by contacting both the slide rail raceway where balls roll and the slide rail itself.

Metal Dustproof Cover

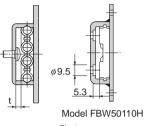
For Slide Pack model FBW, steel covers that cover the whole slide rail to prevent foreign material from entering the slide are available.

For detailed dimensions, see B-538.

Jointed Slide Rails

If the required specifications exceed the standard stroke, two or more slide rails can be connected. When placing an order, indicate the overall length.

Slide Pack


Mounting Procedure and Maintenance

Installation

[Mounting Screws of the Slide Rail]

Since the space for securing the mounting screws of the slide rail is small as shown in Fig.1, we recommend using button-head bolt or binding-head bolt (JIS B 1111 annex).

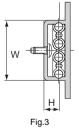
Note) The slide rail of model FBW 50110H is countersunk. We recommend mounting the slide rail using hexagonal-sockethead type bolts (M5).

Fia.1

Unit: mm Model No. t FBW 2560R 3.2 FBW 3590R 3.4 FBW 50110R 3.4 FBW 50110H

[Attaching the Stopper]

If the slider may overshoot and come off of the slide rail, attach the dedicated stopper to the slide rail end as shown in Fig.2.



[Installing the Slider]

With model FBW-R (H), balls will not fall off even if the slider is removed from the slide rail. However, they could fall if the slider is twisted when reattaching it to the slide rail. Whenever possible, do not remove the slider from the slide rail when installing the Slide Pack.

[Groove Dimensions]

Fig.3 shows the dimensions of grooves for applications where model FBW-R (H) is installed in a aroove.

	_		Unit: mm
Model No.	\	W	Н
FBW 2560R	24.8	+0.15 +0.1	7.4
FBW 3590R	37	+0.15 +0.1	10
FBW 50110R	50	+0.15 +0.1	10
FBW 50110H	54.4	+0.15 +0.1	13

Lubrication

Apply high-quality lithium soap group grease to the raceway of the slide rail before using the product.

Precautions on Use

Slide Pack

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Tilting the slider or slide rail may cause them to fall by their own weight.
- (3) Dropping or hitting the Slide Pack may damage it. Giving an impact to the Slide Pack could also cause damage to its function even if the product looks intact.

[Lubrication]

- Apply high-quality lithium soap group grease to the raceway of the slide rail before using the product.
- (2) Do not mix lubricants of different physical properties.

[Precautions on Use]

- (1) The static permissible load of the Slide Pack varies according to the direction.
- (2) Entrance of foreign material may cause damage to the ball circulating component or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (3) If foreign material such as dust or cutting chips adheres to the product, replenish the lubricant after cleaning the product with pure white kerosene.
- (4) Avoid using the product at other than normal temperature, or using it in harsh conditions such as intensive reciprocations that generate frictional heat and environments with water or dust.
- (5) When using the Slide Pack with inverted mount, breakage of the slider due to an accident or the like may cause balls to fall and the slider to come off from the slide rail and fall. In these cases, take preventive measures such as adding a safety mechanism for preventing such falls.
- (6) When you remove the slider from the slide rail and then reassemble them, inserting the slide rail into the slider while twisting them may cause balls to fall or damage the slider. Be sure to gently insert the rail straight into the slider while checking the position of the slider balls and that of the rail raceway.

[Storage]

When storing the Slide Pack, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

Slide Rail

「□当ば General Catalog

A Technical Descriptions of the Products

Features and Types Features of the Slide Rail..... A-646 Structure and features..... A-646 Types of the Slide Rail A-647 Types and Features..... A-647 Single Slides for Light Load A-647 Single Slides for Medium Load A-650 Double Slides for Light Load A-650 Double Slides for Medium Load...... A-651 Double Slides for Heavy Load A-653 Linear Type Slides A-654 Aluminum Alloy Slide Rail..... A-655 Classification Table for Slide Rails.... A-656 Mounting Procedure and Maintenance... A-658 Mounting the Slide Rail A-658 Precautions on Use..... A-659

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	
Model FBL 27S	B-542
Model FBL 27S-P14	B-543
Model FBL 35S	B-544
Model FBL 35M	B-545
Model FBL 35J	B-546
Model FBL 35J-P13	B-547
Model FBL 35J-P14	
Model FBL 35B	
Model FBL 35T	B-550
Model FBL 27D	B-551
Model FBL 35E-P14	B-552
Model FBL 35G-P13	B-553
Model FBL 35G-P14	B-554
Model FBL 35D	
Model FBL 35W	
Model FBL 51H	
Model FBL 51H-P13	
Model FBL 51H-P14	
Model FBL 35K	B-560
Model FBL 56H	
Model FBL 56H-P13	
Model FBL 56H-P14	B-563
Model FBL 35F	B-564
Model FBL 56F	B-565
Model FBL 48DR	B-566
Model E15	B-567
Model E20	B-568
Model D20	B-569

^{*} Please see the separate "B Product Specifications".

Slide Rail

Features of the Slide Rail

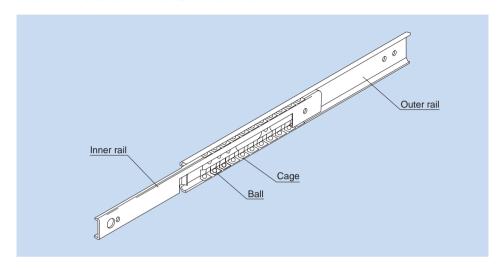


Fig.1 Structure of Slide Rail Model FBL

Structure and Features

Slide Rail model FBL is a thin, compact, lightweight and ultra-low price slide unit for finite motion. It has two rows of balls placed between an inner rail (made of a steel sheet roll-formed with precision) and an outer rail. The balls are evenly spaced by a cage press-molded with precision, thus eliminating friction between balls and achieving a smooth slide mechanism.

Since model FBL achieves smooth straight motion with easy installation, it can be used in a wide range of applications such as photocopiers, measuring instruments, telecommunication equipment, medical equipment, automatic vending machines and various types of office equipment.

[Unit Type That Allows Easy Installation]

Since the clearance and the motion of the slide unit are optimally adjusted, simply mounting the unit onto the base or the table using screws will achieve a slide mechanism with virtually no running noise.

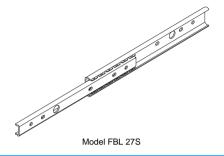
[Thin and Compact]

Since the sectional shape is thin designed, this slide pack only requires a small side space for installation. In addition, a desired number of slide pack units can be installed in parallel according to the load conditions.

[Maintenance-free Operation]

Since the slide rail is treated with zinc plating, it is highly corrosion resistant. In addition, the slide unit contains lithium soap-based grease, which is highly stable against oxidation.

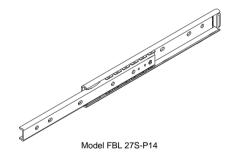
Types of the Slide Rail


Types and Features

[Single Slides for Light Load]

Model FBL 27S

The most compact slide rail from THK.

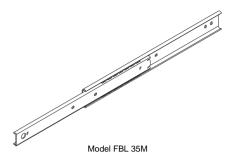

Specification Table⇒B-542

Model FBL 27S-P14

An inner rail pulling type of model FBL 27S. Releasing the automatic free disconnection spring attached on the inner rail allows the slide rail to be pulled out. When stored, the spring is automatically released unidirectionally under a certain pressure.

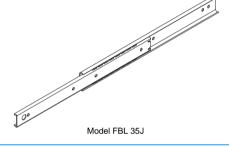
Specification Table⇒B-543

Model FBL 35S

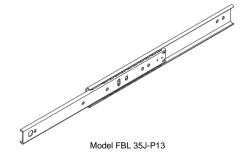

A single slide type of Slide Rail with the most fundamental shape.

Specification Table⇒B-545

Model FBL 35M


An inner rail pulling type of model FBL 35S. It stops by frictional resistance when the slide rail is fully opened, and is pulled out when being pulled further with force. (brake-stop type)

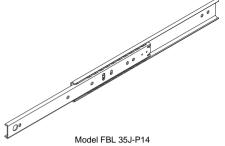
Model FBL 35J


Based on model FBL 35M, this model has a lead ball that serves as a guide when the inner rail is inserted.

Model FBL 35J-P13

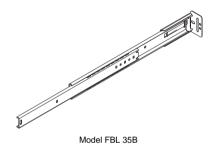
An inner rail pulling type of model FBL 35S. Releasing the disconnection spring attached on the inner rail allows the slide rail to be pulled out. When folded, the locked state with the disconnect spring is manually released.




Specification Table⇒B-548

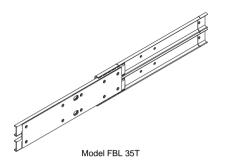
Types of the Slide Rail

Model FBL 35J-P14


An inner rail pulling type of model FBL 35S. Releasing the automatic free disconnection spring attached on the inner rail allows the slide rail to be pulled out. When stored, the spring is automatically released unidirectionally under a certain pressure.

Model FBL 35B

A brake-stop type of model FBL 35M. It can be mounted on the bottom face of a moving object when used.

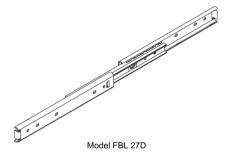


Specification Table⇒B-550

[Single Slides for Medium Load]

Model FBL 35T

A single slide combining two units of model FBL 35S. When folded, the locked state with the disconnect spring is manually released.



[Double Slides for Light Load]

Model FBL 27D


A double-slide type that combines two units of model FBL 27S back-to-back. It is widely used in various types of OA equipment.

Specification Table⇒B-551

Model FBL 35E-P14

A three-rail, double-slide type that allows a long stroke in a small space. Releasing the automatic free disconnection spring attached on the inner rail allows the inner rail to be pulled out. When folded, the locked state is automatically released under a certain pressure in the folding direction.

Specification Table⇒B-553

Features and Types

Types of the Slide Rail

[Double Slides for Medium Load]

Model FBL 35G-P13

A double-slide type that combines two units of model FBL 35S front-to-front. Releasing the automatic free disconnection spring attached on the inner rail allows the inner rail to be pulled out. When folded, the locked state with the disconnect spring is manually released. It is also equipped with a pull-lock mechanism that functions when the slide rail is fully opened.

Model FBL 35G-P13

Specification Table⇒B-554

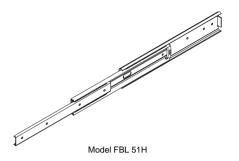
Model FBL 35G-P14

A double-slide type that combines two units of model FBL 35S front-to-front. Releasing the automatic free disconnection spring attached on the inner rail allows the inner rail to be pulled out. When folded, the lock state with the disconnect spring can automatically be released under a certain pressure in the folding direction. It is also equipped with a pull-lock mechanism that functions when the slide rail is fully opened.

Model FBL 35D

A double-slide type that combines two units of model FBL 35S back-to-back. It is extensively used regardless of the industry.

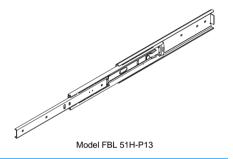
Specification Table⇒B-555


Model FBL 35W

A double-slide type based on model FBL 35S that achieves a thickness of one single-slide unit.

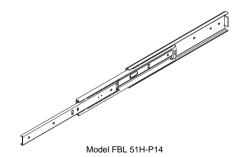
Model FBL 51H

A three-rail, double-slide type that allows for a long stroke. With the smallest thickness, this model can be used in a space-saving location even under a large load.



Model FBL 51H-P13

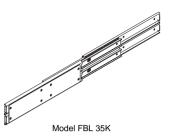
A three-rail, double-slide type that allows a long stroke. With the smallest thickness, this model can be used in a space-saving location even under a large load. Releasing the automatic free disconnection spring attached on the inner rail allows the inner rail to be pulled out. When folded, the locked state with the disconnect spring is manually released. It is also equipped with a lock mechanism that functions when the slide rail is fully opened.


Specification Table⇒B-558

Specification Table⇒B-557

Model FBL 51H-P14

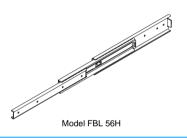
A three-rail, double-slide type that allows a long stroke. With the smallest thickness, this model can be used in a space-saving location even under a large load. Releasing the automatic free disconnection spring attached on the inner rail allows the inner rail to be pulled out. When folded, the locked state is automatically released under a certain pressure in the folding direction.


Types of the Slide Rail

[Double Slides for Heavy Load]

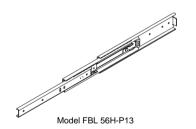
Model FBL 35K

A double-slide type combining 4 units of model FBL 35S. It achieves the largest permissible load among all types and is optimal for opening/closing heavy objects.


Specification Table⇒B-560

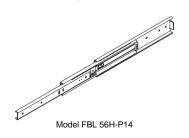
Model FBL 56H

A double-slide type with the largest permissible load among the three rails. It is used extensively in various types of OA furniture.


Specification Table⇒B-561

Model FBL 56H-P13

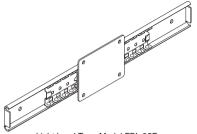
A double-slide type with the largest permissible load among the three rails. Releasing the automatic free disconnection spring attached on the inner rail allows the inner rail to be pulled out. When folded, the locked state with the disconnect spring is manually released. It is also equipped with a lock mechanism that functions when the slide rail is fully opened.


Specification Table⇒B-562

Model FBL 561H-P14

A double-slide type with the largest permissible load among the three rails. Releasing the automatic free disconnection spring attached on the inner rail allows the inner rail to be pulled out. When folded, the locked state is automatically released under a certain pressure in the folding direction.

Specification Table⇒B-563

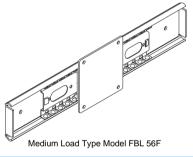


[Linear Type Slides]

Light Load Type Model FBL 35F

Using a flange type that can easily be mounted, this slide-type model is capable of performing straight, finite motion.

Specification Table⇒B-564



Light Load Type Model FBL 35F

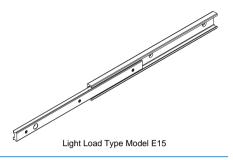
Medium Load Type Model FBL 56F

Using a flange type that can easily be mounted, this slide-type model is capable of performing straight, finite motion. It is optimal for locations under a large working load.

Specification Table⇒B-565

Heavy Load Type Model FBL 48DR

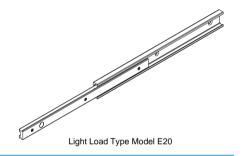
A heavy-load, low-friction slide rail developed for sliding heavy doors.



[Aluminum Alloy Slide Rail]

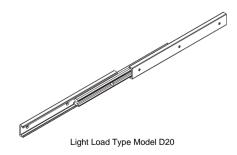
Light Load Type Model E15

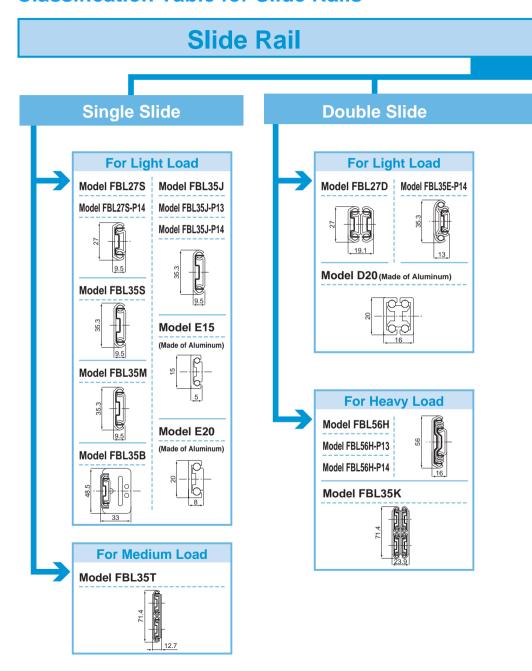
The lightest and most compact single slide in the aluminum alloy series. It is especially suitable for locations with magnetism, locations requiring antirust measures and locations where much importance is given to appearance.

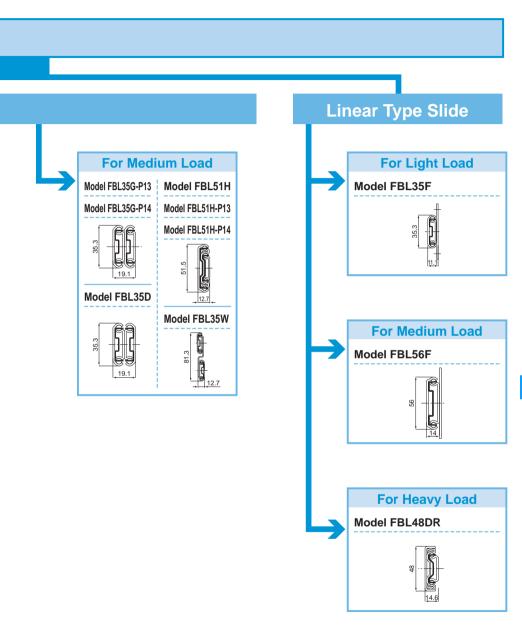


Light Load Type Model E20

A single-slide with the most fundamental shape in the aluminum alloy series. It is especially suitable for locations with magnetism, locations requiring antirust measures and locations where much importance is given to appearance.


Specification Table⇒B-568


Light Load Type Model D20


The lightest and most compact double slides in the aluminum alloy series. It is especially suitable for locations with magnetism, locations requiring antirust measures and locations where much importance is given to appearance.

Specification Table⇒B-569

Classification Table for Slide Rails

Mounting Procedure and Maintenance

Slide Rail

Mounting the Slide Rail

[Mounting Screws of the Slide Rail]

The slide rail is designed to be mounted using M4 screws. Since the mounting space is small as shown in Fig.1, we recommend using buttonhead bolt or binding-head bolt (JIS B 1111 annex).

Note) For models FBL27S/27S-P14/27D, use M4 binding-head bolt, or M3 button-head bolt or binding-head bolt. Note) For model FBL48DR, use M5×8 mounting screw. Note) For model E15, use M2.6 countersunk screw.

Note) For models E20 and D20, use M3 countersunk screw. Note) For model FBL 35E, use M3 button-head bolts or binding-head bolts.

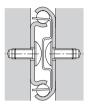


Fig.1

[Attaching the Slide Rail]

While keeping the maximum stroke, mount the outer rail at the section where the inner rail and the outer rail overlap, slide the inner rail backward, and then secure the rail using a screw through the access hole.

Fig.2

[Permissible Load and Mounting Orientation]

For use other than with the mounting orientation shown in Fig.3, contact THK.

The permissible load of the Slide Rail indicates the load in the direction Pa that two rails can receive in the middle of the inner rail length at the maximum stroke.

Fig.3

[Surface Treatment]

The surface of the Slide Rail is treated with electro-galvanizing (gloss chromate treatment) as standard. Colored chromate treatment and chrome plating are also available. Contact THK for details.

Precautions on Use

Slide Rail

[Handling]

- (1) Tilting a slide rail may cause it to fall by its own weight.
- (2) Dropping or hitting the Slide Rail may damage it. Giving an impact force to the slide rail could also cause damage even if the product looks intact.

[Precautions on Use]

- (1) When mounting the Slide Rail, use care to always keep both rails in parallel.
- (2) Entrance of foreign material may cause damage to the Slide Rail or functional loss.
- (3) Avoid using the product at other than normal temperature, or using it in harsh conditions such as intensive reciprocations that generate frictional heat and environments with water or dust.
- (4) The durability of the Slide Rail varies depending on factors such as the drawing dimension, travel distance, mounting conditions and environment in addition to operating frequency. Take these factors into account when making a selection.

[Storage]

When storing the Slide Rail, avoid high temperature, low temperature and high humidity.

Ball Screw

'대비 General Catalog

Ball Screw

行法 General Catalog

A Technical Descriptions of the Products

Features and Types	Δ	-664	Accuracy of Each Model	Δ-747
Features of the Ball Screw			Precision, Caged Ball Screw Models SBN, SBK and HBN	A-748
• Driving Torque One Third of the Sliding Screw			Structure and features	A-749
Ensuring High Accuracy			Ball Cage Effect	A-749
Capable of Micro Feeding			Types and Features	
High Rigidity without Backlash	Α	-669	Service Life	A-704
Capable of Fast Feed	Α	-670	Axial clearance	A-685
Types of Ball Screws	Α	-672	Accuracy Standards	A-678
Point of Selection			Standard-Stock Precision Ball Screw Unfinished Shaft Ends	
Flowchart for Selecting a Ball Screw	Α	-674	Models BIF, BNFN, MDK, MBF and BNF	A-754
Accuracy of the Ball Screw	Α	-677	Structure and features	A-755
Lead angle accuracy	Α	-677	Types and Features	A-756
Accuracy of the Mounting Surface	Α	-680	Service Life	A-704
Axial clearance	Α	-685	Nut Types and Axial Clearance	A-758
Preload	Α	-686		
Selecting a Screw Shaft	Α	-690	Standard-Stock Precision Ball Screw Finished Shaft Ends Model BNK	A-760
Maximum Length of the Screw Shaft	Α	-690	Features	A-761
Standard Combinations of Shaft Diameter and Lead for the Precision Ball Screw	Α	-692	Types and Features	A-761
Standard Combinations of Shaft Diameter and Lead for the Rolled Ball Screw	Α	-693	Table of Ball Screw Types with Finished Shaft Ends	
Permissible Axial Load	Α	-694	and the Corresponding Support Units and Nut Brackets	A-762
Permissible Rotational Speed				
Selecting a Nut	Α	-699	Precision Ball Screw Models BIF, DIK, BNFN,	
Types of Nuts	Α	-699	DKN, BLW, BNF, DK, MDK, BLK/WGF and BNT	A-764
Selecting a Model Number	Α	-702	Structure and features	A-765
Calculating the Axial Load	Α	-702	Types and Features	A-769
Static Safety Factor	Α	-703	Service Life	A-704
Studying the Service Life	Α	-704	Axial clearance	A-685
Studying the Rigidity	Α	-707	Accuracy Standards	A-678
Axial Rigidity of the Feed Screw System				
Studying the positioning accuracy	Α	-711	Precision Rotary Ball Screw Models DIR and BLR	A-772
• Causes of Error in Positioning Accuracy	Α	-711	Structure and features	A-773
Studying the Lead Angle Accuracy	Α	-711	• Type	A-775
Studying the Axial Clearance	Α	-711	Service Life	A-704
Studying the Axial Clearance of the Feed Screw System	Α	-713	Axial clearance	A-685
Studying the Thermal Displacement through Heat Generation .	Α	-715	Accuracy Standards	A-776
Studying the orientation change during traveling.			Example of Assembly	A-778
Studying the rotational torque	Α	-717		
• Friction Torque Due to an External Load	Α	-717	Precision Ball Screw / Spline Models BNS-A, BNS, NS-A and NS	A-780
• Torque Due to a Preload on the Ball Screw.	Α	-718	Structure and features	A-781
Torque required for acceleration	Α	-718	• Type	A-782
Studying the Driving Motor	Α	-719	Service Life	A-704
When Using a Servomotor	Α	-719	Axial clearance	A-685
When Using a Stepping Motor (Pulse Motor)	Α	-721	Accuracy Standards	A-783
Examples of Selecting a Ball Screw	Α	722	Action Patterns	A-784
• High-speed Transfer Equipment (Horizontal Use)	Α	-722	Example of Assembly	A-787
Vertical Conveyance System	Α	-736	Example of Using	A-788
			Precautions on Use	

B Product Specifications (Separate)

Rolled Ball Screw	
Models JPF, BTK, MTF, BLK/WTF, CNF and BNT	A-790
Structure and features	A-791
Types and Features	A-792
Service Life	A-704
Axial clearance	A-685
Accuracy Standards	A-678
Rolled Rotary Ball Screw Model BLR	A-796
Structure and features	A-797
• Type	A-797
Service Life	A-704
Axial clearance	A-685
Accuracy Standards	A-798
Example of Assembly	A-799
Rall Savay Parinhanda	
Ball Screw Peripherals	A-801
• Structure and features	A-802
Type	A-802
Types of Support Units and Applicable	A-804
Screw Shaft Outer Diameters	A 005
Model Numbers of Bearings and Characteristic Values	A-805
• Example of Installation	A-806
Mounting Procedure	A-807
Types of Recommended Shapes of the Shaft Ends.	A-000
Nut Bracket Model MC	A-812
Structure and features	Δ-812
• Type	A-812
Lock Nut Model RN	A-813
Structure and features	A-813
• Type	A-813
Options	A-815
Lubrication	
Corrosion Prevention (Surface Treatment, etc.)	A-816
Contamination Protection	A-816
QZ Lubricator	A-817
Wiper Ring W	A-819
Specifications of the Bellows	A-822
Mounting Procedure and Maintenance	
Method for Mounting the Ball Screw Shaft.	A-824
Maintenance Method	A-826
Amount of Lubricant	A-826
Descritions on Hos	
Precautions on Use	A-827

Dimensional Drawing, Dimensional Table
Precision, Caged Ball Screw
Models SBN, SBK and HBNB-575
Standard-Stock Precision Ball Screw Unfinished Shaft Ends
Models BIF, BNFN, MDK, MBF and BNF B-583
Standard-Stock Precision Ball Screw
Finished Shaft Ends Model BNK B-607
Precision Ball Screw
Models BIF, DIK, BNFN, DKN, BLW,
BNF, DK, MDK, BLK/WGF and BNT B-651
Precision Rotary Ball Screw
Models DIR and BLRB-719
Precision Ball Screw / Spline
Models BNS-A, BNS, NS-A and NS B-725
Rolled Ball Screw
Models JPF, BTK, MTF, BLK/WTF, CNF and BNT B-735
Rolled Rotary Ball Screw Model BLR B-747
Maximum Length of the Ball Screw Shaft B-750
Ball Screw PeripheralsB-753
Model EK Square Type Support Unit on the Fixed Side. B-754
Model BK Square Type Support Unit on the Fixed Side. B-756
Model FK Round Type Support Unit on the Fixed Side . B-758
Model EF Square Type Support Unit on the Supported Side . B-762
Model BF Square Type Support Unit on the Supported Side . B-764
Model FF Round Type Support Unit on the Supported Side B-766
Recommended Shapes of Shaft Ends - Shape
H (H1, H2 and H3) (Support Unit Models FK and EK) B-768
Recommended Shapes of Shaft Ends - Shape
J (J1, J2 and J3) (Support Unit Model BK) B-770
Recommended Shapes of Shaft Ends - Shape K
(Support Unit Models FF, EF and BF) B-772
Nut bracket B-774
Lock Nut
Options B-777
Dimensions of the Ball Screw Nut Attached
with Wiper Ring W and QZ Lubricator B-778

^{*} Please see the separate "B Product Specifications".

Features and Types

Ball Screw

Features of the Ball Screw

Driving Torque One Third of the Sliding Screw

With the Ball Screw, balls roll between the screw shaft and the nut to achieve high efficiency. Its required driving torque is only one third of the conventional sliding screw. (See Fig.1 and Fig.2.) As a result, it is capable of not only converting rotational motion to straight motion, but also converting straight motion to rotational motion.

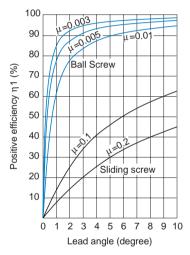


Fig.1 Positive Efficiency (Rotational to Linear)

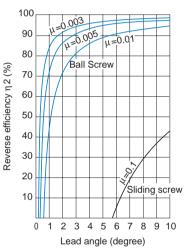


Fig.2 Reverse Efficiency (Linear to Rotational)

[Calculating the Lead Angle]

$$\tan\beta = \frac{Ph}{\pi \cdot d_P} \quad \cdots (1)$$

β	: Lead angle	(°)
d₽	: Ball center-to-center diameter	(mm)
Ph	: Feed screw lead	(mm)

Features and Types

Features of the Ball Screw

[Relationship between Thrust and Torque]

The torque or the thrust generated when thrust or torque is applied is obtained from equations (2) to (4).

Driving Torque Required to Gain Thrust

Т : Driving torque (N-mm)

: Frictional resistance on

the guide surface (N)

 $Fa=u \times mq$

μ : Frictional coefficient of the guide surface

: Gravitational acceleration (9.8 m/s²) m : Mass of the transferred object (kg)

Ph: Feed screw lead (mm)

η1 : Positive efficiency of feed screw (see Fig.1 on A-664)

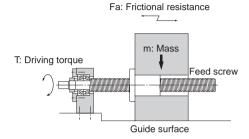
• Thrust Generated When Torque is Applied

$$\mathbf{Fa} = \frac{2\pi \cdot \eta \mathbf{1} \cdot \mathbf{T}}{\mathbf{Ph}} \dots (3)$$

Fa : Thrust generated (N) Т : Driving torque (N-mm) Ph : Feed screw lead (mm)

: Positive efficiency of feed screw

(see Fig.1 on A-664)

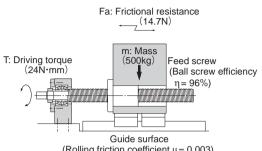

Torque Generated When Thrust is Applied

$$T = \frac{Ph \cdot \eta \cdot q \cdot Fa}{2\pi} \cdot \dots \cdot (4)$$

Т : Torque generated (N-m) : Thrust generated Fa (N) Ph: Feed screw lead (mm)

η2 : Reverse efficiency of feed screw

(see Fig.2 on A-664)



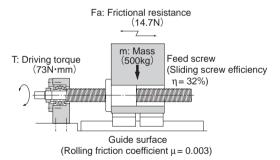
[Examples of Calculating Driving Torque]

When moving an object with a mass of 500 kg using a screw with an effective diameter of 33 mm and a lead length of 10 mm (lead angle: 5°30'), the required torque is obtained as follows.

Rolling guide (μ = 0.003)

Ball Screw (from $\mu = 0.003$, $\eta = 0.96$)

(Rolling friction coefficient μ = 0.003)


Frictional resistance on the guide surface

Fa=0.003×500×9.8=14.7N

Driving torque

$$T = \frac{14.7 \times 10}{2\pi \times 0.96} = 24 \text{ N} \cdot \text{mm}$$

Rolling guide (μ = 0.003) Ball Screw (from μ = 0.2, η = 0.32)

Frictional resistance on the guide surface

Driving torque

Fa=0.003×500×9.8=14.7N

 $T = \frac{14.7 \times 10}{100} = 73 \text{ N} \cdot \text{mm}$

Ensuring High Accuracy

The Ball Screw is ground with the highest-level facilities and equipment at a strictly temperaturecontrolled factory, Its accuracy is assured under a thorough quality control system that covers assembly to inspection.

Automatic lead-measuring machine using laser

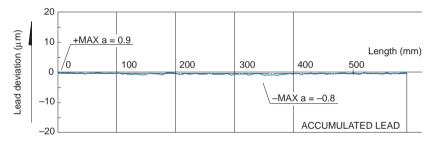


Fig.3 Lead Accuracy Measurement

[Conditions]

Model No.: BIF3205-10RRG0+903LC2

Table1 Lead Accuracy Measurement Unit: mm

Item	Standard value	Actual measurement	
Directional target point	0	-	
Representative travel distance error	±0.011	-0.0012	
Fluctuation	0.008	0.0017	

Capable of Micro Feeding

The Ball Screw requires a minimal starting torque due to its rolling motion, and does not cause a slip, which is inevitable with a sliding motion. Therefore, it is capable of an accurate micro feeding. Fig.4 shows a travel distance of the Ball Screw in one-pulse, 0.1- μ m feeding. (LM Guide is used for the guide surface.)

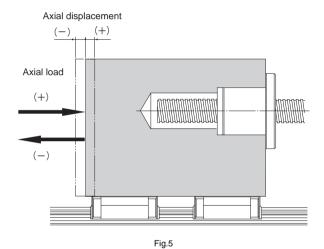


Fig.4 Data on Travel in 0.1-µm Feeding

Features of the Ball Screw

High Rigidity without Backlash

Since the Ball Screw is capable of receiving a preload, the axial clearance can be reduced to below zero and the high rigidity is achieved because of the preload. In Fig.5, when an axial load is applied in the positive (+) direction, the table is displaced in the same (+) direction. When an axial load is provided in the reverse (-) direction, the table is displaced in the same (-) direction. Fig.6 shows the relationship between the axial load and the axial displacement. As indicated in Fig.6, as the direction of the axial load changes, the axial clearance occurs as a displacement. Additionally, when the Ball Screw is provided with a preload, it gains a higher rigidity and a smaller axial displacement than a zero clearance in the axial direction.

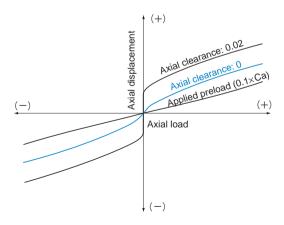


Fig.6 Axial Displacement in Relation to Axial Load

Capable of Fast Feed

Since the Ball Screw is highly efficient and generates little heat, it is capable of a fast feed.

[Example of High Speed]

Fig.7 shows a speed diagram for a large lead rolled Ball Screw operating at 2 m/s.

[Conditions]

Item	Description
Sample	Large Lead Rolled Ball Screw WTF3060 (Shaft diameter: 30mm; lead: 60mm)
Maximum speed	2m/s (Ball Screw rotational speed: 2,000 min ⁻¹)
Guide surface	LM Guide model SR25W

Fig.7 Velocity diagram

Features of the Ball Screw

[Example of Heat Generation]

Fig.8 shows data on heat generation from the screw shaft when a Ball Screw is used in an operating pattern indicated in Fig.9

[Conditions]

Item	Description
Sample	Double-nut precision Ball Screw BNFN4010-5 (Shaft diameter: 40 mm; lead: 10 mm; applied preload: 2,700 N)
Maximum speed	0.217m/s (13m/min) (Ball Screw rotational speed: 1300 min ⁻¹)
Low speed	0.0042m/s (0.25m/min) (Ball Screw rotational speed: 25 min ⁻¹)
Guide surface	LM Guide model HSR35CA
Lubricant	Lithium-based grease (No. 2)

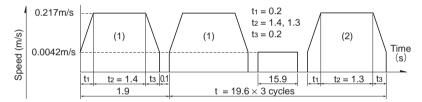
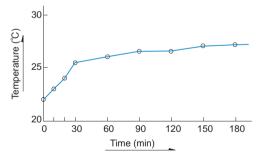
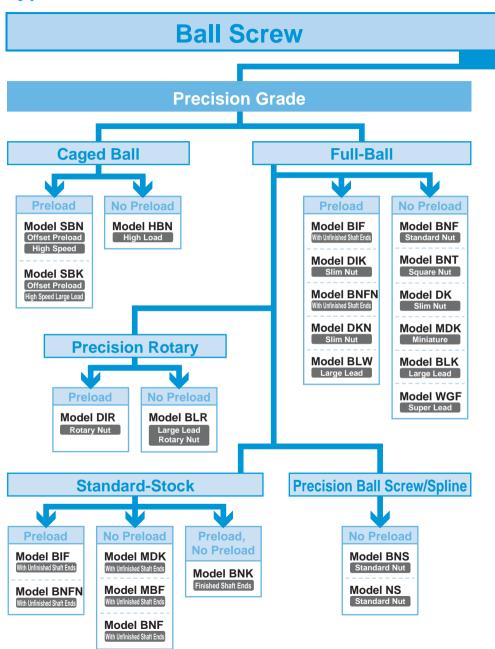
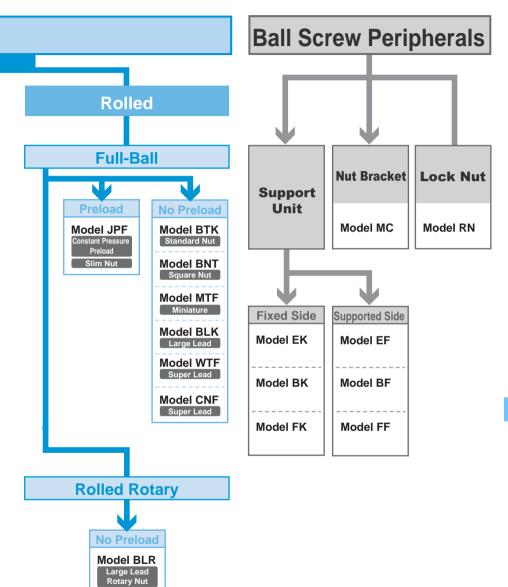


Fig.8 Operating Pattern

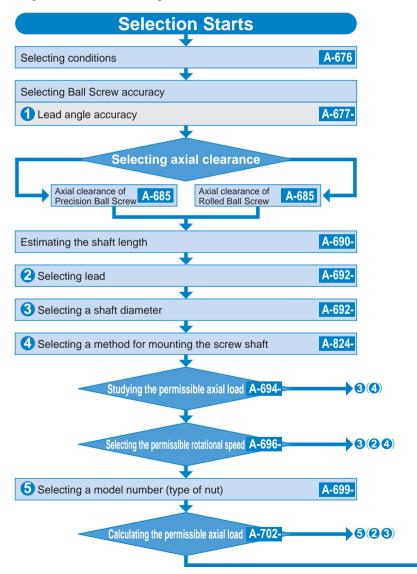




Fig.9 Ball Screw Heat Generation Data

Types of Ball Screws

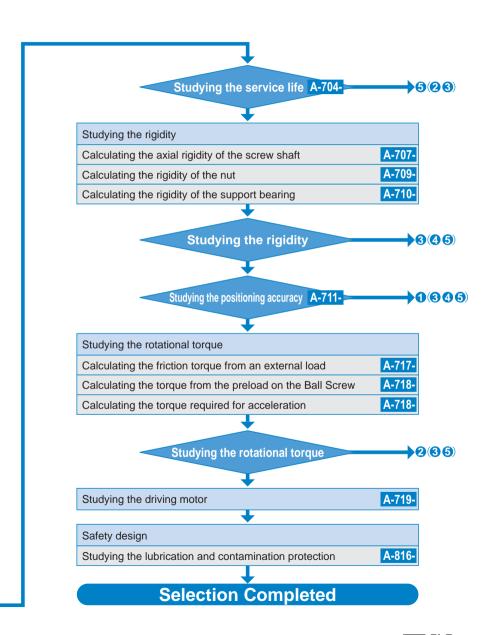
Features and Types

Types of Ball Screws


Point of Selection

Ball Screw

Flowchart for Selecting a Ball Screw


[Ball Screw Selection Procedure]

When selecting a Ball Screw, it is necessary to make a selection while considering various parameters. The following is a flowchart for selecting a Ball Screw.

Point of Selection

Flowchart for Selecting a Ball Screw

Deceleration time

t3 (s)

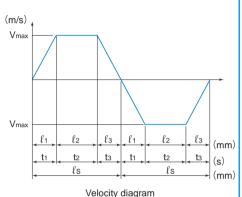
[Conditions of the Ball Screw]

The following conditions are required when selecting a Ball Screw.

Transfer orientation (horizontal, vertical, etc.) Transferred mass m (kg)

Table guide method (sliding, rolling) Frictional coefficient of the guide surface u (-)

Guide surface resistance f (N) External load in the axial direction F (N) Desired service life time L_h (h)


Stroke length ℓ_s (mm) (m/s) Operating speed V_{max} (m/s) Acceleration time t₁ (s) Even speed time t2 (s)

Acceleration $\alpha = \frac{V_{\text{max}}}{L}$ (m/s²)

Acceleration distance l=Vmax ×t1 × 1000/2 (mm) $\ell_2 = V_{max} \times t_2 \times 1000 \text{ (mm)}$ Even speed distance Deceleration distance \(\ell_3 = V_{max} \times t_3 \times 1000/2 \) (mm) Number of reciprocations per minute n (min-1)

Positioning accuracy (mm) Positioning accuracy repeatability (mm) Backlash (mm) Minimum feed amount s (mm/pulse)

Driving motor (AC servomotor, stepping motor, etc.) The rated rotational speed of the motor N_{MO} (min⁻¹) Inertial moment of the motor J_M (kg • m²) Motor resolution (pulse/rev) Reduction ratio A (-)

Accuracy of the Ball Screw

Lead Angle Accuracy

The accuracy of the Ball Screw in the lead angle is controlled in accordance with the JIS standards (JIS B 1192 - 1997).

Accuracy grades C0 to C5 are defined in the linearity and the directional property, and C7 to C10 in the travel distance error in relation to 300 mm.

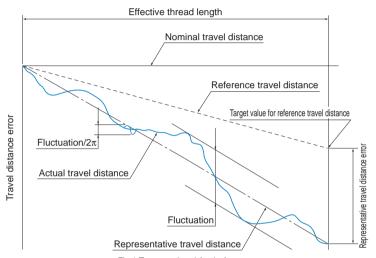


Fig.1 Terms on Lead Angle Accuracy

[Actual Travel Distance]

An error in the travel distance measured with an actual Ball Screw.

[Reference Travel Distance]

Generally, it is the same as nominal travel distance, but can be an intentionally corrected value of the nominal travel distance according to the intended use.

[Target Value for Reference Travel Distance]

You may provide some tension in order to prevent the screw shaft from runout, or set the reference travel distance in "negative" or "positive" value in advance given the possible expansion/ contraction from external load or temperature. In such cases, indicate a target value for the reference travel distance.

[Representative Travel Distance]

It is a straight line representing the tendency in the actual travel distance, and obtained with the least squares method from the curve that indicates the actual travel distance.

[Representative Travel Distance Error (in ±)]

Difference between the representative travel distance and the reference travel distance.

[Fluctuation]

The maximum width of the actual travel distance between two straight lines drawn in parallel with the representative travel distance.

[Fluctuation/300]

Indicates a fluctuation against a given thread length of 300 mm.

[Fluctuation/2π]

A fluctuation in one revolution of the screw shaft.

Table1 Lead Angle Accuracy (Permissible Value)

	μm

		Precision Ball Screw												
		Roll									ed Ball S	crew		
gra	ıracy des	C0		C1		C2		СЗ		C5		C7	C8	C10
len	e thread gth Or less	tive travel	Fluc- tua- tion	Representa- tive travel distance error	Fluc- tua- tion	Travel distance error	Travel distance error	Travel distance error						
_	100	3	3	3.5	5	5	7	8	8	18	18			
100	200	3.5	3	4.5	5	7	7	10	8	20	18			
200	315	4	3.5	6	5	8	7	12	8	23	18			
315	400	5	3.5	7	5	9	7	13	10	25	20			
400	500	6	4	8	5	10	7	15	10	27	20			
500	630	6	4	9	6	11	8	16	12	30	23			
630	800	7	5	10	7	13	9	18	13	35	25			
800	1000	8	6	11	8	15	10	21	15	40	27			
1000	1250	9	6	13	9	18	11	24	16	46	30	±50/	±100/	±210/
1250	1600	11	7	15	10	21	13	29	18	54	35	300mm	300mm	300mm
1600	2000	_	_	18	11	25	15	35	21	65	40			
2000	2500	_	_	22	13	30	18	41	24	77	46			
2500	3150	_	_	26	15	36	21	50	29	93	54			
3150	4000	_	_	30	18	44	25	60	35	115	65			
4000	5000	_	_	_	-	52	30	72	41	140	77			
5000	6300	_	_	_	_	65	36	90	50	170	93			
6300	8000	_	_	_	_	_	_	110	60	210	115			
8000	10000	_	_	_	_	_	_	_	_	260	140			

Note) Unit of effective thread length: mm

Table2 Fluctuation in Thread Length of 300 mm and in One Revolution (permissible value)

Unit: µm

Accuracy grades	C0	C1	C2	C3	C5	C7	C8	C10
Fluctuation/300	3.5	5	7	8	18	_	_	_
Fluctuation/2π	3	4	5	6	8	_	_	-

Table3 Types and Grades

Туре	Series symbol	Grade	Remarks	
For positioning	Ср	1, 3, 5	ISO compliant	
For conveyance	Ct	1, 3, 5, 7, 10	130 compliant	

Note) Accuracy grades apply also to the Cp series and Ct series. Contact THK for details.

Point of Selection

Accuracy of the Ball Screw

Example: When the lead of a Ball Screw manufactured is measured with a target value for the reference travel distance of –9 µm/500 mm, the following data are obtained.

Table4 Measurement Data on Travel Distance Error

Unit: mm

Command position (A)	0	50	100	150
Travel distance (B)	0	49.998	100.001	149.996
Travel distance error (A-B)	0	-0.002	+0.001	-0.004
Command position (A)	200	250	300	350
Travel distance (B)	199.995	249.993	299.989	349.885
Travel distance error (A-B)	-0.005	-0.007	-0.011	-0.015
Command position (A)	400	450	500	

Command position (A)	400	450	500
Travel distance (B)	399.983	449.981	499.984
Travel distance error (A-B)	-0.017	-0.019	-0.016

The measurement data are expressed in a graph as shown in Fig.2.

The positioning error (A-B) is indicated as the actual travel distance while the straight line representing the tendency of the (A-B) graph refers to the representative travel distance.

The difference between the reference travel distance and the representative travel distance appears as the representative travel distance error.

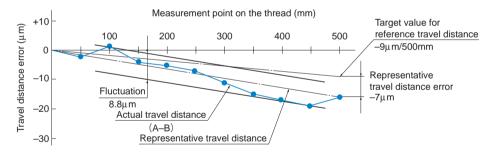
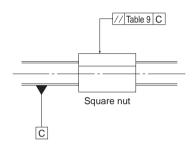
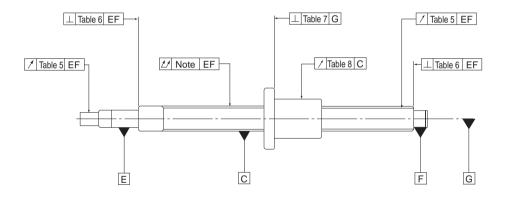


Fig.2 Measurement Data on Travel Distance Error


[Measurements]


Representative travel distance error: -7µm

Fluctuation: 8.8µm

Accuracy of the Mounting Surface

The accuracy of the Ball Screw mounting surface complies with the JIS standard (JIS B 1192-1997).

Note) For the overall radial runout of the screw shaft axis, refer to JIS B 1192-1997.

Fig.3 Accuracy of the Mounting Surface of the Ball Screw

[Accuracy Standards for the Mounting Surface]

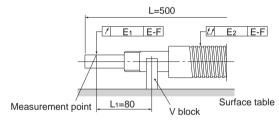

Table5 to Table9 show accuracy standards for the mounting surfaces of the precision Ball Screw.

Table5 Radial Runout of the Circumference of the Thread Root in Relation to the Supporting Portion Axis of the Screw Shaft Unit: µm

							•
	naft outer er (mm)	Runout (maximum)					
Above	Or less	C0	C1	C2	C3	C5	C7
_	8	3	5	7	8	10	14
8	12	4	5	7	8	11	14
12	20	4	6	8	9	12	14
20	32	5	7	9	10	13	20
32	50	6	8	10	12	15	20
50	80	7	9	11	13	17	20
80	100	_	10	12	15	20	30

Note) The measurements on these items include the effect of the runout of the screw shaft diameter. Therefore, it is necessary to obtain the correction value from the overall runout of the screw shaft axis, using the ratio of the distance between the fulcrum and measurement point to the overall screw shaft length, and add the obtained value to the table above.

Example: model No. DIK2005-6RRGO+500LC5

 E_2

$$E_1 = e + \Delta e$$

: Standard value in Table5 (0.012) е

: Overall radial runout of the screw shaft axis (0.06)

: Correction value Δе

$$\Delta e = \frac{L_1}{L} \times E_2$$

$$=\frac{80}{500} \times 0.06$$

= 0.01

$$E_1 = 0.012 + 0.01$$

= 0.022

Table6 Perpendicularity of the Supporting Portion End of the Screw Shaft to the Supporting Portion Axis

Unit: µm

Screw sh diamete		Perpendicularity (maximum)					ım)
Above	Or less	C0	C1	C2	C3	C5	C7
_	8	2	3	3	4	5	7
8	12	2	3	3	4	5	7
12	20	2	3	3	4	5	7
20	32	2	3	3	4	5	7
32	50	2	3	3	4	5	8
50	80	3	4	4	5	7	10
80	100	_	4	5	6	8	11

Table7 Perpendicularity of the Flange Mounting Surface of the Screw Shaft to the Screw Shaft Axis

Unit: µm

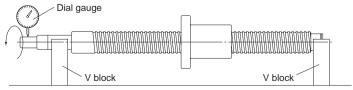
Nut diam	eter (mm)	Perpendicularity (maximum)					ım)
Above	Or less	C0	C1	C2	СЗ	C5	C7
_	20	5	6	7	8	10	14
20	32	5	6	7	8	10	14
32	50	6	7	8	8	11	18
50	80	7	8	9	10	13	18
80	125	7	9	10	12	15	20
125	160	8	10	11	13	17	20
160	200	-	11	12	14	18	25

Table8 Radial Runout of the Nut Circumference in Relation to the Screw Shaft Axis

Unit: µm

Nut diame	eter (mm)		Run	Runout (maximum)				
Above	Or less	C0	C1	C2	C3	C5	C7	
_	20	5	6	7	9	12	20	
20	32	6	7	8	10	12	20	
32	50	7	8	10	12	15	30	
50	80	8	10	12	15	19	30	
80	125	9	12	16	20	27	40	
125	160	10	13	17	22	30	40	
160	200	_	16	20	25	34	50	

Table9 Parallelism of the Nut Circumference (Flat Mounting Surface) to the Screw Shaft Axis

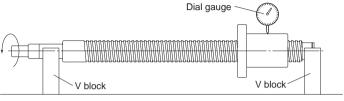

Unit: μm

Mounting length	Parallelism (maximum)						
Above	Or less	C0	C1	C2	C3	C5	C7
_	50	5	6	7	8	10	17
50	100	7	8	9	10	13	17
100	200	_	10	11	13	17	30

[Method for Measuring Accuracy of the Mounting Surface]

Radial Runout of the Circumference of the Part Mounting Section in Relation to the Supporting Portion Axis of the Screw Shaft (see Table5 on A-681)

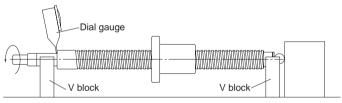
Support the supporting portion of the screw shaft with V blocks. Place a probe on the circumference of the part mounting section, and read the largest difference on the dial gauge as a measurement when turning the screw shaft by one revolution.


Surface table

Point of Selection

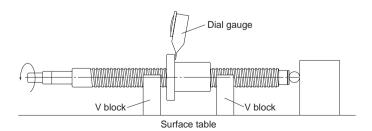
Accuracy of the Ball Screw

 Radial Runout of the Circumference of the Thread Root in Relation to the Supporting Portion Axis of the Screw Shaft (see Table5 on A-681)


Support the supporting portion of the screw shaft with V blocks. Place a probe on the circumference of the nut, and read the largest difference on the dial gauge as a measurement when turning the screw shaft by one revolution without turning the nut.

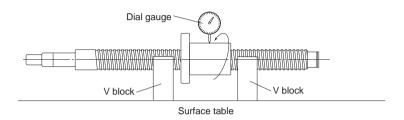
Surface table

Perpendicularity of the Supporting Portion End of the Screw Shaft to the Supporting Portion Axis (see Table6 on A-682)

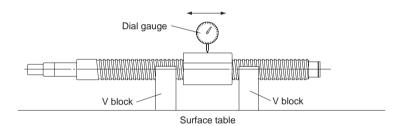

Support the supporting portion of the screw shaft with V blocks. Place a probe on the screw shaft's supporting portion end, and read the largest difference on the dial gauge as a measurement when turning the screw shaft by one revolution.

Surface table

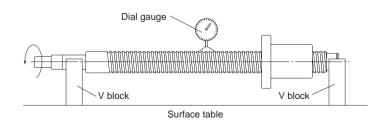
Perpendicularity of the Flange Mounting Surface of the Screw Shaft to the Screw Shaft Axis (see Table7 on A-682)


Support the thread of the screw shaft with V blocks near the nut. Place a probe on the flange end, and read the largest difference on the dial gauge as a measurement when simultaneously turning the screw shaft and the nut by one revolution.

ТГНК А-683 8 (800) 700-72-07 (бесплатно)


Radial Runout of the Nut Circumference in Relation to the Screw Shaft Axis (see Table8 on A-682)

Support the thread of the screw shaft with V blocks near the nut. Place a probe on the circumference of the nut, and read the largest difference on the dial gauge as a measurement when turning the nut by one revolution without turning the screw shaft.


Parallelism of the Nut Circumference (Flat Mounting Surface) to the Screw Shaft Axis (see Table9 on A-682)

Support the thread of the screw shaft with V blocks near the nut. Place a probe on the circumference of the nut (flat mounting surface), and read the largest difference on the dial gauge as a measurement when moving the dial gauge in parallel with the screw shaft.

Overall Radial Runout of the Screw Shaft Axis

Support the supporting portion of the screw shaft with V blocks. Place a probe on the circumference of the screw shaft, and read the largest difference on the dial gauge at several points in the axial directions as a measurement when turning the screw shaft by one revolution.

Note) For the overall radial runout of the screw shaft axis, refer to JIS B 1192-1997.

Accuracy of the Ball Screw

Axial Clearance

[Axial Clearance of the Precision Ball Screw]

Table10 shows the axial clearance of the precision Screw Ball. If the manufacturing length exceeds the value in Table11, the resultant clearance may partially be negative (preload applied).

Table10 Axial Clearance of the Precision Ball Screw

Unit: mm

Clearance symbol	G0	GT	G1	G2	G3
Axial clearance	0 or less	0 to 0.005	0 to 0.01	0 to 0.02	0 to 0.05

Table11 Maximum Length of the Precision Ball Screw in Axial Clearance

Unit: mm

		Overall thread length							
Screw shaft outer diameter	Cleara	nce GT	Cleara	nce G1		Clearance G2			
	C0 to C3	C5	C0 to C3	C5	C0 to C3	C5	C7		
4 to 6	80	100	80	100	80	100	120		
8 to 10	250	200	250	250	250	300	300		
12 to 16	500	400	500	500	700	600	500		
18 to 25	800	700	800	700	1000	1000	1000		
28 to 32	900	800	1100	900	1400	1200	1200		
36 to 45	1000	800	1300	1000	2000	1500	1500		
50 to 70	1200	1000	1600	1300	2500	2000	2000		
80 to 100	_	_	1800	1500	4000	3000	3000		
* 140 (0= ::: 1	OT 04				

^{*} When manufacturing the Ball Screw of precision-grade accuracy C7 with clearance GT or G1, the resultant clearance is partially negative.

[Axial Clearance of the Rolled Ball Screw]

Table12 shows axial clearance of the rolled Ball Screw.

Table12 Axial Clearance of the Rolled Ball Screw

Screw shaft outer diameter	Axial clearance (maximum)
6 to 12	0.05
14 to 28	0.1
30 to 32	0.14
36 to 45	0.17
50	0.2

Preload

A preload is provided in order to eliminate the axial clearance and minimize the displacement under an axial load.

When performing a highly accurate positioning, a preload is generally provided.

[Rigidity of the Ball Screw under a Preload]

When a preload is provided to the Ball Screw, the rigidity of the nut is increased.

Fig.4 shows elastic displacement curves of the Ball Screw under a preload and without a preload.

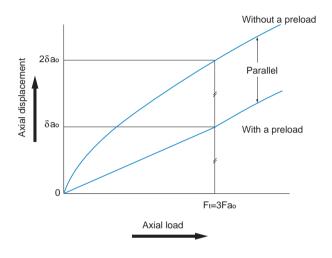
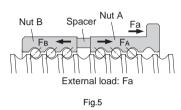
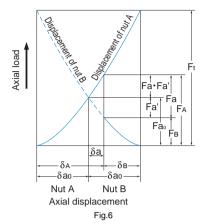




Fig.4 Elastic Displacement Curve of the Ball Screw

dammv

Nuts A and B are provided with preload Fao from the spacer. Because of the preload, nuts A and B are elastically displaced by δa_0 each. If an axial load (Fa) is applied from outside in this state, the displacement of nuts A and B is calculated as follows.

$$\delta_A = \delta a_0 + \delta a$$
 $\delta_B = \delta a_0 - \delta a$

In other words, the loads on nut A and B are expressed as follows:

$$F_A = Fa_0 + (Fa - Fa')$$
 $F_B = Fa_0 - Fa'$

Therefore, under a preload, the load that nut A receives equals to Fa - Fa'. This means that since load Fa', which is applied when nut A receives no preload, is deducted from Fa, the displacement of nut A is smaller.

This effect extends to the point where the displacement (δa_0) caused by the preload applied on nut B reaches zero.

To what extent is the elastic displacement reduced? The relationship between the axial load on the Ball Screw under no preload and the elastic displacement can be expressed by δa∝ Fa²³. From Fig.6, the following equations are established.

$$\delta \mathbf{a}_0 = \mathbf{KF} \mathbf{a}_0^{2/3}$$
 (**K**: constant)
 $2\delta \mathbf{a}_0 = \mathbf{KF}_0^{2/3}$

$$\left(\frac{F_t}{Fa_0}\right)^{\frac{2}{3}} = 2 \quad F_t = 2^{3/2} \times Fa_0 = 2.8Fa_0 \doteqdot 3Fa_0$$

Thus, the Ball Screw under a preload is displaced by δa_0 when an axial load (F₁) approximately three times greater than the preload is provided from outside. As a result, the displacement of the Ball Screw under a preload is half the displacement ($2\delta a_0$) of the Ball Screw without a preload.

As stated above, since the preloading is effective up to approximately three times the applied preload, the optimum preload is one third of the maximum axial load.

Note, however, that an excessive preload adversely affects the service life and heat generation. As a guideline, the maximum preload should be set at 10% of the basic dynamic load rating (Ca) at a maximum.

[Preload Torque]

The preload torque of the Ball Screw in lead is controlled in accordance with the JIS standard (JIS B 1192-1997).

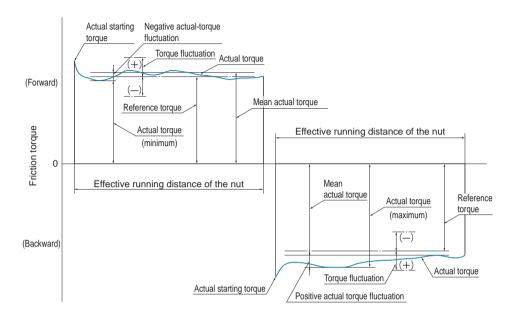


Fig.7 Terms on Preload Torque

Dynamic Preload Torque

A torque required to continuously rotate the screw shaft of a Ball Screw under a given preload without an external load applied.

Actual Torque

A dynamic preload torque measured with an actual Ball Screw.

Torque Fluctuation

Variation in a dynamic preload torque set at a target value. It can be positive or negative in relation to the reference torque.

Coefficient of Torque Fluctuation

Ratio of torque fluctuation to the reference torque.

Reference Torque

A dynamic preload torque set as a target.

Calculating the Reference Torque

The reference torque of a Ball Screw provided with a preload is obtained in the following equation (5).

$$T_p = 0.05 (\tan \beta)^{-0.5} \frac{Fa_0 \cdot Ph}{2\pi} \cdots (5)$$

Tn : Reference torque (N-mm)

: Lead angle В Fa_o: Applied preload

(N)

Ph : Lead (mm)

Accuracy of the Ball Screw

Example: When a preload of 3,000 N is provided to the Ball Screw model BNFN4010-5G0 + 1500LC3 with a thread length of 1,300 mm (shaft diameter: 40 mm; ball center-to-center diameter: 41.75 mm; lead: 10 mm), the preload torque of the Ball Screw is calculated in the steps below.

■Calculating the Reference Torque

β : Lead angle

$$\tan \beta = \frac{\text{lead}}{\pi \times \text{ball center-to-center diameter}} = \frac{10}{\pi \times 41.75} = 0.0762$$

Fa₀: Applied preload=3000N

Ph: Lead = 10mm

$$T_P = 0.05 (tan \beta)^{-0.5} \frac{Fa_0 \cdot Ph}{2\pi} = 0.05 (0.0762)^{-0.5} \frac{3000 \times 10}{2\pi} = 865 \text{N} \cdot \text{mm}$$

■Calculating the Torque Fluctuation

$$\frac{\text{thread length}}{\text{screw shaft outer diameter}} = \frac{1300}{40} = 32.5 \le 40$$

Thus, with the reference torque in Table13 being between 600 and 1,000 N-mm, effective thread length 4,000 mm or less and accuracy grade C3, the coefficient of torque fluctuation is obtained as

As a result, the torque fluctuation is calculated as follows.

 $865 \times (1 \pm 0.3) = 606 \text{ N} \cdot \text{mm}$ to 1125 N · mm

■Result

Reference torque : 865 N-mn

Torque fluctuation : 606 N-mm to 1125 N-mm

Table13 Tolerance Range in Torque Fluctuation

			Effective thread length								
Referenc	ce torque		4000mm or less							Above 4,000 mm and 10,000 mm or less	
N•r	mm [']		$\frac{\text{thread length}}{\text{screw shaft outer diameter}} \le 40$ $\frac{\text{thread length}}{\text{screw shaft outer diameter}} < 60$					_			
			Accurac	y grades		Accuracy grades			Accuracy grades		
Above	Or less	C0	C1	C2, C3	C5	C0	C1	C2, C3	C5	C2, C3	C5
200	400	±35%	±40%	±45%	±55%	±45%	±45%	±55%	±65%	_	_
400	600	±25%	±30%	±35%	±45%	±38%	±38%	±45%	±50%	_	1
600	1000	±20%	±25%	±30%	±35%	±30%	±30%	±35%	±40%	±40%	±45%
1000	2500	±15%	±20%	±25%	±30%	±25%	±25%	±30%	±35%	±35%	±40%
2500	6300	±10%	±15%	±20%	±25%	±20%	±20%	±25%	±30%	±30%	±35%
6300	10000	_	_	±15%	±20%	_	_	±20%	±25%	±25%	±30%

Selecting a Screw Shaft

Maximum Length of the Screw Shaft

The maximum length of the precision Ball Screw and the rolled Ball Screw are shown in Table14 and Table15 (A-691) respectively.

If the shaft dimensions exceed the manufacturing limit in Table14 or Table15, contact THK.

Table14 Maximum Length of the Precision Ball Screw by Accuracy Grade

Table 14 Maximum Length of the Precision Ball Screw by Accuracy Grade Onlic. In							
Screw shaft			Overall screv	v shaft length			
outer diameter	C0	C1	C2	C3	C5	C7	
4	90	110	120	120	120	120	
6	150	170	210	210	210	210	
8	230	270	340	340	340	340	
10	350	400	500	500	500	500	
12	440	500	630	680	680	680	
13	440	500	630	680	680	680	
14	530	620	770	870	890	890	
15	570	670	830	950	980	1100	
16	620	730	900	1050	1100	1400	
18	720	840	1050	1220	1350	1600	
20	820	950	1200	1400	1600	1800	
25	1100	1400	1600	1800	2000	2400	
28	1300	1600	1900	2100	2350	2700	
30	1450	1700	2050	2300	2570	2950	
32	1600	1800	2200	2500	2800	3200	
36		2100	2550	2950	3250	3650	
40		2400	2900	3400	3700	4300	
45		2750	3350	3950	4350	5050	
50		3100	3800	4500	5000	5800	
55	2000	3450	4150	5300	6050	6500	
63			5200	5800	6700	7700	
70		4000		6450	7650	9000	
80		+000	6300	7900	9000	10000	
100				10000	10000	10000	

Table15 Maximum Length of the Rolled Ball Screw by Accuracy Grade

Screw shaft	Overall screw shaft length						
outer diameter	C7	C8	C10				
6 to 8	320	320	_				
10 to 12	500	1000	_				
14 to 15	1500	1500	1500				
16 to 18	1500	1800	1800				
20	2000	2200	2200				
25	2000	3000	3000				
28	3000	3000	3000				
30	3000	3000	4000				
32 to 36	3000	4000	4000				
40	3000	5000	5000				
45	3000	5500	5500				
50	3000	6000	6000				

Standard Combinations of Shaft Diameter and Lead for the Precision Ball Screw

Table16 shows the standard combinations of shaft diameter and lead for the precision Ball Screw. If a Ball Screw not covered by the table is required, contact THK.

Table16 Standard Combinations of Screw Shaft and Lead (Precision Ball Screw)

Screw		Lead															**)	: mm				
shaft outer	1	2	4	5	6	8	10	12	15	16	20	24	25	30	32	36	40	50	60	80	90	100
diameter			-	3	U	0	10	12	13	10	20	24	23	30	32	30	40	30	00	80	90	100
4	•																					
5	•																					
6	•																					
8	•	•					•	0														
10		•	•				•		0													
12		•		•		•																
13											0											
14		•	•	•		•																
15							•				•			0			0					
16			0	•	0		0			•												
18							•															
20			0	•	0	0	•	0			•						0		0			
25			0	•	0	0	•	0		0	•		0					0				
28				0	•	0	0															
30																			0		0	
32			0	•	•	0	•	0			0				0							
36					0	0	•	0		0	0	0				0						
40				0	0	0	•	•		0	0			0			0			0		
45					0	0	0	0		0	0											
50				0		0	•	0		0	0			0		0		0				0
55							0	0		0	0			0		0						
63							0	0		0	0											
70							0	0			0											
80							0	0			0											
100											0											

off-the-shelf products [standard-stock products equipped with the standardized screw shafts (with unfinished shaft ends/finished shaft ends)]
 Semi-standard stock

Point of Selection

Selecting a Screw Shaft

Standard Combinations of Shaft Diameter and Lead for the Rolled Ball Screw

Table 17 shows the standard combinations of shaft diameter and lead for the rolled Ball Screw.

Unit	mm

Screw shaft outer diameter										Le	ad									
	1	2	4	5	6	8	10	12	16	20	24	25	30	32	36	40	50	60	80	100
6	•																			
8		•																		
10		•			0															
12		•				0														
14			•	•																
15							•			•			•							
16				•					•											
18						•														
20				•			•			•						•				
25				•			•					•					•			
28					•															
30																		•		
32							•							•						
36							•			•	•				•					
40							•									•			•	
45								•												
50									•								•			•

^{●:} Standard stock ○: Semi-standard stock

Permissible Axial Load

[Buckling Load on the Screw Shaft]

With the Ball Screw, it is necessary to select a screw shaft so that it will not buckle when the maximum compressive load is applied in the axial direction.

Fig.8 on A-695 shows the relationship between the screw shaft diameter and a buckling load.

If determining a buckling load by calculation, it can be obtained from the equation (6) below. Note that in this equation, a safety factor of 0.5 is multiplied to the result.

$$\mathbf{P}_{1} = \frac{\eta_{1} \cdot \pi^{2} \cdot \mathbf{E} \cdot \mathbf{I}}{{l_{2}}^{2}} \quad \mathbf{0.5} = \eta_{2} \cdot \frac{{d_{1}}^{4}}{{l_{2}}^{2}} \quad \mathbf{10}^{4} \quad \cdots \cdots (6)$$

P₁: Buckling load (N)

la : Distance between two mounting

surfaces (mm)

E : Young's modulus (2.06×10⁵ N/mm²)

I : Minimum geometrical moment of

inertia of the shaft (mm⁴)

$$I = \frac{\pi}{64} d_1^4 \qquad d_1: \text{ screw-shaft thread minor diameter (mm)}$$

 η_1 , η_2 =Factor according to the mounting method

Fixed - free $$\eta_{\, 1} = 0.25 $\eta_{\, 2} = 1.3$$

Fixed - supported $\eta_1=2$ $\eta_2=10$

Fixed - fixed $\eta_1=4$ $\eta_2=20$

[Permissible Tensile Compressive Load on the Screw Shaft]

If an axial load is applied to the Ball Screw, it is necessary to take into account not only the buckling load but also the permissible tensile compressive load in relation to the yielding stress on the screw shaft.

The permissible tensile compressive load is obtained from the equation (7).

$$P_2 = \sigma \frac{\pi}{4} d_1^2 = 116 d_1^2 \cdots (7)$$

P₂ : Permissible tensile compressive load (N)

σ : Permissible tensile compressive

stress (147 MPa)

d₁ : Screw-shaft thread minor diameter (mm)

Selecting a Screw Shaft

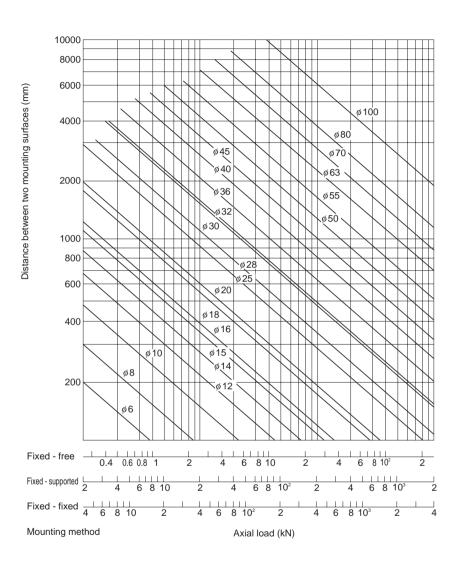


Fig.8 Permissible Tensile Compressive Load Diagram

Permissible Rotational Speed

[Dangerous Speed of the Screw Shaft]

When the rotational speed reaches a high magnitude, the Ball Screw may resonate and eventually become unable to operate due to the screw shaft's natural frequency. Therefore, it is necessary to select a model so that it is used below the resonance point (dangerous speed).

Fig.9 on A-698 shows the relationship between the screw shaft diameter and a dangerous speed. If determining a dangerous speed by calculation, it can be obtained from the equation (8) below. Note that in this equation, a safety factor of 0.8 is multiplied to the result.

$$\mathbf{N}_{1} = \frac{\mathbf{60} \cdot \lambda_{1}^{2}}{\mathbf{2\pi} \cdot \ell_{b}^{2}} \times \sqrt{\frac{\mathbf{E} \times \mathbf{10}^{3} \cdot \mathbf{I}}{\gamma \cdot \mathbf{A}}} \times \mathbf{0.8} = \lambda_{2} \cdot \frac{\mathbf{d}_{1}}{\ell_{b}^{2}} \cdot \mathbf{10}^{7} \quad \dots \dots (8)$$

N₁ : Permissible rotational speed determined by dangerous speed (min⁻¹)

l_b: Distance between two mounting

surfaces (mm)

E : Young's modulus (2.06×10⁵ N/mm²)

I : Minimum geometrical moment of inertia of the shaft (mm⁴)

$$I = \frac{\pi}{64} d_1^4 \qquad d_1: screw-shaft thread minor diameter (mm)$$

γ : Density (specific gravity)

(7.85×10⁻⁶kg/mm³)

A : Screw shaft cross-sectional area (mm²)

$$A = \frac{\pi}{4} d_{1^2}$$

 $\lambda_{\text{\tiny 1}},\,\lambda_{\text{\tiny 2}}$: Factor according to the mounting method

Fixed - free λ_1 =1.875 λ_2 =3.4 Supported - supported λ_1 =3.142 λ_2 =9.7

Fixed - supported $\lambda_1=3.927$ $\lambda_2=15.1$

Fixed - fixed λ_1 =4.73 λ_2 =21.9

[DN Value]

The permissible rotational speed of the Ball Screw must be obtained from the dangerous speed of the screw shaft and the DN value.

The permissible rotational speed determined by the DN value is obtained using the equations (9) to (13) below.

Ball Screw with Ball Cage

■Models SBN and HBN

$$N_2 = \frac{130000}{D}$$
(9)

: Permissible rotational speed determined by the DN value (min-1(rpm)) N₂

D : Ball center-to-center diameter

(indicated in the specification tables of the respective model number)

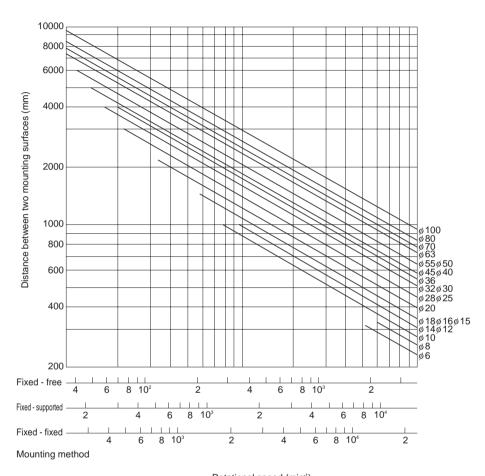
■Model SBK

$$N_2 = \frac{160000}{D}$$
(10)

Precision Ball Screw

$$N_2 = \frac{70000}{D}$$
(11)

 Rolled Ball Screw (excluding large lead type)


$$N_2 = \frac{50000}{D}$$
(12)

Large-Lead Rolled Ball Screw

$$N_2 = \frac{70000}{D}$$
(13)

Of the permissible rotational speed determined by dangerous speed (N₁) and the permissible rotational speed determined by DN value (N2), the lower rotational speed is regarded as the permissible rotational speed.

If the working rotational speed exceeds N2, a high-speed type Ball Screw is available. Contact THK for details.

Rotational speed (min-1)

Fig.9 Permissible Rotational Speed Diagram

Selecting a Nut

Selecting a Nut

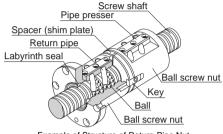
Types of Nuts

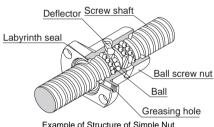
The nuts of the Ball Screws are categorized by the ball circulation method into the return-pipe type, the deflector type and end the cap type. These three nut types are described as follows. In addition to the circulation methods, the Ball Screws are categorized also by the preloading method.

[Types by Ball Circulation Method]

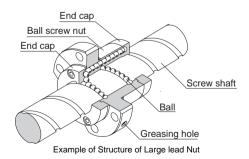
Return-pipe Type (Models SBN, BNF, BNT, BNFN, BIF and BTK)

Return-piece Type (Model HBN)


These are most common types of nuts that use a return pipe for ball circulation. The return pipe allows balls to be picked up, pass through the pipe, and return to their original positions to complete infinite motion.

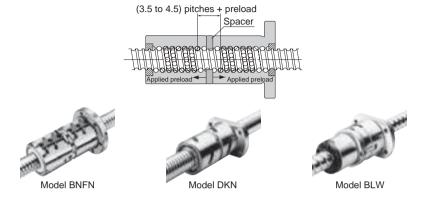

These are the most compact type of nut. The balls change their traveling direction with a deflector, pass over the circumference of the screw shaft, and return to their original positions to complete an infinite motion.

End-cap Type: Large lead Nut (Models SBK, BLK, WGF, BLW, WTF, CNF and BLR)


These nuts are most suitable for the fast feed. The balls are picked up with an end cap, pass through the through hole of the nut, and return to their original positions to complete an infinite motion.

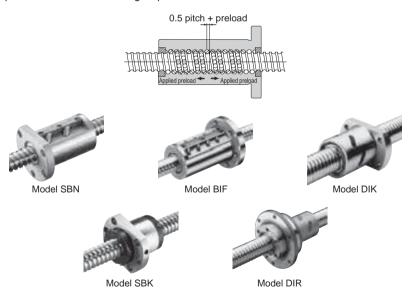
Example of Structure of Return-Pipe Nut

Example of Structure of Simple Nut



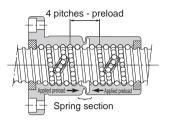
[Types by Preloading Method]

Fixed-point Preloading


■Double-nut Preload (Models BNFN, DKN and BLW)

A spacer is inserted between two nuts to provide a preload.

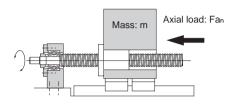
■Offset Preload (Models SBN, BIF, DIK, SBK and DIR)


More compact than the double-nut method, the offset preloading provides a preload by changing the groove pitch of the nut without using a spacer.

Selecting a Nut

Constant Pressure Preloading (Model JPF)

With this method, a spring structure is installed almost in the middle of the nut, and it provides a preload by changing the groove pitch in the middle of the nut.


Selecting a Model Number

Calculating the Axial Load

[In Horizontal Mount]

With ordinary conveyance systems, the axial load (Fan) applied when horizontally reciprocating the work is obtained in the equation below.

Fa₁ : Axial load during forward acceleration(N) : Axial load during forward uniform motion (N) : Axial load during forward deceleration : Axial load during backward acceleration Fa₄ (N) : Axial load during uniform backward motion

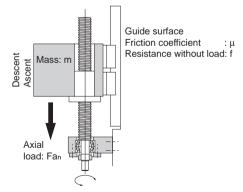
Resistance without load Gravitational acceleration: q : Axial load during backward deceleration m : Transferred mass (kg)

Guide surface

Friction coefficient

: Frictional coefficient of the guide surface (-) μ f

: Guide surface resistance (without load) (N)


[In Vertical Mount]

With ordinary conveyance systems, the axial load (Fan) applied when vertically reciprocating the work is obtained in the equation below.

Fa ₁ = mg + f + mα	(20)
Fa₂= mg + f	(21)
Fa₃= mg + f − mα·······	(22)
Fa ₄ = mg - f - mα·······	(23)
Fa₅= mg - f	(24)
Fa₅= mg - f + mα·······	(25)
V _{max} : Maximum speed	(m/s)
t ₁ : Acceleration time	(m/s)
$\alpha = \frac{V_{\text{max}}}{t_1}$: Acceleration	(m/s ²)

: Axial load during upward acceleration(N) : Axial load during uniform upward motion (N) : Axial load during upward deceleration Fa₃

: Axial load during downward acceleration : Axial load during uniform downward motion (N) Fa₅

Fa₆ : Axial load during downward deceleration (N) : Transferred mass m (kg) f : Guide surface resistance (without load) (N)

Fa₄

Static Safety Factor

The basic static load rating (C_0a) generally equals to the permissible axial load of a Ball Screw. Depending on the conditions, it is necessary to take into account the following static safety factor against the calculated load. When the Ball Screw is stationary or in motion, unexpected external force may be applied through an inertia caused by the impact or the start and stop.

$$\mathbf{Fa}_{\max} = \frac{\mathbf{C}_{0}\mathbf{a}}{\mathbf{f}_{s}} \cdots \cdots (26)$$

Table18 Static Safety Factor (fs)

Machine using the LM system	Load conditions	Lower limit of fs
General indus-	Without vibration or impact	1 to 1.3
trial machinery	With vibration or impact	2 to 3
Machine tool	Without vibration or impact	1 to 1.5
Machine tool	With vibration or impact	2.5 to 7

The basic static load rating (Coa) is a static load with a constant direction and magnitude whereby the sum of the permanent deformation of the rolling element and that of the raceway on the contact area under the maximum stress is 0.0001 times the rolling element diameter. With the Ball Screw, it is defined as the axial load. (Specific values of each Ball Screw model are indicated in the specification tables for the corresponding model number.)

Studying the Service Life

[Service Life of the Ball Screw]

The Ball Screw in motion under an external load receives the continuous stress on its raceways and balls. When the stress reaches the limit, the raceways break from the fatigue and their surfaces partially disintegrate in scale-like pieces. This phenomenon is called flaking. The service life of the Ball Screw is the total number of revolutions until the first flaking occurs on any of the raceways or the balls as a result of the rolling fatigue of the material.

The service life of the Ball Screw varies from unit to unit even if they are manufactured in the same process and used in the same operating conditions. For this reason, when determining the service life of a Ball Screw unit, the nominal life as defined below is used as a guideline.

The nominal life is the total number of revolutions that 90% of identical Ball Screw units in a group achieve without developing flaking (scale-like pieces of a metal surface) after they independently operate in the same conditions.

[Calculating the Rated Life]

The service life of the Ball Screw is calculated from the equation (27) below using the basic dynamic load rating (Ca) and the applied axial load.

Nominal Life (Total Number of Revolutions)

$$L = \left(\frac{C_a}{f_w \cdot F_a}\right)^3 \times 10^6 \quad \dots (27)$$

: Nominal life (rev)

(total number of revolutions)
Ca : Basic dynamic load rating* (N)

Fa : Applied axial load (N)

f_w: Load factor (see Table19)

Table19 Load Factor (fw)

rabio to boad rabio. (iii)					
Vibrations/ impact	Speed(V)	fw			
Faint	Very low V≦0.25m/s	1 to 1.2			
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5			
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2			
Strong	High V>2m/s	2 to 3.5			

^{*} The basic dynamic load rating (Ca) is used in calculating the service life when a Ball Screw operates under a load. The basic dynamic load rating is a load with interlocked direction and magnitude under which the nominal life (L) equals to 10°rev. when a group of the same Ball Screw units independently operate. (Specific basic dynamic load ratings (Ca) are indicated in the specification tables of the corresponding model numbers.)

Service Life Time

If the revolutions per minute is determined, the service life time can be calculated from the equation (28) below using the nominal life (L).

$$L_h = \frac{L}{60 \times N} = \frac{L \times Ph}{2 \times 60 \times n \times \ell_s} \quad \dots \dots (28)$$

: Service life time (h) Ν : Revolutions per minute (min-1)

: Number of reciprocations

per minute (min-1) Ph : Ball Screw lead (mm) : Stroke length (mm)

Service Life in Travel Distance

The service life in travel distance can be calculated from the equation (29) below using the nominal life (L) and the Ball Screw lead.

$$L_s = \frac{L \times Ph}{10^6} \dots (29)$$

: Service Life in Travel Distance (km) Ph: Ball Screw lead (mm)

Applied Load and Service Life with a Preload Taken into Account

If the Ball Screw is used under a preload (medium preload), it is necessary to consider the applied preload in calculating the service life since the ball screw nut already receives an internal load. For details on applied preload for a specific model number, contact THK.

Average Axial Load

If an axial load acting on the Ball Screw is present, it is necessary to calculate the service life by determining the average axial load.

The average axial load (F_m) is a constant load that equals to the service life in fluctuating the load conditions.

If the load changes in steps, the average axial load can be obtained from the equation below.

$$F_{m} = \sqrt[3]{\frac{1}{\ell} \left(Fa_{1}^{3} \ell_{1} + Fa_{2}^{3} \ell_{2} + \cdots + Fa_{n}^{3} \ell_{n} \right)} \quad \cdots (30)$$

: Average Axial Load (N) Fan: Varying load (N)

: Distance traveled under load (Fn)

: Total travel distance

To determine the average axial load using a rotational speed and time, instead of a distance, calculate the average axial load by determining the distance in the equation below.

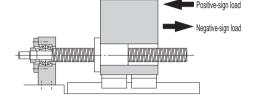
 $\ell = \ell_1 + \ell_2 + \cdots \cdot \ell_n$

 $\ell_1 = N_1 \cdot t_1$

 $l_2 = N_2 \cdot t_2$


 $\ell_n = N_n \cdot t_n$

N: Rotational speed


t: Time

■When the Applied Load Sign Changes

When all signs for fluctuating loads are the same, the equation (30) applies without problem. However, if the sign for the fluctuating load changes according to the operation, it is necessary to calculate both the average axial load of the positive-sign load and that of the negative-sign load while taking in to account the load direction (when calculating the average axial load of the positive-sign load, assume the negative-sign load to be zero). Of the two average axial loads, the greater value is regarded as the average axial load for calculating the service life.

Operation No.	Varying load Fa₁(N)	Travel distance ℓ _n (mm)
No.1	10	10
No.2	50	50
No.3	-40	10
No.4	-10	70

The subscripts of the fluctuating load symbol and the travel distance symbol indicate operation numbers.

Average axial load of positive-sign load

To calculate the average axial load of the positive-sign load, assume Fa3 and Fa4 to be zero.

$$F_{m_1} = \sqrt[3]{\frac{F{a_1}^3 \times \ell_1 + F{a_2}^3 \times \ell_2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}} = 35.5N$$

Average axial load of negative-sign load

To calculate the average axial load of the negative-sign load, assume Fa₁ and Fa₂ to be zero.

$$Fm_2 = \sqrt[3]{\frac{|Fa_3|^3 \times \ell_3 + |Fa_4|^3 \times \ell_4}{\ell_1 + \ell_2 + \ell_3 + \ell_4}} = 17.2N$$

Accordingly, the average axial load of the positive-sign load (F_{m1}) is adopted as the average axial load (F_m) for calculating the service life.

Studying the Rigidity

To increase the positioning accuracy of feed screws in NC machine tools or the precision machines, or to reduce the displacement caused by the cutting force, it is necessary to design the rigidity of the components in a well-balanced manner.

Axial Rigidity of the Feed Screw System

When the axial rigidity of a feed screw system is K, the elastic displacement in the axial direction can be obtained using the equation (31) below.

$$\delta = \frac{\mathbf{Fa}}{\mathbf{K}}$$
(31)

 δ : Elastic displacement of a feed screw system in the axial direction (μ m)

Fa : Applied axial load (N)

The axial rigidity (K) of the feed screw system is obtained using the equation (32) below.

$$\frac{1}{K} = \frac{1}{K_s} + \frac{1}{K_N} + \frac{1}{K_B} + \frac{1}{K_H}$$
(32)

K : Axial Rigidity of the Feed

Screw System $(N/\mu m)$

 K_s : Axial rigidity of the screw shaft $(N/\mu m)$ K_N : Axial rigidity of the nut $(N/\mu m)$

K_B: Axial rigidity of the support bearing(N/μm)

 K_H : Rigidity of the nut bracket and the support bearing bracket (N/ μ m)

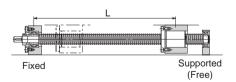
[Axial rigidity of the screw shaft]

The axial rigidity of a screw shaft varies depending on the method for mounting the shaft.

• For Fixed-Supported (or -Free) Configuration

$$\mathbf{K_s} = \frac{\mathbf{A} \cdot \mathbf{E}}{1000 \cdot \mathbf{L}} \quad \dots \dots (33)$$

A : Screw shaft cross-sectional area (mm²)

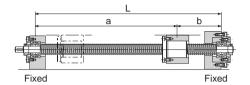

$$A = \frac{\pi}{4} d_1^2$$

d₁ : Screw-shaft thread minor diameter (mm)

E : Young's modulus (2.06 × 10⁵ N/mm²) L : Distance between two mounting surfaces

(mm)

Fig.10 on A-708 shows an axial rigidity diagram for the screw shaft.


For Fixed-Fixed Configuration

$$K_s = \frac{A \cdot E \cdot L}{1000 \cdot a \cdot b} \dots (34)$$

Ks becomes the lowest and the elastic displacement in the axial direction is the greatest at the position of $a = b = \frac{L}{2}$.

$$K_S = \frac{4A \cdot E}{1000L}$$

Fig.11 on A-709 shows an axial rigidity diagram of the screw shaft in this configuration.

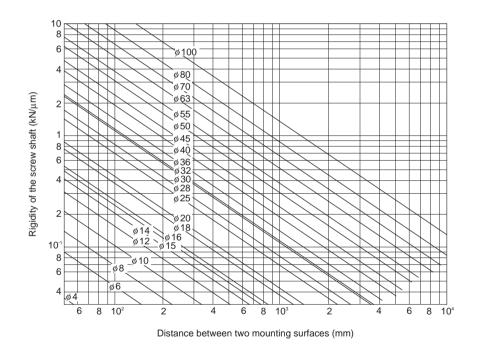


Fig.10 Axial Rigidity of the Screw Shaft (Fixed-Free, Fixed-Supported)

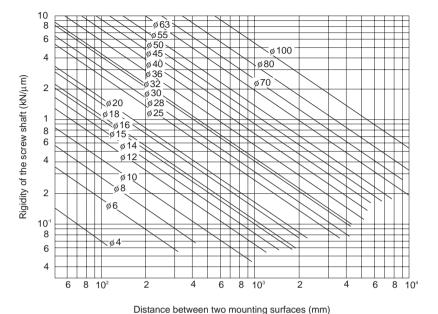


Fig.11 Axial Rigidity of the Screw Shaft (Fixed-Fixed)

[Axial rigidity of the nut]

The axial rigidity of the nut varies widely with preloads.

No Preload Type

The logical rigidity in the axial direction when an axial load accounting for 30% of the basic dynamic load rating (Ca) is applied is indicated in the specification tables of the corresponding model number. This value does not include the rigidity of the components related to the nut-mounting bracket. In general, set the rigidity at roughly 80% of the value in the table.

The rigidity when the applied axial load is not 30% of the basic dynamic load rating (Ca) is calculated using the equation (35) below.

$$K_N = K \left(\frac{Fa}{0.3Ca} \right)^{\frac{1}{3}} \times 0.8 \quad \dots (35)$$

 K_N : Axial rigidity of the nut $(N/\mu m)$

Κ : Rigidity value in the specification tables

 $(N/\mu m)$

Fa : Applied axial load (N) : Basic dynamic load rating Ca (N)

Preload Type

The logical rigidity in the axial direction when an axial load accounting for 10% of the basic dynamic load rating (Ca) is applied is indicated in the dimensional table of the corresponding model number. This value does not include the rigidity of the components related to the nut-mounting bracket. In general, generally set the rigidity at roughly 80% of the value in the table.

The rigidity when the applied preload is not 10% of the basic dynamic load rating (Ca) is calculated using the equation (36) below.

$$K_N = K \left(\frac{Fa_0}{0.1Ca} \right)^{\frac{1}{3}} \times 0.8 \quad \cdots (36)$$

 K_N : Axial rigidity of the nut $(N/\mu m)$

Κ : Rigidity value in the specification

tables $(N/\mu m)$ Fa₀: Applied preload (N) : Basic dynamic load rating (N)

[Axial rigidity of the support bearing]

The rigidity of the Ball Screw support bearing varies depending on the support bearing used.

The calculation of the rigidity with a representative angular ball bearing is shown in the equation (37) below.

$$K_B \doteq \frac{3Fa_0}{\delta a_0}$$
(37)

 K_B : Axial rigidity of the support

> bearing $(N/\mu m)$

: Applied preload of the support Fa₀

> bearing (N)

δa₀: Axial displacements (μm)

$$\delta a_0 = \frac{0.45}{\sin \alpha} \left(\frac{Q^2}{Da} \right)^{\frac{1}{3}}$$

$$Q = \frac{Fa_0}{Zsin\alpha}$$

Q : Axial load (N)

Da: Ball diameter of the support bearing(mm)

: Initial contact angle of the support α

bearing (°)

Ζ : Number of balls

For details of a specific support bearing, contact its manufacturer.

[Axial Rigidity of the Nut Bracket and the Support Bearing Bracket]

Take this factor into consideration when designing your machine. Set the rigidity as high as possible.

Studying the Positioning Accuracy

Point of Selection

Studying the Positioning Accuracy

Causes of Error in the Positioning Accuracy

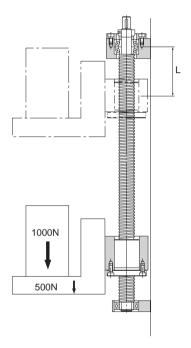
The causes of error in the positioning accuracy include the lead angle accuracy, the axial clearance and the axial rigidity of the feed screw system. Other important factors include the thermal displacement from heat and the orientation change of the guide system during traveling.

Studying the Lead Angle Accuracy

It is necessary to select the correct accuracy grade of the Ball Screw that satisfies the required positioning accuracy from the Ball Screw accuracies (Table1 on A-678). Table20 on A-712 shows examples of selecting the accuracy grades by the application.

Studying the Axial Clearance

The axial clearance is not a factor of positioning accuracy in single-directional feed. However, it will cause a backlash when the feed direction is inversed or the axial load is inversed. Select an axial clearance that meets the required backlash from Table10 and Table12 on A-685.


Table20 Examples of Selecting Accuracy Grades by Application

			mples of Selecting Accuracy Grades by Application Accuracy grades							
	Applications Shaft		C0	C1	C2	C3	C5	C7	C8	C10
	1 -4	Х		•	•	•	•			
	Lathe	Z				•	•			
	Machining ocatas	XY			•	•	•			
	Machining center	Z			•	•	•			
	Drilling machine	XY				•	•			
	Drilling machine	Z					•	•		
	Jig borer	XY	•	•						
	org poror	Z	•	•						
<u>s</u>		Х				•	•			
toc	Surface grinder	Υ		•	•	•	•			
hine		Z		•	•	•	•			
NC machine tools	Cylindrical grinder	X	•	•	•					
<u></u>		Z		•	•	•				
Z	Electric discharge	XY	•	•	•		-			
	machine	Z		•	•	•	•			
	Electric discharge	XY	•	•	•					
	machine Wire cutting machine	Z	•	•	•	•				
		UV		•	•	•				
	Punching press	XY				•	•	•		
	Laser beam machine	X Z				•	•	•		
	Woodworking ma	_				•		•	•	
	General-purpose mach							_	_	
	dedicated machine	iiiie,				•	•	•	•	•
ŏ	Cartesian coordinate	Assembly				•	•	•	•	
Industrial robot	Cartoolari Cooraniato	Other					•	•	•	•
tria	Vertical articulated type	Assembly					•	•	•	
snp		Other						•	•	
	Cylindrical coord	inate				•	•	•		
achine	Photolithography m	nachine	•	•						
ring m	Chemical treatment machine				•	•	•	•	•	•
nufactu	Wire bonding machine			•	•					
tor mar	Prober		•	•	•	•				
Semiconductor manufacturing machine	Printed circuit board drilling machine			•	•	•	•	•		
Semic	Electronic component inserter				•	•	•	•		
	3D measuring instrument		•	•	•					
	Image processing machine		•	•	•					
	Injection molding machine							•	•	•
	Office equipment	_		_		_	•	•	•	•

Studying the Axial Clearance of the Feed Screw System

Of the axial rigidities of the feed screw system, the axial rigidity of the screw shaft fluctuates according to the stroke position. When the axial rigidity is large, such change in the axial rigidity of the screw shaft will affect the positioning accuracy. Therefore, it is necessary to take into account the rigidity of the feed screw system (A-707 to A-710).

Example: Positioning error due to the axial rigidity of the feed screw system during a vertical transfer

[Conditions]

Transferred weight: 1,000 N; table weight: 500 N

Ball Screw used: model BNF2512-2.5 (screw-shaft thread minor diameter d₁ = 21.9 mm)

Stroke length: 600 mm (L=100 mm to 700 mm) Screw shaft mounting type: fixed-supported

[Consideration]

The difference in axial rigidity between L = 100 mm and L = 700 mm applied only to the axial rigidity of the screw shaft.

Therefore, positioning error due to the axial rigidity of the feed screw system equals to the difference in the axial displacement of the screw shaft between L = 100 mm and L = 700 mm.

[Axial Rigidity of the Screw Shaft (see A-707 and A-708)]

$$K_{S} = \frac{A \cdot E}{1000L} = \frac{376.5 \times 2.06 \times 10^{5}}{1000 \times L} = \frac{77.6 \times 10^{3}}{L}$$

$$A = \frac{\pi}{4} d_{1}^{2} = \frac{\pi}{4} \times 21.9^{2} = 376.5 \text{mm}^{2}$$

$$E = 2.06 \times 10^{5} \text{ N/mm}^{2}$$

(1) When L = 100 mm

$$K_{s_1} = \frac{77.6 \times 10^3}{100} = 776 \text{ N/} \mu \text{ m}$$

(2) When L = 700mm

$$K_{S2} = \frac{77.6 \times 10^3}{700} = 111 \text{ N/} \mu \text{ m}$$

[Axial Displacement due to Axial Rigidity of the Screw Shaft]

(1) When L = 100 mm

$$\delta_1 = \frac{Fa}{K_{S1}} = \frac{1000 + 500}{776} = 1.9 \mu m$$

(2) When L = 700mm

$$\delta_2 = \frac{Fa}{K_{S2}} = \frac{1000 + 500}{111} = 13.5 \mu m$$

[Positioning Error due to Axial Rigidity of the Feed Screw System]

Positioning accuracy= δ_1 - δ_2 =1.9-13.5

Therefore, the positioning error due to the axial rigidity of the feed screw system is 11.6 µm.

Studying the Positioning Accuracy

Studying the Thermal Displacement through Heat Generation

If the temperature of the screw shaft increases during operation, the screw shaft is elongated due to heat thereby to lowering the positioning accuracy. The expansion and contraction of the screw shaft is calculated using the equation (38) below.

$\Delta \ell = \rho \times \Delta t \times \ell \dots (38)$

 $\Delta \ell$: Axial expansion/contraction of

the screw shaft (mm): Thermal expansion coefficient (12×10°/C)

Δt : Temperature change in

ρ

the screw shaft ($^{\circ}$ C): Effective thread length (mm)

Thus, if the temperature of the screw shaft increases by 1°C, the screw shaft is elongated by 12 μ m per meter. Therefore, as the Ball Screw travels faster, the more heat is generated. So, as the temperature increases, the positioning accuracy lowers. Accordingly, if high accuracy is required, it is necessary to take measures to cope with the temperature increase.

[Measures to Cope with the Temperature Rise]

- Minimize the Heat Generation
- Minimize the preloads on the Ball Screw and the support bearing.
- Increase the Ball Screw lead and reduce the rotational speed.
- Select a correct lubricant. (See Accessories for Lubrication on A-954.)
- Cool the circumference of the screw shaft with a lubricant or air.
- Avoid Effect of Temperature Rise through Heat Generation
- Set a negative target value for the reference travel distance of the Ball Screw.
 Generally, set a negative target value for the reference travel distance assuming a temperature increase of 2°C to 5°C by heat.
 - (-0.02mm to -0.06 mm/m)
- Preload the shaft screw with tension. (See Fig.3 of the structure on A-825.)

Studying the Orientation Change during Traveling

The lead angle accuracy of the Ball Screw equals the positioning accuracy of the shaft center of the Ball Screw. Normally, the point where the highest positioning accuracy is required changes according to the ball screw center and the vertical or horizontal direction. Therefore, the orientation change during traveling affects the positioning accuracy.

The largest factor of orientation change affecting the positioning accuracy is pitching if the change occurs in the ball screw center and the vertical direction, and yawing if the change occurs in the horizontal direction.

Accordingly, it is necessary to study the orientation change (accuracy in pitching, yawing, etc.) during the traveling on the basis of the distance from the ball screw center to the location where positioning accuracy is required.

Positioning error due to pitching and yawing is obtained using the equation (39) below.

$A = \ell \times \sin\theta \dots (39)$

A: Positioning accuracy due to pitching (or yawing) (mm) ℓ : Vertical (or horizontal) distance from the ball screw center θ : Pitching (or yawing) (°)

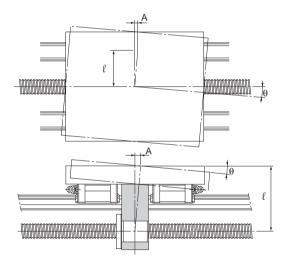


Fig.12

Studying the Rotational Torque

Studying the Rotational Torque

The rotational torque required to convert rotational motion of the Ball Screw into straight motion is obtained using the equation (40) below.

[During Uniform Motion]

$$T_1 = T_1 + T_2 + T_4 \cdots (40)$$

: Rotational torque required during uniform motion (N-mm) Τı : Frictional torque due to an external load (N-mm)

Τ₂ : Preload torque of the Ball Screw (N-mm) T₄ : Other torque (N-mm) (frictional torque of the support bearing and oil seal)

[During Acceleration]

$$T_K = T_t + T_3 \cdots (41)$$

: Rotational torque required during acceleration Тз : Torque required for acceleration (N-mm)

[During Deceleration]

$$T_q = T_t - T_3 \cdots (42)$$

: Rotational torque required for deceleration (N-mm)

Frictional Torque Due to an External Load

Of the turning forces required for the Ball Screw, the rotational torque needed for an external load (quide surface resistance or external force) is obtained using the equation (43) below

$$T_1 = \frac{\mathbf{Fa} \cdot \mathbf{Ph}}{2\pi \cdot \eta} \cdot \mathbf{A} \quad \cdots (43)$$

Τı : Frictional torque due to an

> external load (N-mm)

Fa : Applied axial load (N) : Ball Screw lead (mm)

: Ball Screw efficiency (0.9 to 0.95) η

: Reduction ratio

Torque Due to a Preload on the Ball Screw

For a preload on the Ball Screw, see "Preload Torque" on A-688.

 $T_2 = T_d \cdot A \cdots (44)$

Τ₂ : Preload torque of the Ball Screw (N-mm) : Preload torque of the Ball Screw (N-mm)

Α : Reduction ratio

Torque Required for Acceleration

$T_3 = J \times \omega' \times 10^3 \dots (45)$

: Torque required for acceleration (N-mm) J : Inertial moment $(kg \cdot m^2)$: Angular acceleration (rad/s²)

$$J = m \left(\frac{Ph}{2\pi} \right)^2 \cdot A^2 \cdot 10^{-6} + J_S \cdot A^2 + J_A \cdot A^2 + J_B$$

m : Transferred mass (kg) Ph : Ball Screw lead (mm) : Inertial moment of the screw shaft (kg · m2)

(indicated in the specification tables of the respective model number)

: Reduction ratio Α

: Inertial moment of gears, etc. attached to the screw shaft side (kg·m²) : Inertial moment of gears, etc. attached to the motor side d

$$\omega' = \frac{2\pi \cdot Nm}{60t}$$

Nm : Motor revolutions per minute (min-1) : Acceleration time (s)

[Ref.] Inertial moment of a round object

$$J = \frac{m \cdot D^2}{8 \cdot 10^6}$$

: Inertial moment (kg • m2) : Mass of a round object (kg) m D : Screw shaft outer diameter (mm)

Studying the Driving Motor

When selecting a driving motor required to rotate the Ball Screw, normally take into account the rotational speed, rotational torque and minimum feed amount.

When Using a Servomotor

[Rotational Speed]

The rotational speed required for the motor is obtained using the equation (46) based on the feed speed, Ball Screw lead and reduction ratio.

$$N_{\rm M} = \frac{V \times 1000 \times 60}{\rm Ph} \times \frac{1}{\rm A} \quad \cdots (46)$$

N_M : Required rotational speed

of the motor (min⁻¹)
: Feeding speed (m/s)
: Ball Screw lead (mm)

A : Reduction ratio

The rated rotational speed of the motor must be equal to or above the calculated value (N_M) above.

 $N_M \leq N_R$

V

 $N_{\mbox{\tiny R}}$ $\;$: The rated rotational speed

of the motor (min⁻¹)

[Required Resolution]

Resolutions required for the encoder and the driver are obtained using the equation (47) based on the minimum feed amount. Ball Screw lead and reduction ratio.

$$\mathbf{B} = \frac{\mathbf{Ph} \cdot \mathbf{A}}{\mathbf{S}} \dots (47)$$

B : Resolution required for the encoder

and the driver (p/rev)

Ph : Ball Screw lead (mm)

A : Reduction ratio

S: Minimum feed amount (mm)

[Motor Torque]

The torque required for the motor differs between uniform motion, acceleration and deceleration. To calculate the rotational torque, see "Studying the Rotational Torque" on A-717.

a. Maximum torque

The maximum torque required for the motor must be equal to or below the maximum peak torque of the motor.

T_{max}≤Tp_{max}

: Maximum torque acting on the motor

Tp_{max}: Maximum peak torque of the motor

b. Effective torque value

The effective value of the torque required for the motor must be calculated. The effective value of the torque is obtained using the equation (48) below.

$$T_{rms} = \sqrt{\frac{T_1^2 \times t_1 + T_2^2 \times t_2 + T_3^2 \times t_3}{t}}$$
(48)

T_{rms}: Effective torque value

: Fluctuating torque (N-mm)

: Time during which the torque

T_n is applied (s)

: Cycle time t (s) $(t=t_1+t_2+t_3)$

The calculated effective value of the torque must be equal to or below the rated torque of the motor.

T_{rms}≦T_R

T_R: Rated torque of the motor (N-mm)

[Inertial Moment]

The inertial moment required for the motor is obtained using the equation (49) below.

$$\mathbf{J_M} = \frac{\mathbf{J}}{\mathbf{C}} \quad \dots \dots \quad (49)$$

Jм : Inertial moment required for the motor (kg·m²)

С : Factor determined by the motor and the driver

(It is normally between 3 to 10. However, it varies depending on the motor and the driver. Check the specific value in the catalog by the motor manufacturer.)

The inertial moment of the motor must be equal to or above the calculated J_M value.

When Using a Stepping Motor (Pulse Motor)

[Minimal Feed Amount(per Step)]

The step angle required for the motor and the driver is obtained using the equation (50) below based on the minimum feed amount, the Ball Screw lead and the reduction ratio.

$$\mathbf{E} = \frac{\mathbf{360S}}{\mathbf{Ph} \cdot \mathbf{A}} \quad \dots \quad (50)$$

Ε : Step angle required for the motor and the driver (°)

S : Minimum feed amount

(per step)

Ph : Ball Screw lead (mm)

: Reduction ratio

[Pulse Speed and Motor Torque]

a. Pulse speed

The pulse speed is obtained using the equation (51) below based on the feed speed and the minimum feed amount.

$$f = \frac{V \times 1000}{S}$$
(51)

: Pulse speed (Hz) : Feeding speed (m/s)S : Minimum feed amount (mm)

b. Torque required for the motor

The torque required for the motor differs between the uniform motion, the acceleration and the deceleration. To calculate the rotational torque, see "Studying the Rotational Torque" on A-717.

Thus, the pulse speed required for the motor and the required torque can be calculated in the manner described above.

Although the torque varies depending on the motors, normally the calculated torque should be doubled to ensure safety. Check if the torque can be used in the motor's speed-torque curve.

Examples of Selecting a Ball Screw

High-speed Transfer Equipment (Horizontal Use)

the negative direction)

n =8min-1

[Selection Conditions]

Positioning accuracy

Table Mass $m_1 = 60 \text{kg}$ Positioning Repeatability $\pm 0.1 \text{ mm}$

Work Mass m_2 =20kg Minimum feed amount s = 0.02mm/pulse Stroke length ℓ_s =1000mm Desired service life time 30000h

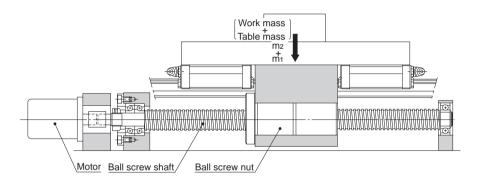
Maximum speed V_{max}=1m/s Driving motor AC servo motor

Acceleration time $t_1 = 0.15s$ Rated rotational speed:

Deceleration time $t_3 = 0.15s$ 3,000 min⁻¹

Number of reciprocations per minute Inertial moment of the motor

 $J_{m} = 1 \times 10^{-3} \text{ kg} \cdot \text{m}^{2}$


Backlash 0.15mm Reduction gear None (direct coupling)

±0.3 mm/1000 mm A=

(Perform positioning from Frictional coefficient of the guide surface

 μ =0.003 (rolling)

Guide surface resistance f=15 N (without load)

[Selection Items]

Screw shaft diameter

Lead

Nut model No.

Accuracy

Axial clearance

Screw shaft support method

Driving motor

[Selecting Lead Angle Accuracy and Axial Clearance]

Selecting Lead Angle Accuracy

To achieve positioning accuracy of ±0.3 mm/1,000 mm:

$$\frac{\pm 0.3}{1000} = \frac{\pm 0.09}{300}$$

The lead angle accuracy must be ± 0.09 mm/300 mm or higher.

Therefore, select the following as the accuracy grade of the Ball Screw (see Table1 on A-678).

C7 (travel distance error: ±0.05mm/300mm)

Accuracy grade C7 is available for both the Rolled and the Precision Ball Screws. Assume that a Rolled Ball Screw is selected here because it is less costly.

Selecting Axial Clearance

To satisfy the backlash of 0.15 mm, it is necessary to select a Ball Screw with an axial clearance of 0.15 mm or less.

Therefore, a Rolled Ball Screw model with a screw shaft diameter of 32 mm or less that meets the axial clearance of 0.15 mm or less (see Table12 on A-685) meets the requirements.

Thus, a Rolled Ball Screw model with a screw shaft diameter of 32 mm or less and an accuracy grade of C7 is selected.

[Selecting a Screw Shaft]

Assuming the Screw Shaft Length

Assume the overall nut length to be 100 mm and the screw shaft end length to be 100 mm.

Therefore, the overall length is determined as follows based on the stroke length of 1,000 mm.

$$1000 + 200 = 1200 \text{ mm}$$

Thus, the screw shaft length is assumed to be 1,200 mm.

Selecting a Lead

With the driving motor's rated rotational speed being 3,000 min⁻¹ and the maximum speed 1 m/s, the Ball Screw lead is obtained as follows:

$$\frac{1 \times 1000 \times 60}{3000}$$
 = 20 mm

Therefore, it is necessary to select a type with a lead of 20 mm or longer.

In addition, the Ball Screw and the motor can be mounted in direct coupling without using a reduction gear. The minimum resolution per revolution of an AC servomotor is obtained based on the resolution of the encoder (1,000 p/rev; 1,500 p/rev) provided as a standard accessory for the AC servomotor, as indicated below.

1000 p/rev(without multiplication)

1500 p/rev(without multiplication)

2000 p/rev(doubled)

3000 p/rev(doubled)

4000 p/rev(quadrupled)

6000 p/rev(quadrupled)

To meet the minimum feed amount of 0.02 mm/pulse, which is the selection requirement, the following should apply.

Lead 20mm --- 1000 p/rev 30mm — 1500 p/rev 40mm — 2000 p/rev 60mm --- 3000 p/rev 80mm --- 4000 p/rev

Selecting a Screw Shaft Diameter

Those Ball Screw models that meet the requirements defined in Section [Selecting Lead Angle Accuracy and Axial Clearance] on A-723: a rolled Ball Screw with a screw shaft diameter of 32 mm or less; and the requirement defined in Section [Selecting a Screw Shaft] on A-723: a lead of 20, 30, 40, 60 or 80 mm (see Table17 on A-693) are as follows.

> Shaft diameter Lead 15mm —— 20mm 15mm — 30mm 20mm — 20mm 20mm — 40mm 30mm — 60mm

Since the screw shaft length has to be 1,200 mm as indicated in Section [Selecting a Screw Shaft] on A-723, the shaft diameter of 15 mm is insufficient. Therefore, the Ball Screw should have a screw shaft diameter of 20 mm or greater.

Accordingly, there are three combinations of screw shaft diameters and leads that meet the requirements: screw shaft diameter of 20 mm/lead of 20 mm; 20 mm/40 mm; and 30 mm/60 mm.

Selecting a Screw Shaft Support Method

Since the assumed type has a long stroke length of 1,000 mm and operates at high speed of 1 m/s, select either the fixed-supported or fixed-fixed configuration for the screw shaft support.

However, the fixed-fixed configuration requires a complicated structure, needs high accuracy in the installation.

Accordingly, the fixed-supported configuration is selected as the screw shaft support method.

Examples of Selecting a Ball Screw

Studying the Permissible Axial Load

■Calculating the Maximum Axial Load

Guide surface resistance f=15 N (without load)

Table Mass $m_1 = 60 \text{ kg}$ Work Mass $m_2 = 20 \text{ kg}$ Frictional coefficient of the guide surface u = 0.003V_{max}=1 m/s Maximum speed $a = 9.807 \text{ m/s}^2$ Gravitational acceleration Acceleration time $t_1 = 0.15s$

Accordingly, the required values are obtained as follows.

Acceleration:

$$\alpha = \frac{V_{\text{max}}}{t_1} = 6.67 \text{ m/s}^2$$

During forward acceleration:

Fa₁ =
$$\mu \cdot (m_1 + m_2) g + f + (m_1 + m_2) \cdot \alpha = 550 N$$

During forward uniform motion:

$$Fa_2 = \mu \cdot (m_1 + m_2) g + f = 17 N$$

During forward deceleration:

Fa₃ =
$$\mu \cdot (m_1 + m_2) g + f - (m_1 + m_2) \cdot \alpha = -516 N$$

During backward acceleration:

$$Fa_4 = -\mu \cdot (m_1 + m_2) q - f - (m_1 + m_2) \cdot \alpha = -550 N$$

During uniform backward motion:

$$Fa_5 = -\mu \cdot (m_1 + m_2) g - f = -17 N$$

During backward deceleration:

$$Fa_6 = -\mu \cdot (m_1 + m_2) g - f + (m_1 + m_2) \cdot \alpha = 516 N$$

Thus, the maximum axial load applied on the Ball Screw is as follows:

$$Fa_{max} = Fa_1 = 550 \text{ N}$$

Therefore, if there is no problem with a shaft diameter of 20 mm and a lead of 20 mm (smallest thread minor diameter of 17.5 mm), then the screw shaft diameter of 30 mm should meet the requirements. Thus, the following calculations for the buckling load and the permissible compressive and tensile load of the screw shaft are performed while assuming a screw shaft diameter of 20 mm and a lead of 20 mm.

■Buckling Load on the Screw Shaft

Factor according to the mounting method $\eta_2 = 20$ (see A-694)

Since the mounting method for the section between the nut and the bearing, where buckling is to be considered, is "fixed-fixed: "

Distance between two mounting surfaces l_a=1100 mm (estimate)

Screw-shaft thread minor diameter d₁=17.5 mm

$$P_1 = \eta_2 \cdot \frac{d_1^4}{\beta_2^2} \times 10^4 = 20 \times \frac{17.5^4}{1100^2} \times 10^4 = 15500 \text{ N}$$

■Permissible Compressive and Tensile Load of the Screw Shaft

$$P_2 = 116 \times d_1^2 = 116 \times 17.5^2 = 35500 \text{ N}$$

Thus, the buckling load and the permissible compressive and the tensile load of the screw shaft are at least equal to the maximum axial load. Therefore, a Ball Screw that meets these requirements can be used without a problem.

• Studying the Permissible Rotational Speed

■Maximum Rotational Speed

Screw shaft diameter: 20 mm: lead: 20 mm

Maximum speed

V_{max}=1 m/s

Lead

Ph= 20 mm

$$N_{max} = \frac{V_{max} \times 60 \times 10^3}{Ph} = 3000 \text{ min}^{-1}$$

Screw shaft diameter: 20 mm: lead: 40mm

Maximum speed

 $V_{max}=1 \text{ m/s}$

Lead

Ph = 40 mm

$$N_{\text{max}} = \frac{V_{\text{max}} \times 60 \times 10^3}{\text{Ph}} = 1500 \text{ min}^{-1}$$

Screw shaft diameter: 30mm: lead: 60mm

Maximum speed

V_{max}=1 m/s

Lead

Ph= 60 mm

$$N_{max} = \frac{V_{max} \times 60 \times 10^3}{Ph} = 1000 \text{ min}^{-1}$$

Examples of Selecting a Ball Screw

■Permissible Rotational Speed Determined by the Dangerous Speed of the Screw Shaft

Factor according to the mounting method λ_2 =15.1 (see A-696)

Since the mounting method for the section between the nut and the bearing, where dangerous speed is to be considered, is "fixed-supported: "

Distance between two mounting surfaces l_b=1100 mm (estimate)

 Screw shaft diameter: 20 mm: lead: 20 mm and 40 mm Screw-shaft thread minor diameter $d_1=17.5$ mm

$$N_1 = \lambda_2 \times \frac{d_1}{\ell_{p_2}^2} 10^7 = 15.1 \times \frac{17.5}{1100^2} \times 10^7 = 2180 \text{ min}^{-1}$$

Screw shaft diameter: 30mm; lead: 60mm

Screw-shaft thread minor diameter d₁=26.4mm

$$N_1 = \lambda_2 \times \frac{d_1}{d_0^2} \cdot 10^7 = 15.1 \times \frac{26.4}{1100^2} \times 10^7 = 3294 \text{ min}^{-1}$$

■Permissible Rotational Speed Determined by the DN Value

Screw shaft diameter: 20 mm; lead: 20 mm and 40mm (large lead Ball Screw)

$$N_2 = \frac{70000}{D} = \frac{70000}{20.75} = 3370 \text{ min}^{-1}$$

Screw shaft diameter: 30 mm: lead: 60 mm (large lead Ball Screw)

Ball center-to-center diameter D=31.25 mm

$$N_2 = \frac{70000}{D} = \frac{70000}{31.25} = 2240 \text{ min}^{-1}$$

Thus, with a Ball Screw having a screw shaft diameter of 20 mm and a lead of 20 mm, the maximum rotational speed exceeds the dangerous speed.

In contrast, a combination of a screw shaft diameter of 20 mm and a lead of 40 mm, and another of a screw shaft diameter of 30 mm and a lead of 60 mm, meet the dangerous speed and the DN value. Accordingly, a Ball Screw with a screw shaft diameter of 20 mm and a lead of 40 mm, or with a screw shaft diameter of 30 mm and a lead of 60 mm, is selected.

[Selecting a Nut]

Selecting a Nut Model Number

Rolled Ball Screw models with a screw shaft diameter of 20 mm and a lead of 40 mm, or with a screw shaft diameter of 30 mm and a lead of 60 mm, are large lead Rolled Ball Screw model WTF variations.

WTF2040-2

(Ca=5.4 kN, Coa=13.6 kN)

WTF2040-3

(Ca=6.6 kN, C₀a=17.2 kN)

WTF3060-2

(Ca=11.8 kN, Coa=30.6 kN)

WTF3060-3

(Ca=14.5 kN, C₀a=38.9 kN)

Studying the Permissible Axial Load

Study the permissible axial load of model WTF2040-2 (C₀a = 13.6 kN).

Assuming that this model is used in high-speed transfer equipment and an impact load is applied during deceleration, set the static safety factor (fs) at 2.5 (see Table18 on A-703).

$$\frac{C_0 a}{f_0} = \frac{13.6}{2.5} = 5.44 \text{ kN} = 5440 \text{ N}$$

The obtained permissible axial load is greater than the maximum axial load of 550 N, and therefore, there will be no problem with this model.

■Calculating the Travel Distance

Maximum speed $V_{max}=1 \text{ m/s}$ $t_1 = 0.15s$ Acceleration time Deceleration time $t_3 = 0.15s$

Travel distance during acceleration

$$\ell_{1,4} = \frac{V_{\text{max}} \cdot t_1}{2} \times 10^3 = \frac{1 \times 0.15}{2} \times 10^3 = 75 \text{ mm}$$

Travel distance during uniform motion

$$\ell_{\text{2.5}} = \ell_{\text{S}} - \frac{V_{\text{max}} \cdot t_{\text{1}} + V_{\text{max}} \cdot t_{\text{3}}}{2} \times 10^{\text{3}} = 1000 - \frac{1 \times 0.15 + 1 \times 0.15}{2} \times 10^{\text{3}} = 850 \text{ mm}$$

Travel distance during deceleration

$$\ell_{3.6} = \frac{V_{\text{max}} \cdot t_3}{2} \times 10^3 = \frac{1 \times 0.15}{2} \times 10^3 = 75 \text{ mm}$$

Based on the conditions above, the relationship between the applied axial load and the travel distance is shown in the table below.

Motion	Applied axial load Fa _N (N)	Travel distance ℓ _N (mm)
No.1: During forward acceleration	550	75
No.2: During forward uniform motion	17	850
No.3: During forward deceleration	-516	75
No.4: During backward acceleration	-550	75
No.5: During uniform backward motion	-17	850
No.6: During backward deceleration	516	75

^{*} The subscript (N) indicates a motion number.

Since the load direction (as expressed in positive or negative sign) is reversed with Fa3, Fa4 and Fa5, calculate the average axial load in the two directions.

Examples of Selecting a Ball Screw

■Average Axial Load

Average axial load in the positive direction

Since the load direction varies, calculate the average axial load while assuming Fa_{3,4,5} = 0N.

$$Fm_1 = \sqrt[3]{\frac{F{a_1}^3 \times \ell_1 + F{a_2}^3 \times \ell_2 + F{a_6}^3 \times \ell_6}{\ell_1 + \ell_2 + \ell_3 + \ell_4 + \ell_5 + \ell_6}} = 225 \ N$$

Average axial load in the negative direction

Since the load direction varies, calculate the average axial load while assuming Fa_{1,2,6} = 0N.

$$Fm_2 = \sqrt[3]{\frac{|Fa_3|^3 \times \ell_3 + |Fa_4|^3 \times \ell_4 + |Fa_5|^3 \times \ell_5}{\ell_1 + \ell_2 + \ell_3 + \ell_4 + \ell_5 + \ell_6}} = 225 \text{ N}$$

Since $F_{m1} = F_{m2}$, assume the average axial load to be $F_m = F_{m1} = F_{m2} = 225 \text{ N}$.

■Nominal Life

Load factor fw= 1.5 (see Table19 on A-704)

Average load $F_m = 225 \text{ N}$ Nominal life L (rev)

$$L = \left(\frac{Ca}{f_W \cdot F_m}\right)^3 \times 10^6$$

Assumed model number	Dynamic load rating Ca(N)	Nominal life L(rev)
WTF 2040-2	5400	4.1×10°
WTF 2040-3	6600	7.47×10 ⁹
WTF 3060-2	11800	4.27×10 ¹⁰
WTF 3060-3	14500	7.93×10¹º

■Average Revolutions per Minute

Number of reciprocations per minute n =8min-1 ls=1000 mm

■ Lead: Ph = 40 mm

$$N_m = \frac{2 \times n \times \ell_s}{Ph} = \frac{2 \times 8 \times 1000}{40} = 400 \text{ min}^{-1}$$

• Lead: Ph = 60 mm

$$N_m = \frac{2 \times n \times \ell_s}{Ph} = \frac{2 \times 8 \times 1000}{60} = 267 \text{ min}^{-1}$$

■Calculating the Service Life Time on the Basis of the Nominal Life

WTF2040-2

Nominal life L=4.1 × 109 rev Average revolutions per minute $Nm = 400 \text{ min}^{-1}$

$$Lh = \frac{L}{60 \times N_{m}} = \frac{4.1 \times 10^{9}}{60 \times 400} = 171000 h$$

WTF2040-3

L=7.47 × 109 rev Nominal life Average revolutions per minute $Nm = 400 \text{ min}^{-1}$

Lh =
$$\frac{L}{60 \times N_m} = \frac{7.47 \times 10^9}{60 \times 400} = 311000 \text{ h}$$

WTF3060-2

L=4.27 × 10¹⁰ rev Nominal life $Nm = 267 \text{ min}^{-1}$ Average revolutions per minute

$$L_h = \frac{L}{60 \times N_m} = \frac{4.27 \times 10^{10}}{60 \times 267} = 2670000 \text{ h}$$

WTF3060-3

L=7.93 × 1010 rev Nominal life $Nm = 267 \text{ min}^{-1}$ Average revolutions per minute

$$Lh = \frac{L}{60 \times N_m} = \frac{7.93 \times 10^{10}}{60 \times 267} = 4950000 h$$

Examples of Selecting a Ball Screw

■Calculating the Service Life in Travel Distance on the Basis of the Nominal Life

• WTF2040-2

Nominal life L=4.1 × 109 rev Ph= 40 mm Lead

 $L_s = L \times Ph \times 10^{-6} = 164000 \text{ km}$

• WTF2040-3

Nominal life L=7.47 × 109 rev Lead Ph= 40 mm

 $L_s = L \times Ph \times 10^{-6} = 298800 \text{ km}$

• WTF3060-2

Nominal life L=4.27 × 1010 rev Lead Ph= 60 mm

 $L_s = L \times Ph \times 10^{-6} = 2562000 \text{ km}$

WTF3060-3

Nominal life L=7.93 × 1010 rev Ph= 60 mm Lead

 $L_s = L \times Ph \times 10^{-6} = 4758000 \text{ km}$

With all the conditions stated above, the following models satisfying the desired service life time of 30,000 hours are selected.

WTF 2040-2

WTF 2040-3

WTF 3060-2

WTF 3060-3

[Studying the Rigidity]

Since the conditions for selection do not include rigidity and this element is not particularly necessary, it is not described here.

[Studying the Positioning Accuracy]

Studying the Lead Angle Accuracy

Accuracy grade C7 was selected in Section [Selecting Lead Angle Accuracy and Axial Clearance] on A-723.

C7 (travel distance error: ±0.05mm/300mm)

Studying the Axial Clearance

Since positioning is performed in a given direction only, axial clearance is not included in the positioning accuracy. As a result, there is no need to study the axial clearance.

WTF2040: axial clearance: 0.1 mm WTF3060: axial clearance: 0.14 mm

Studying the Axial Rigidity

Since the load direction does not change, it is unnecessary to study the positioning accuracy on the basis of the axial rigidity.

• Studying the Thermal Displacement through Heat Generation

Assume the temperature rise during operation to be 5°C.

The positioning accuracy based on the temperature rise is obtained as follows:

$$\Delta \ell = \rho \times \Delta t \times \ell$$

$$= 12 \times 10^{-6} \times 5 \times 1000$$

$$= 0.06 \text{ mm}$$

Studying the Orientation Change during Traveling

Since the ball screw center is 150 mm away from the point where the highest accuracy is required, it is necessary to study the orientation change during traveling.

Assume that pitching can be done within ± 10 seconds because of the structure. The positioning error due to the pitching is obtained as follows:

$$\Delta a = \ell \times \sin \theta$$

= 150 × sin (±10")
= + 0.007 mm

Thus, the positioning accuracy (Δp) is obtained as follows:

$$\Delta p = \frac{\pm 0.05 \times 1000}{300} \pm 0.007 + 0.06 = 0.234 \text{ mm}$$

Since models WTF2040-2, WTF2040-3, WTF3060-2 and WTF3060-3 meet the selection requirements throughout the studying process in Section [Selecting Lead Angle Accuracy and Axial Clearance] on A-723 to Section [Studying the Positioning Accuracy] on A-732, the most compact model WTF2040-2 is selected.

[Studying the Rotational Torque]

Friction Torque Due to an External Load

The friction torugue is obtained as follows:

$$T_1 = \frac{Fa \cdot Ph}{2\pi \cdot n} \cdot A = \frac{17 \times 40}{2 \times \pi \times 0.9} \times 1 = 120 \text{ N} \cdot \text{mm}$$

Torque Due to a Preload on the Ball Screw

The Ball Screw is not provided with a preload.

Torque Required for Acceleration

Inertial Moment

Since the inertial moment per unit length of the screw shaft is 1.23 x 10⁻³ kg•cm²/mm (see the specification table), the inertial moment of the screw shaft with an overall length of 1200 mm is obtained as follows.

$$\begin{split} J_s &= 1.23 \, \times \, 10^{-3} \times \, 1200 = 1.48 \; kg \, \cdot \, cm^2 \\ &= 1.48 \, \times \, 10^{-4} \; kg \, \cdot \, m^2 \end{split}$$

$$J = (m_1 + m_2) \left(\frac{Ph}{2 \times \pi}\right)^2 \cdot A^2 \times 10^{-6} + J_s \cdot A^2 = (60 + 20) \left(\frac{40}{2 \times \pi}\right)^2 \times 1^2 \times 10^{-6} + 1.48 \times 10^{-4} \times 1^2$$

$$= 3.39 \times 10^{-3} \text{kg} \cdot \text{m}^2$$

Angular acceleration:

$$\omega' = \frac{2\pi \cdot Nm}{60 \cdot t_1} = \frac{2\pi \times 1500}{60 \times 0.15} = 1050 \text{ rad/s}^2$$

Based on the above, the torque required for acceleration is obtained as follows.

$$T_2 = (J + J_m) \times \omega' = (3.39 \times 10^{-3} + 1 \times 10^{-3}) \times 1050 = 4.61 \text{N} \cdot \text{m}$$

= 4.61 × 10³ N · mm

Therefore, the required torque is specified as follows.

During acceleration

$$T_k = T_1 + T_2 = 120 + 4.61 \times 10^3 = 4730 \text{ N} \cdot \text{mm}$$

During uniform motion

$$T_t = T_1 = 120 \text{ N} \cdot \text{mm}$$

During deceleration

$$T_g = T_{1}$$
- $T_2 = 120 - 4.61 \times 10^3 = -4490 \text{ N} \cdot \text{mm}$

[Studying the Driving Motor]

Rotational Speed

Since the Ball Screw lead is selected based on the rated rotational speed of the motor, it is unnecessary to study the rotational speed of the motor.

Maximum working rotational speed: 1500 min-1 Rated rotational speed of the motor: 3000 min-1

Minimum Feed Amount

As with the rotational speed, the Ball Screw lead is selected based on the encoder normally used for an AC servomotor. Therefore, it is unnecessary to study this factor.

Encoder resolution : 1000 p/rev. Doubled : 2000 p/rev

Motor Torque

The torque during acceleration calculated in Section [Studying the Rotational Torque] on A-733 is the required maximum torque.

$$T_{max} = 4730 \text{ N} \cdot \text{mm}$$

Therefore, the instantaneous maximum torque of the AC servomotor needs to be at least 4,730 Nmm.

Effective Torque Value

The selection requirements and the torque calculated in Section [Studying the Rotational Torque] on A-733 can be expressed as follows.

During acceleration:

$$t_1 = 0.15 s$$

During uniform motion:

$$T_t = 120 \text{ N} \cdot \text{mm}$$

$$t_2 = 0.85 s$$

During deceleration:

$$T_g = 4490 \text{ N} \cdot \text{mm}$$

$$t_3 = 0.15 \text{ s}$$

When stationary:

$$T_s = 0$$

$$t_4 = 2.6 s$$

The effective torque is obtained as follows, and the rated torque of the motor must be 1305 N•mm or greater.

$$T_{rms} = \sqrt{\frac{{T_k}^2 \cdot t_1 + {T_t}^2 \cdot t_2 + {T_g}^2 \cdot t_3 + {T_s}^2 \cdot t_4}{t_1 + t_2 + t_3 + t_4}} = \sqrt{\frac{4730^2 \times 0.15 + 120^2 \times 0.85 + 4490^2 \times 0.15 + 0}{0.15 + 0.85 + 0.15 + 2.6}}$$

$$= 1305 \text{ N} \cdot \text{mm}$$

Examples of Selecting a Ball Screw

Inertial Moment

The inertial moment applied to the motor equals to the inertial moment calculated in Section [Studying the Rotational Torque] on A-733.

$$J = 3.39 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

Normally, the motor needs to have an inertial moment at least one tenth of the inertial moment applied to the motor, although the specific value varies depending on the motor manufacturer. Therefore, the inertial moment of the AC servomotor must be $3.39 \times 10^{-4} \text{kg-m}^2$ or greater.

The selection has been completed.

8 (800) 700-72-07 (бесплатно)

Vertical Conveyance System

[Selection Conditions]

Table Mass m_1 =40kg Work Mass m_2 =10kg Stroke length ℓ_s = 600mm Maximum speed ℓ_s = 0.3m/s Acceleration time ℓ_s = 0.2s Deceleration time ℓ_s = 0.2s Number of reciprocations per minute

n =5min⁻¹

Backlash 0.1mm

Positioning accuracy ±0.7mm/600mm

Positioning Repeatability ±0.05mm

Minimum feed amount s = 0.01mm/pulse

Service life time 20000h

Driving motor AC servo motor

Rated rotational speed:

3,000 min-1

Inertial moment of the motor

 $J_m = 5 \times 10^{-5} \text{ kg} \cdot \text{m}^2$

Reduction gear None (direct coupling)

Frictional coefficient of the guide surface

 μ =0.003 (rolling)

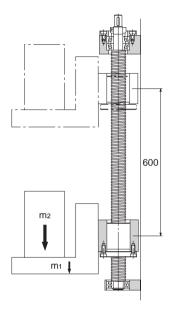
Guide surface resistance

f=20 N (without load)

[Selection Items]

Screw shaft diameter

Lead


Nut model No.

Accuracy

Axial clearance

Screw shaft support method

Driving motor

[Selecting Lead Angle Accuracy and Axial Clearance]

Selecting the Lead Angle Accuracy

To achieve positioning accuracy of ±0.7mm/600mm:

$$\frac{\pm 0.7}{600} = \frac{\pm 0.35}{300}$$

The lead angle accuracy must be ± 0.35 mm/300 mm or higher.

Therefore, the accuracy grade of the Ball Screw (see Table1 on A-678) needs to be C10 (travel distance error: ±0.21 mm/300 mm).

Accuracy grade C10 is available for low priced, Rolled Ball Screws. Assume that a Rolled Ball Screw is selected.

Selecting the Axial Clearance

The required backlashes is 0.1 mm or less. However, since an axial load is constantly applied in a single direction with vertical mount, the axial load does not serve as a backlash no matter how large it is.

Therefore, a low price, rolled Ball Screw is selected since there will not be a problem in axial clearance.

[Selecting a Screw Shaft]

Assuming the Screw Shaft Length

Assume the overall nut length to be 100 mm and the screw shaft end length to be 100 mm.

Therefore, the overall length is determined as follows based on the stroke length of 600mm.

$$600 + 200 = 800 \text{ mm}$$

Thus, the screw shaft length is assumed to be 800 mm.

Selecting the Lead

With the driving motor's rated rotational speed being 3,000 min⁻¹ and the maximum speed 0.3 m/s, the Ball Screw lead is obtained as follows:

$$\frac{0.3 \times 60 \times 1000}{3000} = 6 \text{ mm}$$

Therefore, it is necessary to select a type with a lead of 6mm or longer.

In addition, the Ball Screw and the motor can be mounted in direct coupling without using a reduction gear. The minimum resolution per revolution of an AC servomotor is obtained based on the resolution of the encoder (1,000 p/rev; 1,500 p/rev) provided as a standard accessory for the AC servomotor, as indicated below.

1000 p/rev(without multiplication)

1500 p/rev(without multiplication)

2000 p/rev(doubled)

3000 p/rev(doubled)

4000 p/rev(quadrupled)

6000 p/rev(quadrupled)

www.technobearing.ru 8 (800) 700-72-07 (бесплатно)

To meet the minimum feed amount of 0.010mm/pulse, which is the selection requirement, the following should apply.

Lead 6mm --- 3000 p/rev 8mm — 4000 p/rev 10mm — 1000 p/rev 20mm — 2000 p/rev 40mm — 2000 p/rev

However, with the lead being 6 mm or 8 mm, the feed distance is 0.002 mm/pulse, and the starting pulse of the controller that issues commands to the motor driver needs to be at least 150 kpps, and the cost of the controller may be higher.

In addition, if the lead of the Ball Screw is greater, the torque required for the motor is also greater, and thus the cost will be higher.

Therefore, select 10 mm for the Ball Screw lead.

Selecting the Screw Shaft Diameter

Those Ball Screw models that meet the lead being 10 mm as described in Section [Selecting Lead Angle Accuracy and Axial Clearance] on A-737 and Section [Selecting a Screw Shaft] on A-737 (see Table17 on A-693) are as follows.

Shaft diameter Lead 15mm —— 10mm 20mm —— 10mm 25mm —— 10mm

Accordingly, the combination of a screw shaft diameter of 15 mm and a lead 10 mm is selected.

Selecting the Screw Shaft Support Method

Since the assumed Ball Screw has a stroke length of 600 mm and operates at a maximum speed of 0.3 m/s (Ball Screw rotational speed: 1,800 min⁻¹), select the fixed-supported configuration for the screw shaft support.

Examples of Selecting a Ball Screw

Studying the Permissible Axial Load

■Calculating the Maximum Axial Load

Guide surface resistance f=20 N (without load)

Table Mass $m_1 = 40 \text{ kg}$ Work Mass $m_2 = 10 \text{ kg}$ Maximum speed $V_{max}=0.3 \text{ m/s}$ Acceleration time $t_1 = 0.2s$

Accordingly, the required values are obtained as follows.

Acceleration

$$\alpha = \frac{V_{\text{max}}}{t_1} = 1.5 \text{ m/s}^2$$

During upward acceleration:

$$Fa_1 = (m_1 + m_2) \cdot g + f + (m_1 + m_2) \cdot \alpha = 585 \text{ N}$$

During upward uniform motion:

$$Fa_2 = (m_1 + m_2) \cdot q + f = 510 \text{ N}$$

During upward deceleration:

$$Fa_3 = (m_1 + m_2) \cdot g + f - (m_1 + m_2) \cdot \alpha = 435 \text{ N}$$

During downward acceleration:

$$Fa_4 = (m_1 + m_2) \cdot g - f - (m_1 + m_2) \cdot \alpha = 395 \text{ N}$$

During downward uniform motion:

$$Fa_5 = (m_1 + m_2) \cdot g - f = 470 \text{ N}$$

During downward deceleration:

$$Fa_6 = (m_1 + m_2) \cdot g - f + (m_1 + m_2) \cdot \alpha = 545 \text{ N}$$

Thus, the maximum axial load applied on the Ball Screw is as follows:

$$Fa_{max} = Fa_1 = 585 \text{ N}$$

■Buckling Load of the Screw Shaft

Factor according to the mounting method n₂=20 (see A-694)

Since the mounting method for the section between the nut and the bearing, where buckling is to be considered, is "fixed-fixed: "

Distance between two mounting surfaces ℓ_a=700 mm (estimate)

d₁=12.5 mm Screw-shaft thread minor diameter

$$P_1 = \eta_2 \cdot \frac{d_1^4}{\ell_a^2} \times 10^4 = 20 \times \frac{12.5^4}{700^2} \times 10^4 = 9960 \text{ N}$$

■Permissible Compressive and Tensile Load of the Screw Shaft

$$P_2 = 116d_{12} = 116 \times 12.5^2 = 18100 \text{ N}$$

Thus, the buckling load and the permissible compressive and tensile load of the screw shaft are at least equal to the maximum axial load. Therefore, a Ball Screw that meets these requirements can be used without a problem.

Studying the Permissible Rotational Speed

■Maximum Rotational Speed

Screw shaft diameter: 15mm: lead: 10mm

Maximum speed $V_{max}=0.3 \text{ m/s}$ Ph= 10 mm

$$N_{max} = \frac{V_{max} \times 60 \times 10^3}{Ph} = 1800 \text{ min}^{-1}$$

■Permissible Rotational Speed Determined by the Dangerous Speed of the Screw Shaft

Factor according to the mounting method λ_2 =15.1 (see A-696)

Since the mounting method for the section between the nut and the bearing, where dangerous speed is to be considered, is "fixed-supported: "

Distance between two mounting surfaces l₀=700 mm (estimate)

• Screw shaft diameter: 15mm; lead: 10mm

Screw-shaft thread minor diameter d₁=12.5 mm

$$N_1 = \lambda_2 \times \frac{d_1}{\ell_b^2} 10^7 = 15.1 \times \frac{12.5}{700^2} \times 10^7 = 3852 \text{ min}^{-1}$$

■Permissible Rotational Speed Determined by the DN Value

Screw shaft diameter: 15mm; lead: 10mm (large lead Ball Screw)

Ball center-to-center diameter D=15.75 mm

$$N_2 = \frac{70000}{D} = \frac{70000}{15.75} = 4444 \text{ min}^{-1}$$

Thus, the dangerous speed and the DN value of the screw shaft are met.

Examples of Selecting a Ball Screw

[Selecting a Nut]

Selecting a Nut Model Number

The Rolled Ball Screw with a screw shaft diameter of 15 mm and a lead of 10 mm is the following large-lead Rolled Ball Screw model.

BLK1510-5.6

(Ca=9.8 kN, Coa=25.2 kN)

Studying the Permissible Axial Load

Assuming that an impact load is applied during an acceleration and a deceleration, set the static safety factor (f_s) at 2 (see Table18 on A-703).

$$Fa_{max} = \frac{C_0 a}{f_s} = \frac{25.2}{2} = 12.6 \text{ kN} = 12600 \text{ N}$$

The obtained permissible axial load is greater than the maximum axial load of 585 N, and therefore, there will be no problem with this model.

Studying the Service Life

■Calculating the Travel Distance

 $\begin{tabular}{lll} Maximum speed & V_{max}=0.3 m/s \\ Acceleration time & $t_1=0.2s$ \\ Deceleration time & $t_3=0.2s$ \\ \end{tabular}$

Travel distance during acceleration

$$\ell_{1,4} = \frac{V_{\text{max}} \cdot t_1}{2} \times 10^3 = \frac{1.3 \times 0.2}{2} \times 10^3 = 30 \text{ mm}$$

• Travel distance during uniform motion

$$\ell_{2,5} = \ell_S - \frac{V_{\text{max}} \cdot t_1 + V_{\text{max}} \cdot t_3}{2} \times 10^3 = 600 - \frac{0.3 \times 0.2 + 0.3 \times 0.2}{2} \times 10^3 = 540 \text{ mm}$$

Travel distance during deceleration

$$\ell_{3,6} = \frac{V_{\text{max}} \cdot t_3}{2} \times 10^3 = \frac{0.3 \times 0.2}{2} \times 10^3 = 30 \text{ mm}$$

Based on the conditions above, the relationship between the applied axial load and the travel distance is shown in the table below.

Motion	Applied axial load Fa _N (N)	Travel dis- tance ℓ _N (mm)
No1: During upward acceleration	585	30
No2: During upward uniform motion	510	540
No3: During upward deceleration	435	30
No4: During down- ward acceleration	395	30
No5: During down- ward uniform motion	470	540
No6: During down- ward deceleration	545	30

The subscript (N) indicates a motion number.

■Average Axial Load

$$Fm = \sqrt[3]{\frac{1}{2 \times \ell_5} (Fa_1^3 \cdot \ell_1 + Fa_2^3 \cdot \ell_2 + Fa_3^3 \cdot \ell_3 + Fa_4^3 \cdot \ell_4 + Fa_5^3 \cdot \ell_5 + Fa_6^3 \cdot \ell_6)} = 225 \text{ N}$$

■Nominal Life

Dynamic load rating Ca= 9800 N

f_w= 1.5 (see Table19 on A-704) Load factor

Average load F_m= 492 N Nominal life L (rev)

$$L = \left(\frac{Ca}{f_{W} \cdot F_{m}}\right)^{3} \times 10^{6} = \left(\frac{9800}{1.5 \times 492}\right)^{3} \times 10^{6} = 2.34 \times 10^{9} \text{ rev}$$

■Average Revolutions per Minute

Number of reciprocations per minute $n = 5 \text{ min}^{-1}$ Stroke ls=600 mm Lead Ph= 10 mm

$$N_m = \frac{2 \times n \times \ell_s}{Ph} = \frac{2 \times 5 \times 600}{10} = 600 \text{ min}^{-1}$$

■Calculating the Service Life Time on the Basis of the Nominal Life

L=2.34 × 109 rev Nominal life Average revolutions per minute $N_m = 600 \text{ min}^{-1}$

$$Lh = \frac{L}{60 \cdot N_m} = \frac{2.34 \times 10^9}{60 \times 600} = 65000 \text{ h}$$

■Calculating the Service Life in Travel Distance on the Basis of the Nominal Life

Nominal life L=2.34×10° rev Lead Ph= 10 mm $L_s = L \times Ph \times 10^{-6} = 23400 \text{ km}$

With all the conditions stated above, model BLK1510-5.6 satisfies the desired service life time of 20.000 hours.

Examples of Selecting a Ball Screw

[Studying the Rigidity]

Since the conditions for selection do not include rigidity and this element is not particularly necessary, it is not described here.

[Studying the Positioning Accuracy]

Studying the Lead Angle Accuracy

Accuracy grade C10 was selected in Section [Selecting Lead Angle Accuracy and Axial Clearance] on A-737.

C10 (travel distance error: ±0.21mm/300mm)

Studying the Axial Clearance

Since the axial load is constantly present in a given direction only because of vertical mount, there is no need to study the axial clearance.

Studying the Axial Rigidity

Since the lead angle accuracy is achieved beyond the required positioning accuracy, there is no need to study the positioning accuracy determined by axial rigidity.

Studying the Thermal Displacement through Heat Generation

Since the lead angle accuracy is achieved beyond the required positioning accuracy, there is no need to study the positioning accuracy determined by the heat generation.

Studying the Orientation Change during Traveling

Since the lead angle accuracy is achieved at a much higher degree than the required positioning accuracy, there is no need to study the positioning accuracy.

[Studying the Rotational Torque]

Frictional Torque Due to an External Load

During upward uniform motion:

$$T_1 = \frac{Fa_2 \cdot Ph}{2 \times \pi \times n} = \frac{510 \times 10}{2 \times \pi \times 0.9} = 900 \text{ N} \cdot \text{mm}$$

During downward uniform motion:

$$T_2 = \frac{Fa_5 \cdot Ph}{2 \times \pi \times \eta} = \frac{470 \times 10}{2 \times \pi \times 0.9} = 830 \text{ N} \cdot \text{mm}$$

Torque Due to a Preload on the Ball Screw

The Ball Screw is not provided with a preload.

Torque Required for Acceleration

Inertial Moment:

Since the inertial moment per unit length of the screw shaft is 3.9 x 10⁻⁴ kg•cm²/mm (see the specification table), the inertial moment of the screw shaft with an overall length of 800mm is obtained as follows.

$$J_s = 3.9 \times 10^{-4} \times 800 = 0.31 \text{ kg} \cdot \text{cm}^2$$

= 0.31 × 10⁻⁴ kg · m²

$$J = (m_1 + m_2) \left(\frac{Ph}{2 \times \pi}\right)^2 \cdot A^2 \times 10^{-6} + J_s \cdot A^2 = (40 + 10) \left(\frac{10}{2 \times \pi}\right)^2 \times 1^2 \times 10^{-6} + 0.31 \times 10^{-4} \times 1^2$$
$$= 1.58 \times 10^{-4} \text{ kg} \cdot \text{m}^2$$

Angular acceleration:

$$\omega' = \frac{2\pi \cdot Nm}{60 \cdot t} = \frac{2\pi \times 1800}{60 \times 0.2} = 942 \text{ rad/s}^2$$

Based on the above, the torque required for acceleration is obtained as follows.

$$T_3 = (J + J_m) \cdot \omega' = (1.58 \times 10^{-4} + 5 \times 10^{-5}) \times 942 = 0.2 \text{ N} \cdot \text{m} = 200 \text{ N} \cdot \text{mm}$$

Therefore, the required torque is specified as follows.

During upward acceleration:

$$T_{k1} = T_1 + T_3 = 900 + 200 = 1100 \text{ N} \cdot \text{mm}$$

During upward uniform motion:

$$T_{t1} = T_1 = 900 \text{ N} \cdot \text{mm}$$

During upward deceleration:

$$T_{g1} = T_{1} - T_{3} = 900 - 200 = 700 \text{ N} \cdot \text{mm}$$

During downward acceleration:

During downward uniform motion:

$$T_{12} = 830 \text{ N} \cdot \text{mm}$$

During downward deceleration:

$$T_{g2} = 1030 \text{ N-mm}$$

[Studying the Driving Motor]

Rotational Speed

Since the Ball Screw lead is selected based on the rated rotational speed of the motor, it is unnecessary to study the rotational speed of the motor.

Maximum working rotational speed: 1800 min⁻¹ Rated rotational speed of the motor: 3000 min⁻¹

Minimum Feed Amount

As with the rotational speed, the Ball Screw lead is selected based on the encoder normally used for an AC servomotor. Therefore, it is unnecessary to study this factor.

Encoder resolution: 1000 p/rev.

Motor Torque

The torque during acceleration calculated in Section [Studying the Rotational Torque] on A-743 is the required maximum torque.

$$T_{\text{max}} = T_{\text{k1}} = 1100 \text{ N} \cdot \text{mm}$$

Therefore, the maximum peak torque of the AC servomotor needs to be at least 1100 N-mm.

Effective Torque Value

The selection requirements and the torque calculated in Section [Studying the Rotational Torque] on A-743 can be expressed as follows.

During upward acceleration:

$$T_{k1} = 1100 \text{ N} \cdot \text{mm}$$

 $t_1 = 0.2 s$

During upward uniform motion:

 $T_{t1} = 900 \text{ N} \cdot \text{mm}$

 $t_2 = 1.8 s$

During upward deceleration:

 $T_{g1} = 700 \text{ N} \cdot \text{mm}$

 $t_3 = 0.2 \text{ s}$

During downward acceleration:

Tk2 = 630 N·mm

 $t_1 = 0.2 s$

During downward uniform motion:

T₁₂ = 830 N·mm

 $t_2 = 1.8 s$

During downward deceleration:

 $T_{g2} = 1030 \text{ N-mm}$

 $t_3 = 0.2 \text{ s}$

When stationary(m₂=0):

Ts = 658 N·mm

 $t_4 = 7.6 \text{ s}$

The effective torque is obtained as follows, and the rated torque of the motor must be 743 N•mm or greater.

$$\begin{split} T_{rms} &= \sqrt{\frac{T_{k1}^2 \cdot t_1 + T_{t1}^2 \cdot t_2 + T_{g1}^2 \cdot t_3 + T_{k2}^2 \cdot t_1 + T_{t2}^2 \cdot t_2 + T_{g2}^2 \cdot t_3 + T_s^2 \cdot t_4}{t_1 + t_2 + t_3 + t_1 + t_2 + t_3 + t_4}} \\ &= \sqrt{\frac{1100^2 \times 0.2 + 900^2 \times 1.8 + 700^2 \times 0.2 + 630^2 \times 0.2 + 830^2 \times 1.8 + 1030^2 \times 0.2 + 658^2 \times 7.6}{0.2 + 1.8 + 0.2 + 0.2 + 1.8 + 0.2 + 7.6}} \\ &= 743 \text{ N} \cdot \text{mm} \end{split}}$$

Inertial Moment

The inertial moment applied to the motor equals to the inertial moment calculated in Section [Studying the Rotational Torque] on A-743.

$$J = 1.58 \times 10^{-4} \text{ kg} \cdot \text{m}^2$$

Normally, the motor needs to have an inertial moment at least one tenth of the inertial moment applied to the motor, although the specific value varies depending on the motor manufacturer. Therefore, the inertial moment of the AC servomotor must be 1.58×10^{-5} kg-m² or greater.

The selection has been completed.

Ball Screw Accuracy of Each Model

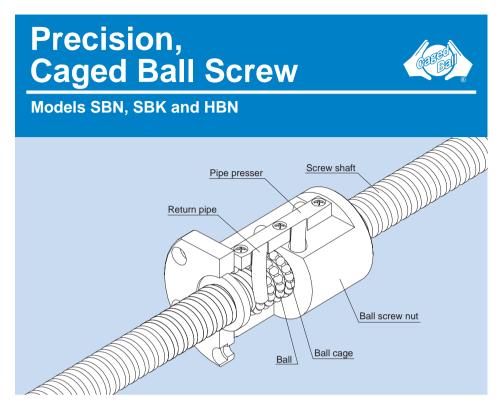


Fig.1 Structure of High-Speed Ball Screw with Ball Cage Model SBN

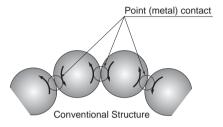
Structure and Features	▶ ▶▶ A-749
Ball Cage Effect	▶ ▶▶ A-749
Types and Features	▶ ▶▶ A-752
Service Life	▶▶▶ A-704
Axial Clearance	▶ ▶▶ A-685
Accuracy Standards	▶ ▶▶ A-678
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶ ▶ B-576

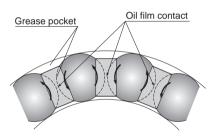
The use of a ball cage in the Ball Screw with the Ball Cage eliminates collision and friction between balls and increases the grease retention. This makes it possible to achieve a low noise, a low torque fluctuation and a long-term maintenance-free operation.

In addition, this Ball Screw is superbly capable of responding to the high speed because of an ideal ball recirculation structure, a strengthened circulation path and an adoption of the ball cage.

Ball Cage Effect

[Low Noise, Acceptable Running Sound]


The use of the ball cage eliminates the collision noise between the balls. Additionally, as balls are picked up in the tangential direction, the collision noise from the ball circulation has also been eliminated.


[Long-term Maintenance-free Operation]

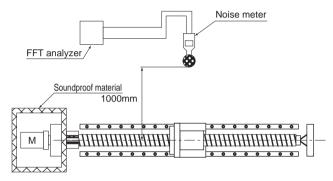
The friction between the balls has been eliminated, and the grease retention has been improved through the provision of grease pockets. As a result, the long-term maintenance-free operation (i.e., lubrication is unnecessary over a long period) is achieved.

[Smooth Motion]

The use of a ball cage eliminates the friction between the balls and minimizes the torque fluctuation, thus allowing the smooth motion to be achieved.

Structure of the Ball Screw with Ball Cage

[Low Noise]


Noise Level Data

Since the balls in the Ball Screw with the Ball Cage do not collide with each other, they do not produce a metallic sound and a low noise level is achieved.

■Noise Measurement

[Conditions]

Item	Description
Sample	High load ball screw with ball cage HBN3210-5 Conventional type: model BNF3210-5
Stroke	600mm
Lubrication	Grease lubrication (lithium-based grease containing extreme pressure agent)

Noise measurement instrument

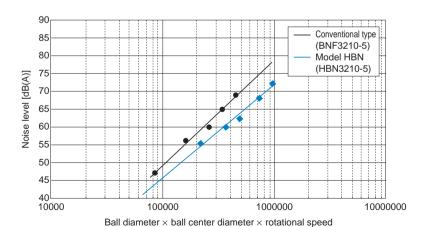


Fig.2 Ball Screw Noise Level

Features of Each Model

Precision, Caged Ball Screw

[Long-term Maintenance-free Operation]

High speed, Load-bearing Capacity

Thanks to the ball circulating method supporting high speed and the caged ball technology, the Ball Screw with Ball Cage excels in high speed and load-bearing capacity.

■High Speed Durability Test

[Test conditions]

Item	Description
Sample	High Speed Ball Screw with Ball Cage SBN3210-7
Speed	3900(min ⁻¹)(DN value ⁻ : 130,000)
Stroke	400mm
Lubricant	THK AFG Grease
Quantity	12cm³(lubricated every 1000km)
Applied load	1.73kN
Acceleration	1G

DN value: Ball center-to-center diameter x revolutions per minute

[Test result]

Shows no deviation after running 10,000 km.

■Load Bearing Test

[Test conditions]

Item	Description
Sample	High Speed Ball Screw with Ball Cage SBN3210-7
Speed	1500(min ⁻¹)(DN value ⁺ : 50,000)
Stroke	300mm
Lubricant	THK AFG Grease
Quantity	12cm³
Applied load	17.3kN(0.5Ca)
Acceleration	0.5G

[Test result]

Shows no deviation after running a distance 2.5 times the calculated service life.

[Smooth Motion]

Low Torque Fluctuation

The caged ball technology allows smoother motion than the conventional type to be achieved, thus to reduce torque fluctuation.

[Conditions]

Item	Description
Shaft diameter/ lead	32/10mm
Shaft rotational speed	60min ⁻¹

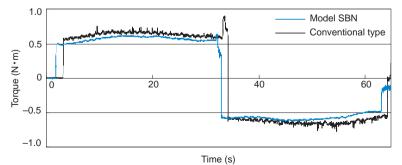
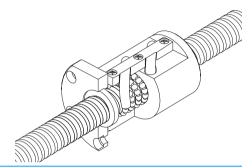


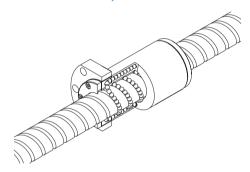
Fig.3 Torque Fluctuation Data


Types and Features

[Preload Type]

Model SBN

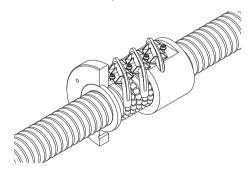
Model SBN has a circulation structure where balls are picked up in the tangential direction and is provided with a strengthened circulation path, thus to achieve a DN value of 130,000.


Specification Table⇒B-576

Model SBK

As a result of adopting the offset preloading method, which shifts two rows of grooves of the ball screw nut, a compact structure is achieved.

Specification Table⇒B-578



[No Preload Type]

Model HBN

With the optimal design for high loads, this Ball Screw model achieves a rated load more than twice the conventional type.

Specification Table⇒B-580

8 (800) 700-72-07 (бесплатно)

Features of Each Model Precision, Caged Ball Screw

Service Life

For details, see A-704.

Axial Clearance

For details, see A-685.

Accuracy Standards

For details, see A-678.

Structure and Features	▶ ▶ A-755
Types and Features	▶ ▶▶ A-756
Service Life	▶ ▶ A-704
Nut Types and Axial Clearance	▶▶▶ A-758
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶ B-584

Features of Each Model

Standard-Stock Precision Ball Screw (Unfinished Shaft Ends)

Structure and Features

This type of Ball Screw is mass manufactured by cutting the standardized screw shafts of Precision Ball Screws to regular lengths. Additional machining of the shaft ends can easily be performed.

To meet various intended purposes, THK offers several Ball Screw models with different types of nuts: the double-nut type (model BNFN), the single-nut type (model BNF), the offset preload-nut type (model BIF) and the miniature Ball Screw (models MDK and MBF).

[Contamination Protection]

Nuts of the following model numbers are attached with a labyrinth seal.

- All variations of models BNFN, BNF and BIF
- Model MDK0802/1002/1202/1402/1404/1405

When dust or other foreign materials may enter the Ball Screw, it is necessary to use a contamination protection device (e.g., bellows) to completely protect the screw shaft.

[Lubrication]

The ball screw nuts are supplied with lithium soap-group grease with shipments.

(Models MDK and MBF are applied only with an anti-rust oil.)

[Additional Machining of the Shaft End]

Since only the effective thread of the screw shaft is surface treated with induction-hardening (all variations of models BNFN, BNF and BIF; model MDK 1405) or carburizing (all variations of model MBF; model MDK0401 to 1404), the shaft ends can additionally be machined easily either by grinding or milling.

In addition, since both ends of the screw shaft have a center hole, they can be cylindrically ground.

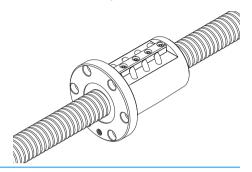
Surface hardness of the effect thread : HRC58 to 64

Hardness of the screw shaft ends

All variation of models BNFN, BNF and BIF; model MDK 1405 : HRC22 to 27
All variations of model MBF; model MDK0401 to 1404 : HRC35 or below

THK has standardized the shapes of the screw shaft ends in order to allow speedy estimation and manufacturing of the Ball Screws.

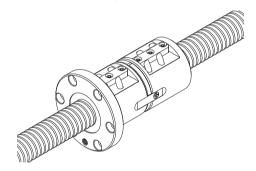
The shapes of shaft ends are divided into those allowing the standard support units to be used (symbols H, K and J) and those compliant with JIS B 1192-1997 (symbols A, B and C). See A-810 for details.


Types and Features

[Preload Type]

Model BIF

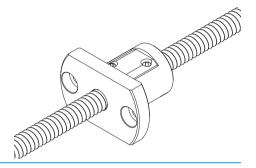
The right and left screws are provided with a phase in the middle of the ball screw nut, and an axial clearance is set at a below-zero value (under a preload). This compact model is capable of a smooth motion.


Specification Table⇒B-594

Model BNFN

The most common type with a preload provided via a spacer between the two combined ball screw nuts to eliminate backlash. It can be mounted using the bolt holes drilled on the flange.

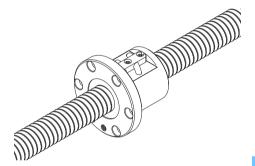
Specification Table⇒B-594


Standard-Stock Precision Ball Screw (Unfinished Shaft Ends)

[No Preload Type]

Models MDK and MBF

A miniature type with a screw shaft diameter of ϕ 4 to ϕ 14 mm and a lead of 1 to 5mm.



Model BNF

The simplest type with a single ball screw nut. It is designed to be mounted using the bolt holes drilled on the flange.

Specification Table⇒B-594

Service Life

For details, see A-704.

Nut Types and Axial Clearance

Screw shaft outer diameter (mm)	φ 4 to 14							
	Model	MDK	Model MBF					
Nut type	No prelo	pad type	No preload type					
Accuracy grades	C3, C5	C7	C3, C5	C7				
Axial clearance (mm)	0.005 or less (GT)	0.02 or less (G2)	0.005 or less (GT)					
Preload	_	_	-	_				

Note) The symbols in the parentheses indicate axial clearance symbols.

Screw shaft out diameter (mm)	φ16 to 50								
	Mode	el BIF	Model	BNFN	Model BNF				
Nut type	Preloa	d Type	Preloa	d Type	No preload type				
		· · · · · · · · · · · · · · · · · · ·	1						
Accuracy grades	C5 C7		C5	C7	C5	C7			
Axial clearance (mm)	0 or less (G0)	0 or less (G0)	0 or less (G0) 0 or less (G0)		0.01 or less (G1)	0.02 or less (G2)			
Preload	0.05Ca	0.05Ca	0.05Ca	0.05Ca		_			

Note1) The symbols in the parentheses indicate axial clearance symbols. Note2) Symbol "Ca" for preload indicates the basic dynamic load rating.

Features of Each Model

Standard-Stock Precision Ball Screw (Unfinished Shaft Ends)

Features	▶ ▶▶ A-761
Types and Features	▶ ▶▶ A-761
Table of Ball Screw Types with Finished Shaft Ends and the Corresponding Support Units and Nut Brackets	▶▶▶ A-762
Dimensional Drawing, Dimensional Table	▶ ▶ B-608

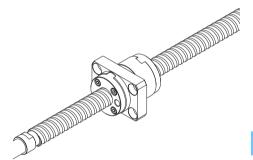
Features

To meet the space-saving requirement, this type of Ball Screw has a standardized screw shaft and a ball screw nut. The ends of the screw shaft are standardized to fit the corresponding support unit. The shaft support method with models BNK0401, 0501 and 0601 is "fixed-free," while other models use the "fixed-supported" method with the shaft directly coupled with the motor.

Screw shafts and nuts are compactly designed. When a support unit and a nut bracket are combined with a Ball Screw, the assembly can be mounted on your machine as it is. Thus, a high-accuracy feed mechanism can easily be achieved.

[Contamination Protection and Lubrication]

Each ball screw nut contains a right amount of grease. In addition, the ball nuts of model BNK0802 or higher contain a labyrinth seal (with models BNK1510, BNK1520, BNK1616, BNK2020 and BNK2520, the end cap also serves as a labyrinth seal).


When foreign materials may enter the screw nut, it is necessary to use a dust-prevention device (e.g., bellows) to completely protect the screw shaft.

Types and Features

Model BNK

For this model, screw shafts with a diameter ϕ 4 to ϕ 25 mm and a lead 1 to 20 mm are available as the standard.

Specification Table⇒B-608

Ball Screw

Table of Ball Screw Types with Finished Shaft Ends and the Corresponding

Support Units and Nut Brackets

Mode	. 1 N L					BNK				
Mode	el No.	0401 0501 0601 0801 0802 0810 1002 1004 1010						1010		
Accurac	y grades	C3, C5, C7					C5, C7			
Axial clea	arance ^{Note}	G0 GT G2	G0 GT G2	G0 GT G2	G0 GT G2	G0 GT G2	— GT G2	G0 GT G2	G0 GT G2	G0 GT G2
Axiai cle	20	•	•							
	30									
	40	•	•	•	•	•				
	50							•	•	
	60									
	70	•	•	•	•	•				
	100			•	•	•	•	•	•	•
	120									
	150				•	•	•	•	•	•
	170									
	200						•	•	•	•
_	250						•		•	•
(mu	300						•			•
) e	350									
Stroke (mm)	400									
S	450									
	500									
	550									
	600									
	700									
	800									
	900									
	1000									
	1100									
	1200									
	1400									
	1600									
Support unit: squ	are on fixed side	EK4	EK4	EK5	EK6	EK6	EK6	EK8	EK10	EK10
Support unit: rou	und on fixed side	FK4	FK4	FK5	FK6	FK6	FK6	FK8	FK10	FK10
	e on supported side	_	_	_	EF6	EF6	EF6	EF8	EF10	EF10
Support unit: round	d on supported side	_	_	_	FF6	FF6	FF6	FF8	FF10	FF10
Nut b	racket	-	-	-	_	_	-	-	MC1004	MC1004

Note) Axial clearance: G0: 0 or less
G1: 0.005 mm or less
G2: 0.02 mm or less
For details of the support unit and the nut bracket, see A-802 onward and A-812 onward, respectively.

Features of Each Model

Standard-Stock Precision Ball Screw (Finished Shaft Ends)

					BI	١K					
1202	1205	1208	1402	1404	1408	1510	1520	1616	2010	2020	2520
	C3, C5, C7	C7		C3, C5, C7		C5, C7	C5, C7				
G0 GT G2	G0 GT G2	— — G2	G0 GT G2	G0 GT G2	G0 GT G2	G0 GT G2	G0 GT G2	G0 GT G2	G0 GT G2	G0 GT G2	G0 GT G
•	•	•	•								
•	•	•	•	•							
•	•	•	•	•	•	•	•	•			
•	•	•	•	•	•	•	•	•			
•	•	•			•	•	•	•			
			•	•	•	•	•	•	•	•	
					•	•	•	•			
				•	•	•	•	•	•	•	
					•	•	•	•			
					•	•	•	•	•	•	•
					•	•	•	•			
					•	•	•	•	•	•	•
					•	•	•	•	•	•	
						•	•	•	•	•	•
									•	•	
									•	•	•
									•	•	
											•
											•
											•
EK10	EK10	EK10	EK12	EK12	EK12	EK12	EK12	EK12	EK15	EK15	EK20
FK10	FK10	FK10	FK12	FK12	FK12	FK12	FK12	FK12	FK15	FK15	FK20
EF10	EF10	EF10	EF12	EF12	EF12	EF12	EF12	EF12	EF15	EF15	EF20
FF10	FF10	FF10	FF12	FF12	FF12	FF12	FF12	FF12	FF15	FF15	FF20
_	MC1205	MC1205	_	_	MC1408	MC1408	MC1408	MC1408	MC2010	MC2020	_

Cturestrum and Factures	A 705
Structure and Features	▶ ▶▶ A-765
Types and Features	▶ ▶▶ A-769
Service Life	⊳⊳► A-704
Axial Clearance	⊳⊳► A-685
Accuracy Standards	▶▶▶ A-678
Dimensional Drawing, Dimensional Table (Preload Type) ▶▶▶ B-6	
Dimensional Drawing, Dimensional Table	(No Preload Type)▶▶▶ B-686
Model number coding	▶▶▶ B-718

Precision Ball Screw

Features of Each Model

For THK Precision Ball Screws, a wide array of precision-ground screw shafts and ball screw nuts are available as standard to meet diversified applications.

Structure and Features

[Combinations of Various shaft Diameters and Leads]

You can select the combination of a shaft diameter and a lead that meet the intended use from the various nut types and the screw shaft leads. Those nut types include the return-pipe nuts, which represent the most extensive variations among the series, the compact simple nuts and the large-lead end-cap nuts.

[Standard-stock Types (with Unfinished Shaft Ends/Finished Shaft Ends) are Available]

The unfinished shaft end types, which are mass manufactured by cutting the standardized screw shafts to the standard lengths, and those with finished shaft ends, for which the screw shaft ends are machined to match the corresponding the support units, are available as the standard.

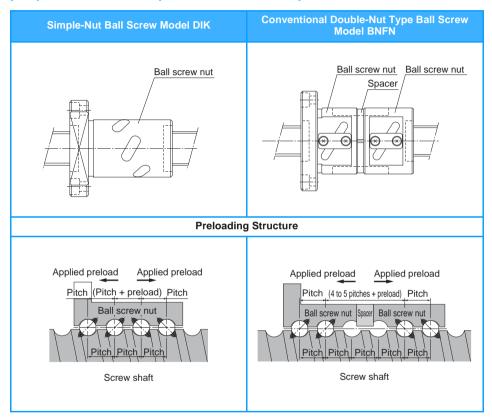
[Accuracy Standards Compliant with JIS (ISO)]

The accuracy of the Ball Screw is controlled in accordance with the JIS standards (JIS B1192-1997).

	Precision Ball Screw				Rolled Ball Screw			
Accuracy grades	C0	C1	C2	C3	C5	C7	C8	C10

Туре	Series symbol	Grade	Remarks	
For positioning	С	0, 1, 3, 5	JIS series	
	Ср	1, 3, 5	ISO compliant	
For conveyance	Ct	1, 3, 5, 7, 10	130 compliant	

[Options that Meet the Environment are Available]


Options are available consisting of a lubricator (QZ), which enables the maintenance interval to be significantly extended, and a wiper ring (W), which improves the ability to remove foreign materials in adverse environments.

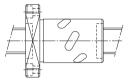
[Structure and Features of Offset Preload Type Simple-Nut Ball Screw Model DIK]

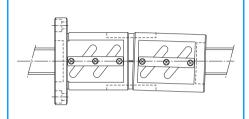
The Simple-Nut Ball Screw model DIK is an offset preload type in which a phase is provided in the middle of a single ball screw nut, and an axial clearance is set at a below-zero value (under a preload).

Model DIK has a more compact structure and allows smoother motion than the conventional doublenut type (spacer inserted between two nuts).

[Comparison between the Simple Nut and the Double-Nuts]

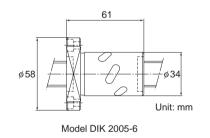
Precision Ball Screw

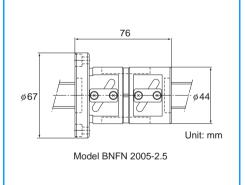

Simple-Nut Ball Screw Model DIK

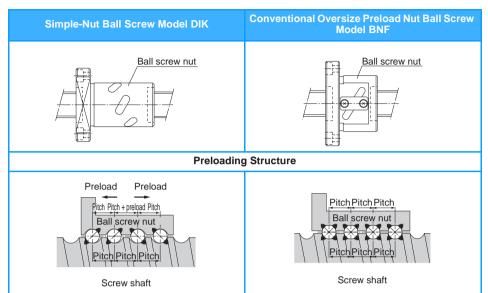

Conventional Double-Nut Type Ball Screw Model BNFN

Rotational Performance

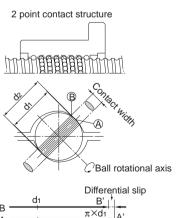
The preload adjustment with Simple Nut Ball Screw model DIK is performed according to the ball diameter. This eliminates the inconsistency in the contact angle, which is the most important factor of the Ball Screw performance. It also ensures the high rigidity, the smooth motion and the high wobbling accuracy.


The use of a spacer in the double-nuts tends to cause inconsistency in the contact angle due to inaccurate flatness of the spacer surface and an inaccurate perpendicularity of the nut. This results in a non-uniform ball contact, an inferior rotational performance and a low wobbling accuracy.

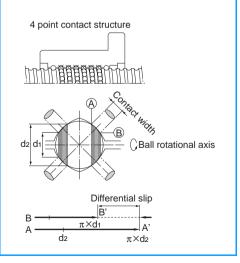



Dimensions

Since Simple-Nut Ball Screw model DIK is based on a preloading mechanism that does not require a spacer, the overall nut length can be kept short. As a result, the whole nut can be lightly and compactly designed.



[Comparison between the Offset Preload Type of Simple-Nut Ball Screw and the Oversize Preload Nut Ball Screw]

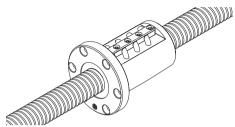

Accuracy Life

Simple-Nut Ball Screw model DIK has a similar preloading structure to that of the double-nut type although the former only has one ball screw shaft. As a result, no differential slip or spin occurs, thus to minimize the increase in the rotational torque and the generation of heat. Accordingly, a high level of accuracy can be maintained over a long period.

 $\pi \times d_2$

With the oversize preload nut Ball Screw, a preload is provided through the balls each in contact with the raceway at four points. This causes differential slip and spin to increase the rotational torque, resulting in an accelerated wear and a heat generation. Therefore, the accuracy deteriorates in a short period.

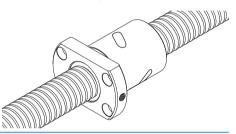
Precision Ball Screw


Types and Features

[Preload Type]

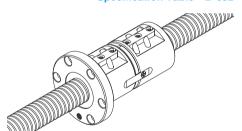
Model BIF

The right and the left screws are provided with a phase in the middle of the ball screw nut, and an axial clearance is set at a below-zero value (under a preload). This compact model is capable of a smooth motion.



Model DIK

The right and the left screws are provided with a phase in the middle of the ball screw nut, and an axial clearance is set at a below-zero value (under a preload). This compact model is capable of a smooth motion.

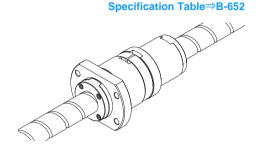

Specification Table⇒B-652

Model BNFN

The most common type with a preload provided via a spacer between the two combined ball screw nuts to eliminate the backlash. It can be mounted using the bolt holes drilled on the flange.

Specification Table⇒B-652

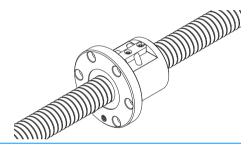
Model DKN


A preload is provided via a spacer between the two combined ball screw nuts to achieve a below-zero axial clearance (under a preload).

Specification Table⇒B-672

Model BLW

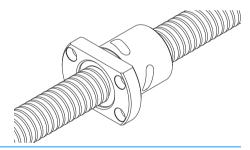
Since a preload is provided through a spacer between two large lead nuts, high-speed feed without by backlash is ensured.



[No Preload Type]

Model BNF

The simplest type with a single ball screw nut. It is designed to be mounted using the bolt holes drilled on the flange.


Specification Table⇒B-686

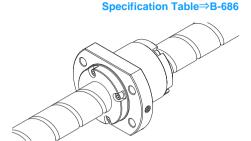
Model DK

The most compact type, with a ball screw nut diameter 70 to 80% of that of the return-pipe nut.

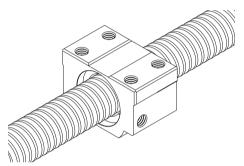
Specification Table⇒B-686

Model MDK

This model is a miniature nut with a screw shaft diameter of $\phi 4$ to 14 mm and a lead of 1 to 5 mm.


Specification Table⇒B-686

Specification Table⇒B-716


Models BLK/WGF

With model BLK, the shaft diameter is equal to the lead dimension. Model WGF has a lead dimension 1.5 to 3 times longer than the shaft diameter.

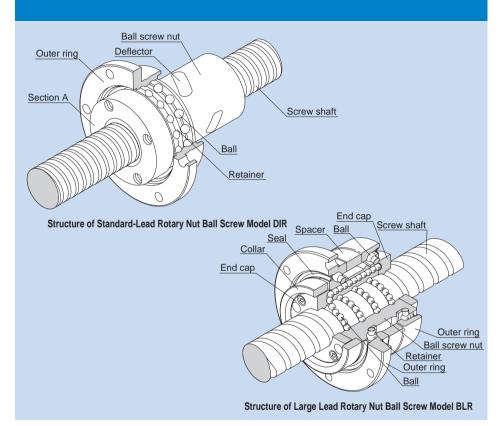
Square Ball Screw Nut Model BNT

Since mounting screw holes are machined on the square ball screw nut, this model can compactly be mounted on the machine without a housing.

Service Life

For details, see A-704.

Axial Clearance


For details, see A-685.

Accuracy Standards

For details, see A-678.

Precision Rotary Ball Screw

Models DIR and BLR

Structure and Features	▶ ▶▶ A-773
Туре	▶ ▶▶ A-775
Service Life	▶▶▶ A-704
Axial Clearance	▶ ▶▶ A-685
Accuracy Standards	▶ ▶▶ A-776
Example of Assembly	▶ ▶▶ A-778
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-720

Precision Rotary Ball Screw

Structure and Features

[Model DIR]

Standard-Lead Rotary-Nut Ball Screw model DIR is a rotary-nut Ball Screw that has a structure where a simple-nut Ball Screw is integrated with a support bearing.

Its ball screw nut serves as a ball recirculation structure using deflectors. Balls travel along the groove of the deflector mounted in the ball screw nut to the adjacent raceway, and then circulate back to the loaded area to complete an infinite rolling motion.

Being an offset preload nut, the single ball screw nut provides different phases to the right and left thread in the middle of the nut, thus to set the axial clearance below zero (a preload is provided). This allows more compact, smoother motion to be achieved than the conventional double-nut type (a spacer is inserted between two nuts).

The support bearing comprises of two rows of DB type angular bearings with a contact angle of 45° to provide a preload. The collar, previously used to mount a pulley, is integrated with the ball screw nut. (See the A section.)

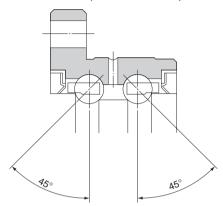


Fig.1 Structure of the Support Bearing

Compact

Because of the internal circulation mechanism using a deflector, the outer diameter is only 70 to 80%, and the overall length is 60 to 80%, of that of the return-pipe nut, thus to reduce the weight and decrease the inertia during acceleration.

Since the nut and the support bearing are integrated, a highly accurate, and a compact design is achieved.

In addition, small inertia due to the lightweight ball screw nut ensures high responsiveness.

Capable of Fine Positioning

Being a Standard-Lead Ball Screw, it is capable of fine positioning despite that the ball screw nut rotates.

Accuracy can Easily be Established

As the support bearing is integrated with the outer ring, the bearing can be assembled with the nut housing on the end face of the outer ring flange. This makes it easy to center the ball screw nut and establish accuracy.

Well Balanced

Since the deflector is evenly placed along the circumference, a superb balance is ensured while the ball screw nut is rotating.

Stability in the Low-speed Range

Traditionally, motors tend to have an uneven torque and a speed in the low-speed range due to the external causes. With model DIR, the motor can be connected independently with the screw shaft and the ball screw nut, thus to allow micro feeding within the motor's stable rotation range.

[Model BLR]

The Rotary Ball Screw is a rotary-nut ball screw unit that has an integrated structure consisting of a ball screw nut and a support bearing. The support bearing is an angular bearing that has a contact angle of 60° , contains an increased number of balls and achieves large axial rigidity.

Model BLR is divided into two types: Precision Ball Screw and Rolled Screw Ball.

Smooth Motion

It achieves smoother motion than rack-and-pinion based straight motion. Also, since the screw shaft does not rotate because of the ball screw nut drive, this model does not show skipping, produces low noise and generates little heat.

Low Noise even in High-speed Rotation

Model BLR produces very low noise when the balls are picked up along the end cap. In addition, the balls circulate by passing through the ball screw nut, allowing this model to be used at high speed.

High Rigidity

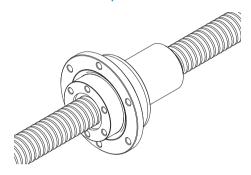
The support bearing of this model is larger than that of the screw shaft rotational type. Thus, its axial rigidity is significantly increased.

Compact

Since the nut and the support bearing are integrated, a highly accurate, and a compact design is achieved.

Easy Installation

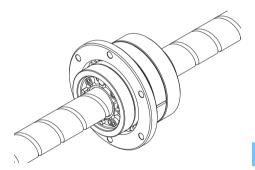
By simply mounting this model to the housing with bolts, a ball screw nut rotating mechanism can be obtained. (For the housing's inner-diameter tolerance, H7 is recommended.)


Precision Rotary Ball Screw

Type

[Preload Type]

Model DIR


Specification Table⇒B-720

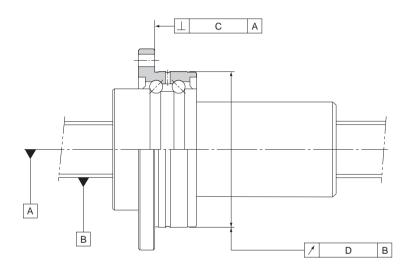
[No Preload Type]

Model BLR

Specification Table⇒B-722

Service Life

For details, see A-704.

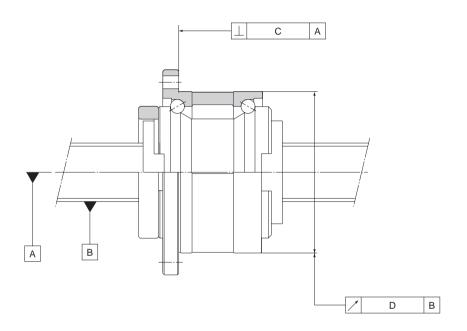

Axial Clearance

For details, see A-685.

Accuracy Standards

[Model DIR]

The accuracy of model DIR is compliant with a the JIS standard (JIS B 1192-1997) except for the radial runout of the circumference of the ball screw nut from the screw axis (D) and the perpendicularity of the flange-mounting surface against the screw axis (C).

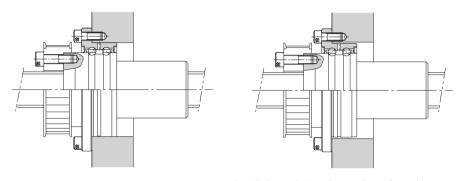

Unit: mm

Accuracy grades	C3		С	5	C7		
Model No.	С	D	С	D	С	D	
DIR 16□□	0.013	0.017	0.016	0.020	0.023	0.035	
DIR 20□□	0.013	0.017	0.016	0.020	0.023	0.035	
DIR 25□□	0.015	0.020	0.018	0.024	0.023	0.035	
DIR 32□□	0.015	0.020	0.018	0.024	0.023	0.035	
DIR 36□□	0.016	0.021	0.019	0.025	0.024	0.036	
DIR 40□□	0.018	0.026	0.021	0.033	0.026	0.036	

Precision Rotary Ball Screw

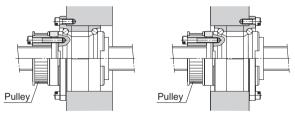
[Model BLR]

The accuracy of model BLR is compliant with a the JIS standard (JIS B 1192-1997) except for the radial runout of the circumference of the ball screw nut from the screw axis (D) and the perpendicularity of the flange-mounting surface against the screw axis (C).



Unit: mm

						O
Lead angle accuracy	C3		C5		C7	
Accuracy grades	C3		C5		C7	
Model No.	С	D	С	D	С	D
BLR 1616	0.013	0.017	0.016	0.020	0.023	0.035
BLR 2020	0.013	0.017	0.016	0.020	0.023	0.035
BLR 2525	0.015	0.020	0.018	0.024	0.023	0.035
BLR 3232	0.015	0.020	0.018	0.024	0.023	0.035
BLR 3636	0.016	0.021	0.019	0.025	0.024	0.036
BLR 4040	0.018	0.026	0.021	0.033	0.026	0.046
BLR 5050	0.018	0.026	0.021	0.033	0.026	0.046


Example of Assembly

[Example of Mounting Ball Screw Nut Model DIR]

Installation to the housing can be performed on the end face of the outer ring flange.

[Example of Mounting Ball Screw Nut Model BLR]

Standard installation method

Inverted flange

Note) If the flange is to be inverted, indicate "K" in the model number. (applicable only to model BLR)

Example: BLR 2020-3.6 K UU

Symbol for inverted flange (No symbol for standard flange orientation)

Precision Rotary Ball Screw

[Example of Mounting Model BLR on the Table]

(1) Screw shaft free, ball screw nut fixed (Suitable for a long table)

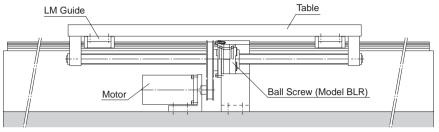


Fig.2 Example of Installation on the Table (Ball Screw Nut Fixed)

(2) Ball screw nut free, screw shaft fixed (Suitable for a short table and a long stroke)

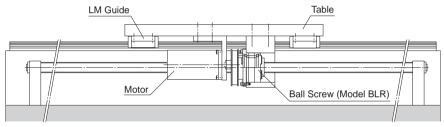


Fig.3 Example of Installation on the Table (Screw Shaft Fixed)

Precision Ball Screw/Spline Models BNS-A, BNS, NS-A and NS Shaft Seal Collar Shim plate Seal End cap Outer ring Shim plate Seal Ball Outer ring Spline nut Ball screw nut Outer ring Ball Retainer Retainer

Structure and Features	▶ ▶▶ A-781
Туре	▶ ▶▶ A-782
Service Life	▶▶▶ A-704
Axial Clearance	▶▶▶ A-685
Accuracy Standards	▶▶▶ A-783
Action Patterns	▶▶▶ A-784
Example of Assembly	▶▶▶ A-787
Example of Using the Spring Pad	▶▶▶ A-788
Precautions on Use	▶▶▶ A-789
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B-726

Outer ring

Precision Ball Screw/Spline

Structure and Features

The Ball Screw/Spline contains the Ball Screw grooves and the Ball Spline groove crossing one another. The nuts of the Ball Screw and the Ball Spline have dedicated support bearings directly embedded on the circumference of the nuts.

The Ball Screw/Spline is capable of performing three (rotational, linear and spiral) modes of motion with a single shaft by rotating or stopping the spline nut.

It is optimal for machines using a combination of rotary and straight motions, such as scholar robot's Z-axis, assembly robot, automatic loader, and machining center's ATC equipment.

[Zero Axial Clearance]

The Ball Spline has an angular-contact structure that causes no backlash in the rotational direction, enabling highly accurate positioning.

[Lightweight and Compact]

Since the nut and the support bearing are integrated, highly accurate, compact design is achieved. In addition, small inertia because of the lightweight ball screw nut ensures high responsiveness.

[Easy Installation]

The Ball Spline nut is designed so that balls do not fall off even if the spline nut is removed from the shaft, making installation easy. The Ball Screw/Spline can easily be mounted simply by securing it to the housing with bolts. (For the housing's inner-diameter tolerance, H7 is recommended.)

[Smooth Motion with Low Noise]

As the Ball Screw is based on an end cap mechanism, smooth motion with low noise is achieved.

[Highly Rigid Support Bearing]

The support bearing on the Ball Screw has a contact angle of 60° in the axial direction while that on the Ball Spline has a contact angle of 30° in the moment direction, thus to provide a highly rigid shaft support.

In addition, a dedicated rubber seal is attached as standard to prevent entry of foreign materials.

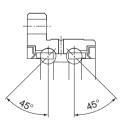


Fig.1 Structure of Support Bearing Model BNS-A

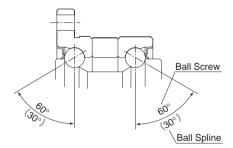
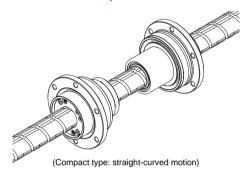
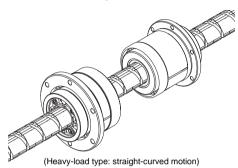
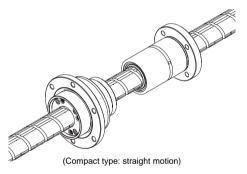
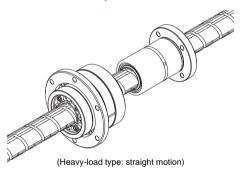



Fig.2 Structure of Support Bearing Model BNS


Type

[No Preload Type]


Model BNS-A Specification Table⇒B-726


Model BNS Specification Table⇒B-728

Model NS-A Specification Table⇒B-730

Model NS Specification Table⇒B-732

Service Life

For details, see A-704.

Axial Clearance

For details, see A-685.

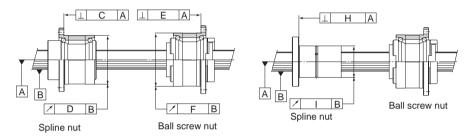
Accuracy Standards

The Ball Screw/Spline is manufactured with the following specifications.

[Ball Screw]

Axial clearance: 0 or less Lead angle accuracy: C5

(For detailed specifications, see A-678.)

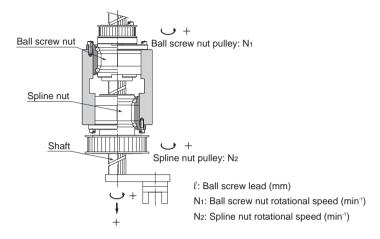

[Ball Spline]

Clearance in the rotational direction: 0 or less (CL: light preload)

(For detailed specifications, see A-481.)

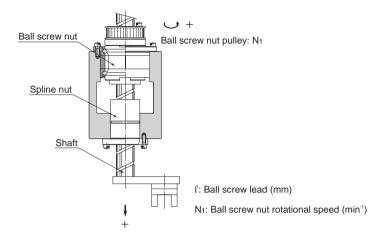
Accuracy grade: class H

(For detailed specifications, see A-482.)


Model BNS Model NS

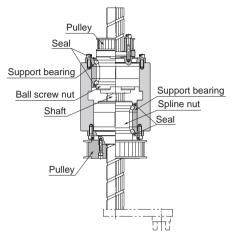
Unit: mm

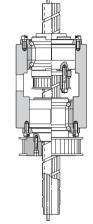
Model No.	С	D	E	F	Н	I
BNS 0812 NS 0812	0.014	0.017	0.014	0.016	0.010	0.013
BNS 1015 NS 1015	0.014	0.017	0.014	0.016	0.010	0.013
BNS 1616 NS 1616	0.018	0.021	0.016	0.020	0.013	0.016
BNS 2020 NS 2020	0.018	0.021	0.016	0.020	0.013	0.016
BNS 2525 NS 2525	0.021	0.021	0.018	0.024	0.016	0.016
BNS 3232 NS 3232	0.021	0.021	0.018	0.024	0.016	0.016
BNS 4040 NS 4040	0.025	0.025	0.021	0.033	0.019	0.019
BNS 5050 NS 5050	0.025	0.025	0.021	0.033	0.019	0.019


Action Patterns

[Model BNS Basic Actions]

Maria		Action	Inp	out	Shaft i	motion
Motion		direction	Ball screw pulley	Ball spline pulley	Vertical direction (speed)	Rotational direction (rotation speed)
1. Vertical	(1)	Vertical direc- tion→down	N ₁	0	V=N₁•ℓ	0
	(1)	Rotational direction→0	(Forward)	U	(N₁≠0)	U
	(2)	Vertical direc- tion→up	- N ₁	0	V=− N₁ • ℓ	0
①	(2)	Rotational direction→0	(Reverse)	U	(N₁≠0)	O
2. Rotation ا	(1)	Vertical direction→0	N ₁	N ₂	0	N ₂ (Forward)
	(1)	Rotational direction→forward	IN1	(Forward)	U	(N₁=N₂≠0)
	(2)	Vertical direction→0	- N ₁	- N ₂	0	-N ₂ (Reverse) (-N₁=-N₂≠
	(2)	Rotational direction→reverse	-141	(Reverse)	U	0)
3. Spiral	(1)	Vertical direc- tion→up	0	N ₂	V=N₂•ℓ	N ₂
	(1)	Rotational direction→forward	V	(N₂≠0)	V -1 42 1	(Forward)
	(2)	Vertical direction→down	0	- N ₂	V=- N2 • f	- N ₂
	(2)	Rotational direction→reverse	3	(-N₂≠0)	V = 142 t	(Reverse)


[Model NS Basic Actions]



Magazi		A.C. Barrella	Input	Shaft motion
Motion		Action direction	Ball screw pulley	Vertical direction (speed)
1. Vertical	(1)	Vertical direction →down	N₁ (Forward)	$ \bigvee_{1} = N_1 \cdot \ell $ $ (N_1 \neq 0) $
1 12	(2)	Vertical direction →up	−N₁ (Reverse)	$V=-N_1 \cdot \ell \\ (N_1 \neq 0)$

[Model BNS Extended Actions]

		Action	Inj	out	Shaft	motion
Motion		direction	Ball screw pulley	Ball spline pulley	Vertical direction (speed)	Rotational direction (rotational speed)
1. Up→down→forward	(1)	Vertical direc- tion→up	-N₁ (Reverse)	0	$V=-N_1 \cdot \ell \\ (N_1 \neq 0)$	0
→up→down→reverse	(2)	Vertical direction→down	N₁ (Forward)	0	V=N₁•ℓ (N₁≠0)	0
	(3)	Rotational direction—forward	N ₁	N₂ (Forward)	0	$N_2(Forward)$ $(N_1=N_2\neq 0)$
Q. 4. (S)	(4)	Vertical direc- tion→up	- N ₁	0	$V=-N_1 \cdot \ell \\ (N_1 \neq 0)$	0
	(5)	Vertical direction→down	N ₁	0	$V=N_1 \cdot \ell \\ (N_1 \neq 0)$	0
<u>©</u>	(6)	Rotational direction→reverse	- N ₁	-N ₂ (Reverse)	0	$-N_2(Reverse)$ $(-N_1=N_2\neq 0)$
2. Down→up→forward	(1)	Vertical direction→down	N ₁	0	$V=N_1 \cdot \ell \\ (N_1 \neq 0)$	0
→down→up→reverse	(2)	Vertical direc- tion→up	- N ₁	0	$V=-N_1 \cdot \ell \\ (N_1 \neq 0)$	0
	(3)	Rotational direction→forward	N ₁	N ₂	0	$N_2 \ (N_1=N_2\neq 0)$
	(4)	Vertical direction→down	N ₁	0	V=N₁•ℓ (N₁≠0)	0
	(5)	Vertical direc- tion→up	- N ₁	0	$V=-N_1 \cdot \ell \\ (N_1 \neq 0)$	0
(1)¶ 1 5 2 4	(6)	Rotational direction—reverse	- N ₁	- N ₂	0	$-N_2 (-N_1=N_2\neq 0)$
3. Down→forward	(1)	Vertical direction→down	N ₁	0	$V=N_1 \cdot \ell \\ (N_1 \neq 0)$	0
→up→reverse	(2)	Rotational direction→forward	N ₁	N_2	0	$N_2 \ (N_1=N_2\neq 0)$
	(3)	Vertical direc- tion→up	- N ₁	0	$V=-N_1 \cdot \ell \\ (N_1 \neq 0)$	0
0 2 3	(4)	Rotational direction→reverse	- N ₁	- N ₂	0	$-N_2$ $(-N_1=N_2\neq 0)$
4. Down→up →reverse→forward	(1)	Vertical direc- tion→down	N ₁	0	V=N₁•ℓ (N₁≠0)	0
	(2)	Vertical direc- tion→up	- N ₁	0	$V=-N_1 \cdot \ell \\ (N_1 \neq 0)$	0
	(3)	Rotational direction→reverse	- N ₁	- N ₂	0	$-N_2$ $(-N_1=N_2\neq 0)$
	(4)	Rotational direction→forward	N ₁	N ₂	0	$N_2 \ (N_1=N_2\neq 0)$

 Example of installing the ball screw nut input pulley and the spline nut input pulley, both outside the housing.
 The housing length is minimized.

Example of installing the ball screw nut pulleyinside the housing.

Fig.3 Example of Assembling Model BNS

 Example of installing the ball screw nut pulley outside the housing.
 The housing length is minimized.

 Example of installing the ball screw nut pulley inside the housing.

Fig.4 Example of Assembling Model NS

ТНК А-787 8 (800) 700-72-07 (бесплатно)

Ball Screw

sale@technobearing.ru

www.technobearing.ru

Example of Using the Spring Pad

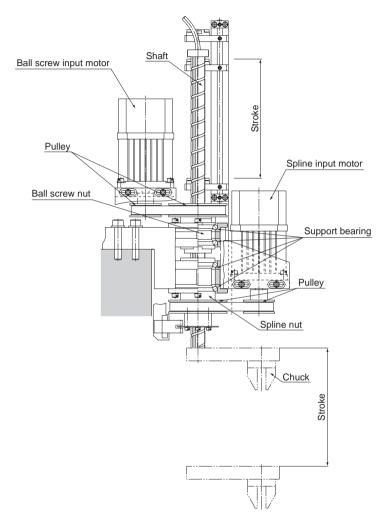


Fig.5 Example of Using Model BNS

Precautions on Use

[Lubrication]

When lubricating the Ball Screw/Spline, attach the greasing plate to the housing in advance.

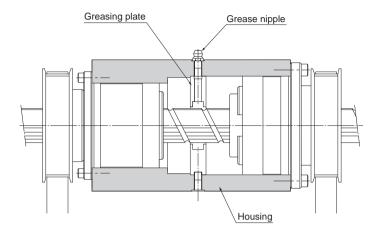
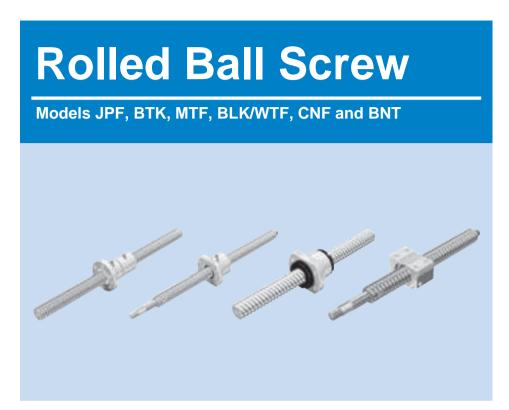



Fig.6 Lubrication Methods

Structure and Features	▶ ▶▶ A-791
Types and Features	▶ ▶▶ A-792
Service Life	▶ ▶▶ A-704
Axial Clearance	▶ ▶▶ A-685
Accuracy Standards	▶ ▶▶ A-678
Dimensional Drawing, Dimensional Tabl	e (Preload Type) ▶▶▶ B-736
Dimensional Drawing, Dimensional Table	(No Preload Type)⊳⊳⊳ B-738
Model number coding	▶▶▶ B-746

Rolled Ball Screw

Structure and Features

THK Rolled Ball Screws are low priced feed screws that use a screw shaft rolled with high accuracy and specially surface-ground, instead of a thread-ground shaft used in the Precision Ball Screws.

The ball raceways of the ball screw nut are all thread-ground, thus to achieve a smaller axial clearance and smoother motion than the conventional rolled ball screw.

In addition, a wide array of types are offered as standard in order to allow optimal products to be selected according to the application.

[Achieves Lead Angle Accuracy of Class C7]

Screw shafts with travel distance error of classes C7 and C8 are also manufactured as the standard in addition to class C10 to meet a broad range of applications.

Travel distance C7: ±0.05/300 (mm)

> C8: ±0.10/300 (mm) C10: ±0.21/300 (mm)

(For maximum length of screw shaft by accuracy grade, see A-691.)

[Achieves Roughness of the Ball Raceways of the Screw Shaft at 0.20 a or Less]

The surface of the screw shaft's ball raceways is specially ground after the shaft is rolled to ensure surface roughness of 0.20 a or less, which is equal to that of the ground thread of the Precision Ball Screw.

[The Ball Raceways of the Ball Screw Nut are All Finished by Grinding]

THK finishes the ball raceways of Rolled Ball Screw nuts by grinding, just as the Precision Ball Screws, to secure the durability and the smooth motion.

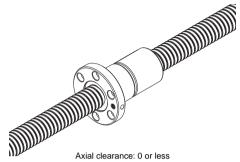
[Low Price]

The screw shaft is induction-hardened or carburized after being rolled, and its surface is then specially ground. This allows the rolled Ball Screw to be priced lower than the Precision Ball Screw with a ground thread.

[High Dust-prevention Effect]

The ball screw nut is incorporated with a compact labyrinth seal or a brush seal. This achieves a low friction, a high dust-prevention effect and a longer service life of the Ball Screw.

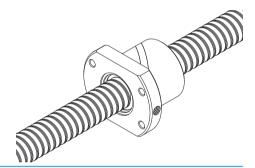
Types and Features


[Preload Type]

Model JPF

This model achieves a zero-backlash through a constant preloading method by shifting the phase with the central part of a simple nut as the spring structure.

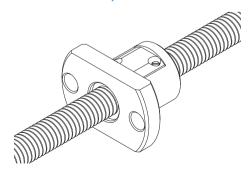
The constant preload method allows the ball screw to absorb a pitch error and achieve a smooth motion.



[No Preload Type]

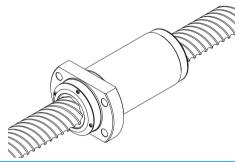
Model BTK

A compact type with a round nut incorporated with a return pipe. The flange circumference is cut flat at the top and bottom, allowing the shaft center to be positioned lower.


Specification Table⇒B-738

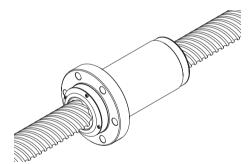
Model MTF

A miniature type with a screw shaft diameter of ϕ 6 to ϕ 12 mm and a lead of 1 to 2 mm.


Specification Table⇒B-738

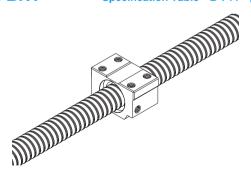
Models BLK/WTF

Using an end-cap method, these models achieve stable motion in a high-speed rotation.



Model CNF

With a combination of 4 rows of large-lead loaded grooves and a long nut, a long service life is achieved.


Specification Table⇒B-738

Square Ball Screw Nut Model BNT

Since the mounting screw holes are machined on the square ball screw nut, this model can compactly be mounted on the machine without a housing.

Specification Table⇒B-744

www.technobearing.ru 8 (800) 700-	-72
-----------------------------------	-----

Service Life

For details, see A-704.

Axial Clearance

For details, see A-685.

Accuracy Standards

For details, see A-678.

Features of Each Model
Rolled Ball Screw

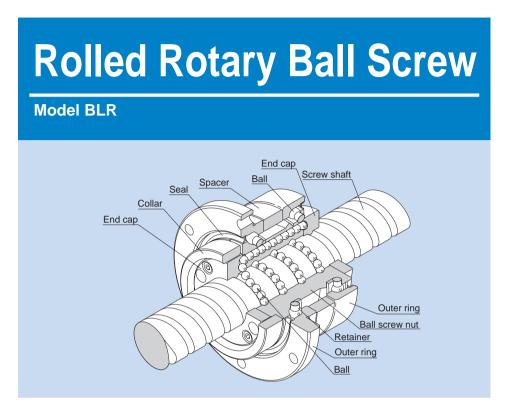


Fig.1 Structure of Large Lead Rotary Nut Ball Screw Model BLR

Structure and Features	▶ ▶▶ A-797
Туре	▶ ▶▶ A-797
Service Life	▶▶▶ A-704
Axial Clearance	▶▶▶ A-685
Accuracy Standards	▶ ▶▶ A-798
Example of Assembly	▶ ▶▶ A-799
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶ ▶ B-748

Rolled Rotary Ball Screw

Structure and Features

The Rotary Ball Screw is a rotary-nut ball screw unit that has an integrated structure consisting of a ball screw nut and a support bearing. The support bearing is an angular bearing that has a contact angle of 60°, contains an increased number of balls and achieves a large axial rigidity. Model BLR is divided into two types: the Precision Ball Screw and the Rolled Screw Ball.

[Smooth Motion]

It achieves smoother motion than the rack-and-pinion based straight motion. Also, since the screw shaft does not rotate because of the ball screw nut drive, this model does not show skipping, produces low noise and generates little heat.

[Low Noise even in High-speed Rotation]

Model BLR produces very low noise when the balls are picked up along the end cap. In addition, the balls circulate by passing through the ball screw nut, allowing this model to be used at high speed.

[High Rigidity]

The support bearing of this model is larger than that of the screw shaft rotational type. Thus, its axial rigidity is significantly increased.

[Compact]

Since the nut and the support bearing are integrated, a highly accurate, and a compact design is achieved.

[Easy Installation]


By simply mounting this model to the housing using bolts, a ball screw nut rotating mechanism can be obtained. (For the housing's inner-diameter tolerance, H7 is recommended.)

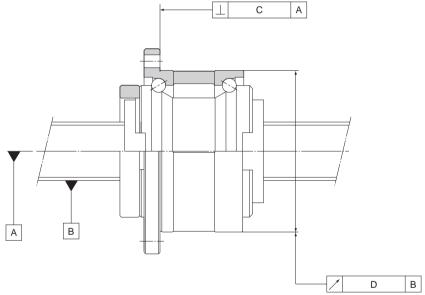
Type

[No Preload Type]

Model BLR

Specification Table⇒B-748

Service Life

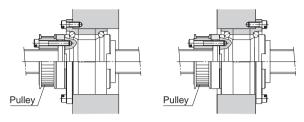

For details, see A-704.

Axial Clearance

For details, see A-685.

Accuracy Standards

The accuracy of model BLR is compliant with the JIS standard (JIS B 1192-1997) except for the radial runout of the circumference of the ball screw nut from the screw axis (D) and the perpendicularity of the flange-mounting surface against the screw axis (C).


Unit: mm

Lead angle accuracy	C7, C8, C10		
Accuracy grades	C10		
Model No.	С	D	
BLR 1616	0.035	0.065	
BLR 2020	0.035	0.065	
BLR 2525	0.035	0.065	
BLR 3232	0.035	0.065	
BLR 3636	0.036	0.066	
BLR 4040	0.046	0.086	
BLR 5050	0.046	0.086	

Rolled Rotary Ball Screw

Example of Assembly

[Example of Mounting Ball Screw Nut Model BLR]

Standard installation method

Inverted flange

Note) If the flange is to be inverted, indicate "K" in the model number. (applicable only to model BLR)

Example: BLR 2020-3.6 K UU

- Symbol for invert

(No symbol for standard flange orientation)

[Example of Mounting Model BLR on the Table]

 Screw shaft free, ball screw nut fixed (Suitable for a long table)

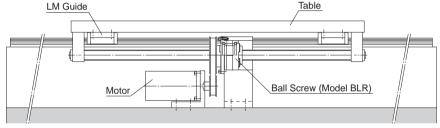


Fig.2 Example of Installation on the Table (Ball Screw Nut Fixed)

(2) Ball screw nut free, screw shaft fixed (Suitable for a short table and a long stroke)

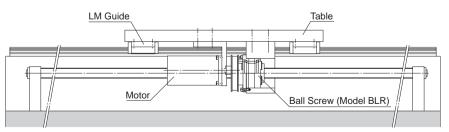


Fig.3 Example of Installation on the Table (Screw Shaft Fixed)

Ball Screw Ball Screw Peripherals

Support Unit

Models EK, BK, FK, EF, BF and FF

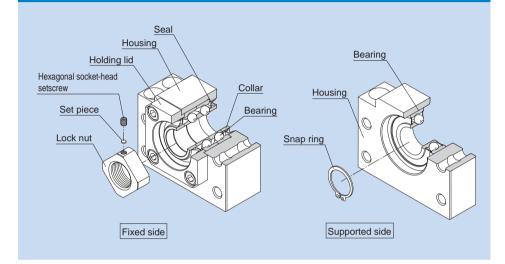


Fig.1 Structure of the Support Unit

Structure and Features

The Support Unit comes in six types: models EK, FK, EF, and FF, which are standardized for the standard Ball Screw assembly provided with the finished shaft ends, and models BK and BF, which are standardized for ball screws in general.

The Support Unit on the fixed side contains a JIS Class 5-compliant angular bearing provided with an adjusted preload. The miniature type Support Unit models EK/FK 4, 5, 6 and 8, in particular, incorporate a miniature bearing with a contact angle of 45° developed exclusively for miniature Ball Screws. This provides stable rotational performance with a high rigidity and an accuracy.

The Support Unit on the supported side uses a deep-groove ball bearing.

The internal bearings of the Support Unit models EK, FK and BK contain an appropriate amount of lithium soap-group grease that is sealed with a special seal. Thus, these models are capable of operating over a long period.

Ball Screw Peripherals

Support Unit

[Uses the Optimal Bearing]

To ensure the rigidity balance with the Ball Screw, the Support Unit uses an angular bearing (contact angle: 30°; DF configuration) with a high rigidity and a low torque. Miniature Support Unit models EK/ FK 4, 5, 6 and 8 are incorporated with a miniature angular bearing with a contact angle of 45° developed exclusively for miniature Ball Screws. This bearing has a greater contact angle of 45° and an increased number of balls with a smaller diameter. The high rigidity and accuracy of the miniature angular bearing provides the stable rotational performance.

[Support Unit Shapes]

The square and round shapes are available for the Support Unit to allow the selection according to the intended use.

[Compact and Easy Installation]

The Support Unit is compactly designed to accommodate the space in the installation site. As the bearing is provided with an appropriately adjusted preload, the Support Unit can be assembled with a Ball Screw unit with no further machining. Accordingly, the required man-hours in the assembly can be reduced and the assembly accuracy can be increased.

Type

[For the Fixed Side]

Square Type Model EK

Specification Table⇒B-754

Round Type Model FK

Specification Table⇒B-758

Square Type Model BK

Specification Table⇒B-756

(Inner diameter: ϕ 10 to ϕ 40)

(Inner diameter: $\phi 4$ to $\phi 30$)

[For the Supported Side]

Square Type Model EF

Specification Table⇒B-762

(Inner diameter: ϕ 6 to ϕ 20)

Round Type Model FF

Specification Table⇒B-766

Square Type Model BF

Specification Table⇒B-764

(Inner diameter: ϕ 8 to ϕ 40)

Types of Support Units and Applicable Screw Shaft Outer Diameters

Inner diameter of the fixed side Sup- port Unit (mm)	Applicable model No. of the fixed side Support Unit	Inner diameter of the supported side Support Unit (mm)	Applicable model No. of the sup- ported side Sup- port Unit	Applicable screw shaft outer diameter (mm)
4	EK 4 FK 4	_	_	φ4
5	EK 5 FK 5	_	-	φ6
6	EK 6 FK 6	6	EF 6 FF 6	φ8
8	EK 8 FK 8	6	EF 8 FF 6	<i>φ</i> 10
10	EK 10 FK 10 BK 10	8	EF 10 FF 10 BF 10	φ12, φ14
12	EK 12 FK 12 BK 12	10	EF 12 FF 12 BF 12	φ14, φ15, φ16
15	EK 15 FK 15 BK 15	15	EF 15 FF 15 BF 15	φ20
17	BK 17	17	BF 17	φ20, φ25
20	EK 20 FK 20 BK 20	20	EF 20 FF 20 BF 20	φ25, φ28, φ32
25	FK 25 BK 25	25	FF 25 BF 25	φ36
30	FK 30 BK 30	30	FF 30 BF 30	φ40, φ45
35	BK 35	35	BF 35	φ45
40	BK 40	40	BF 40	φ50

Note) The Supports Units in this table apply only to those Ball Screw models with recommended shaft ends shapes H, J and K, indicated on A-810.

Model Numbers of Bearings and Characteristic Values

Angular ball bearing on the fixed side				Deep-groove ball bearing on the supported side				
	Command		Axial direction				Radial direction	
Support Unit model No.	Bearing model No.	Basic dynamic load rating Ca (kN)	Note) Permissi- ble load (kN)	Rigidity (N/μm)	Support Unit model No.	Bearing model No.	Basic dynamic load rating C(kN)	Basic static load rating C₀(kN)
EK 4 FK 4	AC4-12P5	0.93	1.1	27	_	_	_	_
EK 5 FK 5	AC5-14P5	1	1.24	29	_	_	_	_
EK 6 FK 6	AC6-16P5	1.38	1.76	35	EF 6 FF 6	606ZZ	2.19	0.87
EK 8 FK 8	79M8DF GMP5	2.93	2.15	49	EF 8	606ZZ	2.19	0.87
EK 10 FK 10 BK 10	7000HTDF GMP5	6.08	3.1	65	EF 10 FF 10 BF 10	608ZZ	3.35	1.4
EK 12 FK 12 BK 12	7001HTDF GMP5	6.66	3.25	88	EF 12 FF 12 BF 12	6000ZZ	4.55	1.96
EK 15 FK 15 BK 15	7002HTDF GMP5	7.6	4	100	EF 15 FF 15 BF 15	6002ZZ	5.6	2.84
BK 17	7203HTDF GMP5	13.7	5.85	125	BF 17	6203ZZ	9.6	4.6
EK 20 FK 20	7204HTDF GMP5	17.9	9.5	170	EF 20 FF 20	6204ZZ	12.8	6.65
BK 20	7004HTDF GMP5	12.7	7.55	140	BF 20	6004ZZ	9.4	5.05
FK 25 BK 25	7205HTDF GMP5	20.2	11.5	190	FF 25 BF 25	6205ZZ	14	7.85
FK 30 BK 30	7206HTDF GMP5	28	16.3	195	FF 30 BF 30	6206ZZ	19.5	11.3
BK 35	7207HTDF GMP5	37.2	21.9	255	BF35	6207ZZ	25.7	15.3
BK 40	7208HTDF GMP5	44.1	27.1	270	BF 40	6208ZZ	29.1	17.8

Note) "Permissible load" indicates the static permissible load.

Ball Screw Peripherals

Support Unit

Example of Installation

[Square Type Support Unit]



Fig.2 Example of Installing a Square Type Support Unit

[Round Type Support Unit]

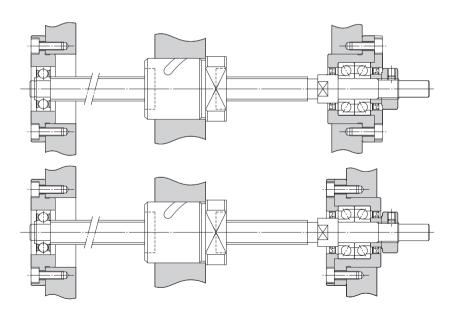
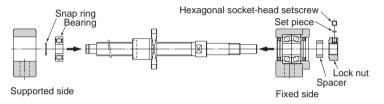


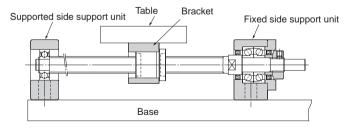
Fig.3 Example of Installing a Round Type Support Unit

Mounting Procedure


[Installing the Support Unit]

- (1) Install the fixed side Support Unit with the screw shaft.
- (2) After inserting the fixed side Support Unit, secure the lock nut using the fastening set piece and the hexagonal socket-head setscrews.
- (3) Attach the supported side bearing to the screw shaft and secure the bearing using the snap ring, and then install the assembly to the housing on the supported side.

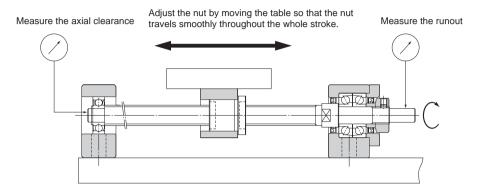
Note1) Do no disassemble the Support Unit.


Note2) When inserting the screw shaft to the Support Unit, take care not to let the oil seal lip turn outward.

Note3) When securing the set piece with a hexagonal socket-head setscrew, apply an adhesive to the hexagonal socket-head setscrew before tightening it in order to prevent the screw from loosening. If planning to use the product in a harsh environment, it is also necessary to take a measure to prevent other components/parts from loosening. Contact THK for details.

[Installation onto the Table and the Base]

- (1) If using a bracket when mounting the ball screw nut to the table, insert the nut into the bracket and temporarily fasten it.
- (2) Temporarily fasten the fixed side Support Unit to the base. In doing so, press the table toward the fixed side Support Unit to align the axial center, and adjust the table so that it can travel freely.
 - If using the fixed side Support Unit as the reference point, secure a clearance between the ball screw nut and the table or inside the bracket when making adjustment.
 - If using the table as the reference point, make the adjustment either by using the shim (for a square type Support Unit), or securing the clearance between the outer surface of the nut and the inner surface of the mounting section (for a round type Support Unit).
- (3) Press the table toward the fixed-side Support Unit to align the axial center. Make the adjustment by reciprocating the table several times so that the nut travels smoothly throughout the whole stroke, and temporarily secure the Support Unit to the base.

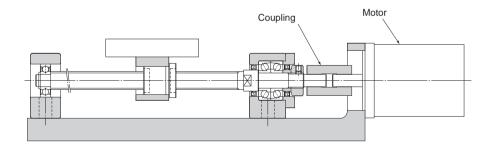


Ball Screw Peripherals

Support Unit

[Checking the Accuracy and Fully Fastening the Support Unit]

While checking the runout of the ball screw shaft end and the axial clearance using a dial gauge, fully fasten the ball screw nut, the nut bracket, the fixed side Support Unit and the supported-side Support Unit. in this order.



[Connection with the Motor]

- (1) Mount the motor bracket to the base.
- (2) Connect the motor and the ball screw using a coupling.

Note) Make sure the mounting accuracy is maintained.

(3) Thoroughly perform the break-in for the system.

Types of Recommended Shapes of the Shaft Ends

To ensure speedy estimates and manufacturing of Ball Screws, THK has standardized the shaft end shapes of the screw shafts. The recommended shapes of shaft ends consist of shapes H, K and J, which allow standard Support Units to be used.

Mounting method	Symb shaf sha	ool for t end ape	Shape	Supported Support Unit
	J1			FK EK
				ВК
		H2		FK EK
Fixed H J	d J	ВК		
	Н3	Н3		FK EK
		J3		вк
Sup- ported	ŀ	<		FF EF BF

Nut bracket

Model MC

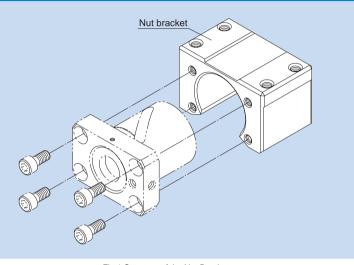


Fig.1 Structure of the Nut Bracket


Structure and Features

The Nut Bracket is standardized for the standard Ball Screw assembly provided with finished shaft ends. It is designed to be secured directly on the table with bolts. Since the height is low, it can be mounted on the table only using bolts.

Type

Nut Bracket Model MC

Specification Table⇒B-774

Ball Screw Peripherals

Lock Nut

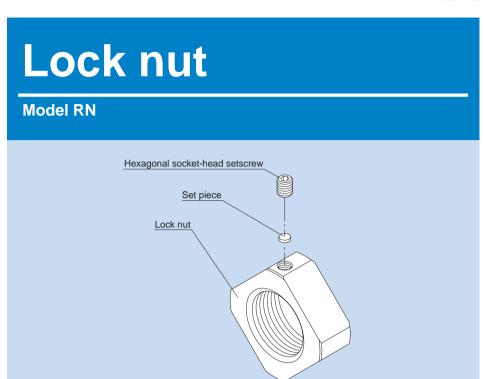


Fig.1 Structure of the Lock Nut

Structure and Features

The Lock Nut for the Ball Screws is capable of fastening the screw shaft and the bearing with a high accuracy.

The provided hexagonal socket-head setscrew and the set piece prevent the Lock Nut from loosening and ensure firm fastening. The Lock Nut comes in various types ranging from model M4 to model M40.

Type

Lock Nut Model RN

Specification Table⇒B-776

Ball Screw Options

Lubrication

To maximize the performance of the Ball Screw, it is necessary to select a lubricant and a lubrication method according to the conditions.

For types of lubricants, characteristics of lubricants and lubrication methods, see the section on "Accessories for Lubrication" on A-954.

Also, QZ Lubricator is available as an optional accessory that significantly increases the maintenance interval.

Corrosion Prevention (Surface Treatment, etc.)

Depending on the service environment, the Ball Screw requires anticorrosive treatment or a different material. For details of an anticorrosive treatment and a material change, contact THK. (see A-18)

Contamination Protection

The dust and foreign materials that enter the Ball Screw may cause accelerated wear and breakage, as with roller bearings. Therefore, on parts where contamination by dust or foreign materials (e.g., cutting chips) is predicted, screw shafts must always be completely covered by contamination protection devices (e.g., bellows, screw cover, wiper ring).

If the Ball Screw is used in an atmosphere free from the foreign materials but with suspended dust, a labyrinth seal (for precision Ball Screws) with symbol RR and a brush seal (for rolled Ball Screws) with symbol ZZ can be used as contamination protection devices.

The labyrinth seal is designed to maintain a slight clearance between the seal and the screw shaft raceway so that torque does not develop and no heat is generated, though its effect in contamination protection is limited.

With Ball Screws except the large lead and super lead types, there is no difference in nut dimensions between those with and without a seal.

With the wiper ring, special resin with high wear resistance and low dust generation removes foreign materials while closely contacting the circumference of the ball screw shaft and the screw thread. It is capable of preventing foreign materials from entering the Ball Screw even in a severe environment.

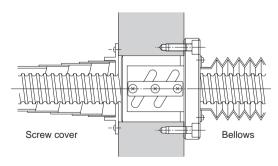
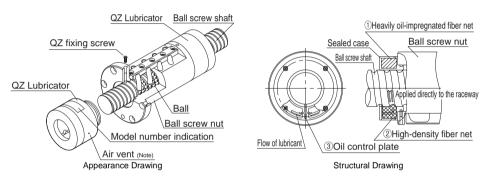


Fig.1 Contamination Protection Cover

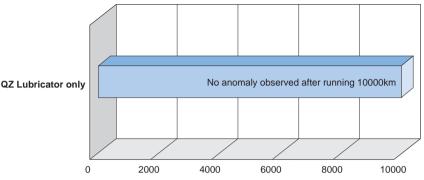

QZ Lubricator

QZ Lubricator

• For the supported models and the ball screw nut dimension with QZ attached, see B-778 to B-783.

QZ Lubricator feeds a right amount of lubricant to the ball raceway of the ball screw shaft. This allows an oil film to be constantly formed between the balls and the raceway, improves lubrications and significantly extends the lubrication maintenance interval.

The structure of QZ Lubricator consists of three major components: (1) a heavily oil-impregnated fiber net (stores the lubricant), (2) a high-density fiber net (applies the lubricant to the raceway) and (3) an oil-control plate (adjusts the oil flow). The lubricant contained in the QZ Lubricator is fed by the capillary phenomenon, which is used also in felt pens and many other products.

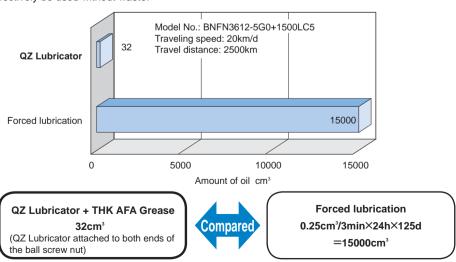

[Features]

- Since it supplements an oil loss, the lubrication maintenance interval can be significantly extended.
- Since the right amount of lubricant is applied to the ball raceway, an environmentally friendly lubrication system that does not contaminate the surroundings is achieved.

Note) QZ Lubricator has a vent hole. Do not block the hole with grease or the like.

• Significantly extended maintenance interval

Since QZ Lubricator continuously feeds a lubricant over a long period, the maintenance interval can be extended significantly.


Distance traveled km (linear travel distance)

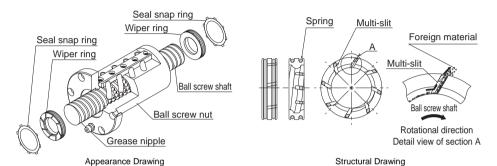
[Test conditions]

[]	
Item	Description
Ball Screw	BIF2510
Maximum rotational speed	2500min ⁻¹
Maximum speed	25m/min
Stroke	500mm
Load	Internal preload only

• Environmentally friendly lubrication system

Since the QZ Lubricator feeds the right amount of lubricant directly to the raceway, the lubricant can effectively be used without waste.

Reduced to approx. $\frac{1}{47}$


Options

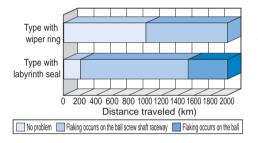
Wiper Ring W

Wiper Ring W

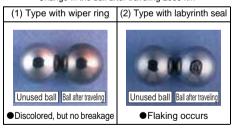
● For the supported models and the ball screw nut dimension with Wiper ring W attached, see B-778 to B-783.

With the wiper ring W, special resin with a high wear resistance and a low dust generation which removes and prevents foreign materials from entering the ball screw nut while elastically contacting the circumference of the ball screw shaft and the screw thread.

[Features]

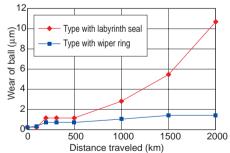

- A total of eight slits on the circumference remove foreign materials in succession, and prevent entrance of foreign material.
- Contacts the ball screw shaft to reduce the flowing out of grease.
- Contacts the ball screw shaft at a constant pressure level using a spring, thus to minimize the heat generation.
- Since the material is highly resistant to the wear and the chemicals, its performance will not easily be deteriorated even if it is used over a long period.

• Test in an environment exposed to contaminated environment


[Test conditions]

Item	Description
Model No.	BIF3210-5G0+1500LC5
Maximum rotational speed	1000min ⁻¹
Maximum speed	10m/min
Maximum circumferential speed	1.8m/s
Time constant	60ms
Dowel	1s
Stroke	900mm
Load (through internal load)	1.31kN
Grease	THK AFG Grease 8cm³ (Initial lubrication to the ball screw nut only)
Foundry dust	FCD400 average particle diameter: 250µm
Volume of foreign material per shaft	5g/h

[Test result]



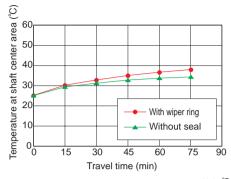
Change in the ball after traveling 2000 km

- Type with wiper ring Slight flaking occurred in the ball screw shaft at travel distant of 1,000 km.
- Type with labyrinth seal
 Flaking occurred throughout the circumference of the screw shaft raceway at travel distance of 200 km.

Flaking occurred on the balls after traveling 1,500 km.

- Type with wiper ring
 Wear of balls at a travel distance of 2,000 km:
 1.4 μm.
- Type with labyrinth seal Starts to be worn rapidly after 500 km, and the ball wear amount at the travel distance of 2,000 km: 11 μm

Options

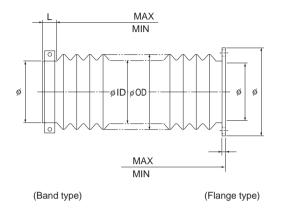

Wiper Ring W

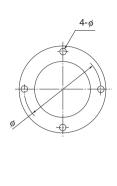
Heat Generation Test

[Test conditions]

Item	Description
Model No.	BLK3232-3.6G0+1426LC5
Maximum rotational speed	1000min ⁻¹
Maximum speed	32m/min
Maximum circumferential speed	1.7m/s
Time constant	100ms
Stroke	1000mm
Load (through inter- nal load)	0.98kN
Grease	THK AFG Grease 5cm ³ (contained in the ball screw nut)

[Test result]




Unit: ℃

Item	With wiper ring	Without seal
Heat generation temperature	37.1	34.5
Temperature rise	12.2	8.9

Specifications of the Bellows

Bellows are available as a contamination protection accessory. Use this specification sheet.

Specifications of the Bellows

Supported Ball Screw models:				
Dimensions of the Bellows				
Stroke:() mm MAX:() mm M	IIN:() mm			
Permissible outer diameter:(ØOD) Desired inner diameter:(ØID				
How It Is Used				
Installation direction:(horizontal, vertical, slant) Spe	ed: ()mm/sec.	mm/min.		
Motion:(reciprocation, vibration)				
Conditions				
Resistance to oil and water: (necessary, unnecessary)	Oil name ()		
Chemical resistance: Name () \times (
Location: (indoor, outdoor)				
Remarks:				

Number of Units To Be Manufactured:

Specifications of the Bellows

Options

sale@technobearing.ru

Mounting Procedure and Maintenance Ball Screw

Method for Mounting the Ball Screw Shaft

Fig.1 to Fig.4 show the representative mounting methods for the screw shaft.

The permissible axial load and the permissible rotational speed vary with mounting methods for the screw shaft. Therefore, it is necessary to select an appropriate mounting method according to the conditions.

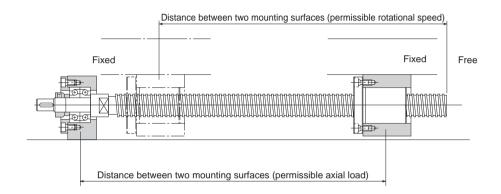


Fig.1 Screw Shaft Mounting Method: Fixed - Free

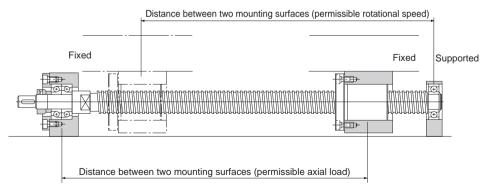


Fig.2 Screw Shaft Mounting Method: Fixed - Supported

Mounting Procedure and Maintenance

Method for Mounting the Ball Screw Shaft

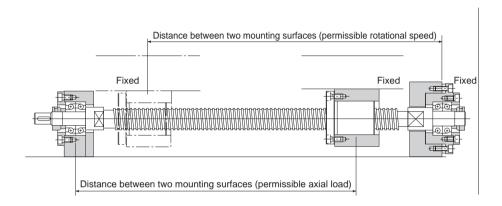


Fig.3 Screw Shaft Mounting Method: Fixed - Fixed

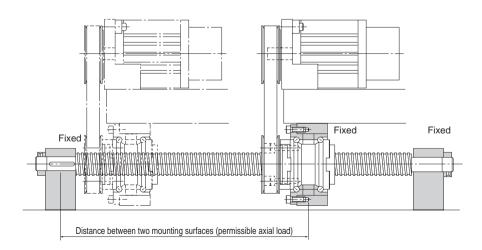


Fig.4 Screw Shaft Mounting Method for Rotary Nut Ball Screw: Fixed - Fixed

Maintenance Method

Amount of Lubricant

If the amount of the lubricant to the Ball Screw is insufficient, it may cause a lubrication breakdown, and if it is excessive, it may cause heat to be generated and the resistance to be increased. It is necessary to select an amount that meets the conditions.

[Grease]

The feed amount of grease is generally approximately one third of the spatial volume inside the nut.

[Oil]

Table 1 shows a guideline for the feed amount of oil.

Note, that the amount varies according to the stroke, the oil type and the conditions (e.g., suppressed heat generation).

Table1 Guideline for the Feed Amount of Oil (Interval: 3 minutes)

	(
Shaft diameter (mm)	Amount of lubricant (cc)
4 to 8	0.03
10 to 14	0.05
15 to 18	0.07
20 to 25	0.1
28 to 32	0.15
36 to 40	0.25
45 to 50	0.3
55 to 63	0.4
70 to 100	0.5

Precautions on Use

Ball Screw

[Handling]

- Disassembling the components may cause dust to enter the system or degrade the mounting accuracy of parts. Do not disassemble the product.
- (2) Tilting the screw shaft and the ball screw nut may cause them to fall by their own weight.
- (3) Dropping or hitting the Ball Screw may damage the ball circulation section, which may cause the functional loss. Giving an impact to the product could also cause a damage to its function even if the product looks intact.

[Lubrication]

- (1) Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (2) Do not mix the lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, a vacuum and a low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.
- (5) The lubrication interval varies according to the conditions. Contact THK for details.

[Precautions on Use]

- Do not remove the ball screw nut from the ball screw shaft. Doing so may cause the balls or the nut to fall off.
- (2) Entrance of foreign materials to the ball screw nut may cause damages to the ball circulating path or functional loss. Prevent foreign materials, such as dust or cutting chips, from entering the system.
- (3) If the foreign materials such as dust or cutting chips adheres to the product, replenish the lubricant after cleaning the product with pure white kerosene. For available types of detergent, contact THK.
- (4) When planning to use the product in an environment where the coolant penetrates the spline nut, it may cause problems to product functions depending on the type of the coolant. Contact THK for details.
- (5) Contact THK if you desire to use the product at a temperature of 80°C or higher.
- (6) If using the product with vertical mount, the ball screw nut may fall by its weight. Attach a mechanism to prevent it from falling.
- (7) Exceeding the permissible rotational speed may lead the components to be damaged or cause an accident. Be sure to use the product within the specification range designated by THK.
- (8) Forcefully driving in the ball screw shaft or the ball screw nut may cause an indentation on the raceway. Use care when mounting the components.
- (9) If an offset or skewing occurs with the ball screw shaft support and the ball screw nut, it may substantially shorten the service life. Pay attention to components to be mounted and to the mounting accuracy.
- (10) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, a vacuum and a low/high temperature, contact THK in advance.
- (11) Letting the ball screw nut overshoot will cause balls to fall off or the ball-circulating components to be damaged.

[Storage]

When storing the Ball Screw, enclose it in a package designated by THK and store it in a horizontal orientation while avoiding a high temperature, a low temperature and a high humidity.

Lead Screw Nut

冗出K General Catalog

A Technical Descriptions of the Products

Features Features of the Lead Screw Nut • Structure and features • Features of the Special Rolled Shafts • High Strength Zinc Alloy	A-830 A-830 A-830 A-831 A-831
Point of Selection	A-836
Point of Design	A-838 A-838
Mounting Procedure and Maintenance InstallationLubrication	A-839 A-839 A-840

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	B-785
Model DCM	
Model DC	B-788

^{*} Please see the separate "B Product Specifications".

Features

Lead Screw Nut

Features of the Lead Screw Nut

Structure and Features

The lead Screw Nut models DCM and DC are manufactured to meet the standards for the 30° trapezoidal threads. They use a special alloy (see A-831) for the nuts and have a precision male thread, formed through die casting, as the core. As a result, these bearings achieve less unevenness in accuracy and higher accuracy and wear resistance than the machined lead screw nuts.

For the screw shafts to be used with this product, the rolled shafts are available as the standard. In addition, the cut screw shafts and the ground screw shafts are also available according to the application. Contact THK for details.

Features of the Lead Screw Nut

Lead Screw Nut

Features

Exercises of the Operated Della LOL often

Features of the Special Rolled Shafts

The dedicated rolled shafts with the standardized lengths are available for the Lead Screw Nut.

[Increased Wear Resistance]

The shaft teeth are formed by cold gear rolling, and the surface of the tooth surface is hardened to over 250 HV and are mirror-finished. As a result, the shafts are highly wear resistant and achieve significantly smooth motion when used in combination with lead screw nuts.

[Improved Mechanical Properties]

Inside the teeth of the rolled shaft, a fiber flow occurs along the contour of the tooth surface of the shaft, making the structure around the teeth roots dense. As a result, the fatigue strength is increased.

[Additional Machining of the Shaft End Support]

Since each shaft is rolled, additional machining of the support bearing of the shaft end can easily be performed by lathing or milling.

High Strength Zinc Alloy

The high strength zinc alloy used in the lead screw nuts is a material that is highly resistant to seizure and the wear and has a high load carrying capacity. Its composition, the mechanical properties, the physical properties and the wear resistance are given below.

[Composition]

Table1 Composition of the High Strength Zinc Alloy
Unit: %

Item	Description
Αℓ	3 to 4
Cu	3 to 4
Mg	0.03 to 0.06
Ве	0.02 to 0.06
Ti	0.04 to 0.12
Zn	Remaining portion

[Mechanical Properties]

Item	Description		
Tensile strength	275 to 314 N/mm²		
Tensile yield strength (0.2%)	216 to 245 N/mm²		
Compressive strength	539 to 686 N/mm²		
Compressive yield strength (0.2%)	294 to 343 N/mm²		
Fatigue strength	132 N/mm ² ×10 ⁷ (Schenk bending test)		
Charpy impact	0.098 to 0.49 N-m/mm ²		
Elongation	1 to 5 %		
Hardness	120 to 145 HV		

[Physical Properties]

Item	Description
Specific gravity	6.8
Specific heat	460 J/ (kg•K)
Melting point	390 ℃
Thermal expansion coefficient	24×10 ⁻⁶

[Wear Resistance]

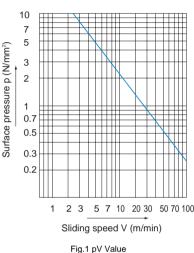
Fig.1 Wear Resistance of the High Strength Zinc Alloy

[Test conditions: Amsler wear-tester]

Item	Description	
Test piece rotational speed	185 min ⁻¹	
Load	392 N	
Lubricant	Dynamo oil	

Point of Selection

Lead Screw Nut


Selecting a Lead Screw Nut

[Dynamic Permissible Torque T and Dynamic Permissible Thrust F]

The dynamic permissible torque (T) and the dynamic permissible thrust (F) are the torque and the thrust at which the contact surface pressure on the tooth surface of the bearing is 9.8 N/mm². These values are used as a measuring stick for the strength of the lead screw nut.

[pV Value]

With a sliding bearing, a pV value, which is the product of the contact surface pressure (p) and the sliding speed (V), is used as a measuring stick to judge whether the assumed model can be used. Use the corresponding pV value indicated in Fig.1 as a guide for selecting a lead screw nut. The pV value varies also according to the lubrication conditions.

fs: Safety Factor

To calculate a load applied to the lead screw nut, it is necessary to accurately obtain the effect of the inertia that changes with the weight and dynamic speed of an object. In general, with the reciprocating or the rotating machines, it is not easy to accurately obtain all the factors such as the effect of the start and stop, which are always repeated. Therefore, if the actual load cannot be obtained, it is necessary to select a bearing while taking into account the empirically obtained safety factors (fs) shown in Table1.

Table1 Safety Factor (fs)

Type of load	Lower limit of fs
For a static load less frequently used	1 to 2
For an ordinary single-directional load	2 to 3
For a load accompanied by vibrations/impact	4 or greater

● f_T: Temperature Factor

If the temperature of the lead screw nut exceeds the normal temperature range, the seizure resistance of the nut and the strength of the material will decrease. Therefore, it is necessary to multiply the dynamic permissible torque (T) and the dynamic permissible thrust (F) by the corresponding temperature factor indicated in Fig.2. Accordingly, when selecting a lead screw nut, the following equations need to be met in terms of its strength.

Dynamic permissible torque(T)

$$f_s \leq \frac{f_T \cdot T}{P_T}$$

Static permissible thrust(F)

$$f_s \leq \frac{f_T \cdot F}{P_F}$$

(see A-833Table1) : Safety factor fs : Temperature factor f⊤ (see Fig.2) Т : Dynamic permissible torque (N-m) : Applied torque (N-m) F : Dynamic permissible thrust (N) P : Axial load (N)

Fig.2 Temperature Factor

Hardness of the Surface and the Wear Resistance

The hardness of the shaft significantly affects the wear resistance of the lead screw nut. If the hardness is equal to or less than 250 HV, the abrasion loss increases as indicated in Fig.3. The roughness of the surface should preferably be 0.80a or less.

A special rolled shaft achieves the surface hardness of 250 HV or greater, through hardening as a result of rolling, and surface roughness of 0.20a or less. Thererfore, the dedicated rolled shaft is highly wear resistant.

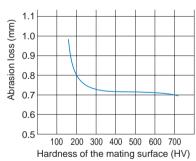


Fig.3 Hardness of the Surface and Wear Resistance

Point of Selection

Selecting a Lead Screw Nut

[Calculating the Contact Surface Pressure p]

The value of "p" is obtained as followed.

$$p = \frac{P_F}{F} \times 9.8$$

p : Contact surface pressure on the tooth from an axial load (P_F N) (N/mm²)

F : Dynamic permissible thrust (N)
P_F : Axial load (N)

[Calculating the Sliding Speed V on the Teeth]

The value of "V" is obtained as followed.

$$V = \frac{\pi \cdot Do \cdot n}{\cos \alpha \times 10^3}$$

n : Rotation speed per minute (min^{-1}) α : Lead angle (degree)(see specification table)

R : Lead (mm)

[Example of Calculation]

Assuming that Lead Screw Nut model DCM is used, select a lead screw nut that travels at feed speed S=3 m/min while receiving an axial load $P_F=1,080 \text{ N}$, which is applied in one direction. First, tentatively select model DCM32 (dynamic permissible thrust F=21,100 N). Obtain the contact surface pressure (p).

$$p = \frac{P_F}{F} \times 9.8 = \frac{1080}{21100} \times 9.8 = 0.50 \text{ N/mm}^2$$

Obtain the sliding speed (V).

The rotation speed per minute (n) of the screw shaft needed to move it at feed speed S = 3 m/min is calculated as follows.

$$n = \frac{S}{\ell \times 10^{-3}} = \frac{3}{6 \times 10^{-3}} = 500 \text{ min}^{-1}$$

$$V = \frac{\pi \cdot Do \cdot 500}{\cos \alpha \times 10^{3}} = \frac{\pi \times 29 \times 500}{\cos 3^{\circ} 46^{\circ} \times 10^{3}} = 45.6 \text{ m/min}$$

From the diagram of pV values (see Fig.1 on A-833), it is judged that there will be no abnormal wear if the sliding speed (V) is 47 m/min or below against the "p" value of 0.50 N/mm^2 . Second, obtain the safety factor (fs) against the dynamic permissible thrust (F). Given the conditions: temperature factor fr = 1 and applied load $P_F = 1,080 \text{ N}$, the safety factor is calculated as follows.

$$f_s \le \frac{f_T \cdot F}{P_F} = \frac{1 \times 21100}{1080} = 19.5$$

Since the required strength will be met if "fs" is at least 2 because of the type of load, it is appropriate to select model DCM32.

Efficiency and Thrust

The efficiency (η) at which the screw transfers a torque into thrust is obtained from the following equation.

$$\eta = \frac{1 - \mu \tan \alpha}{1 + \mu / \tan \alpha}$$

η : Efficiency

α : Lead angleμ : Frictional resistance

Fig.4 shows the result of the above equation.

The thrust generated when a torque is applied is obtained from the following equation.

$$F_a = \frac{2 \cdot \pi \cdot \eta \cdot T}{R \times 10^{-3}}$$

 Fa
 : Thrust generated
 (N)

 T
 : Torque (input)
 (N-m)

 R
 : Lead
 (mm)

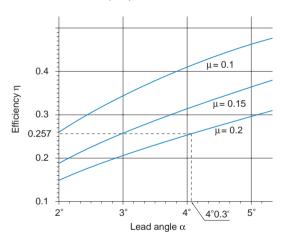


Fig.4 Efficiency

[Example of Calculation]

Assuming that Lead Screw Nut model DCM20 is used and the input torque T = 19.6 N-m, obtain the thrust to be generated.

Calculate the efficiency (η) when μ = 0.2.

The lead angle (α) of model DCM20: 4°03'

From the diagram in Fig.4, the efficiency (η) when the friction coefficient μ = 0.2 is obtained as η = 0.257. Obtain the thrust generated.

Obtain the thrust generated.

$$\mathsf{Fa} = \frac{2 \cdot \pi \cdot \eta \cdot \mathsf{T}}{\mathsf{R} \times 10^{-3}} = \frac{2 \times \pi \times 0.25 \times 19.6}{4 \times 10^{-3}} \doteq 7700 \,\mathsf{N}$$

Point of Selection

Accuracy Standards

Accuracy Standards

Table2 Accuracy of the Screw Shaft of Models DCM and DC

Unit: mm

Shaft symbol	Rolled shaft	Cut shaft	Ground shaft
Accuracy	TNote	K ^{Note}	G ^{Note}
Single pitch error (max)	±0.020	±0.015	±0.005
Accumulated pitch error (max)	±0.15/300	±0.05/300	±0.015/300

Note) Symbols T, K and G indicate machining methods for the screw shaft. The cut shafts and ground shafts are build-to-order.

Lead Screw Nut

Point of Design

Fit

For the fitting between the lead screw nut circumference and the housing, we recommend a loose fitting or a tight fitting.

Housing inner-diameter tolerance: H8 or J8

Mounting Procedure and Maintenance Lead Screw Nut

Installation

[About Chamfer of the Housing's Mouth]

To increase the strength of the root of the flange of the lead screw nut, the corner is machined to have an R shape. Therefore, it is necessary to chamfer the inner edge of the housing's mouth.

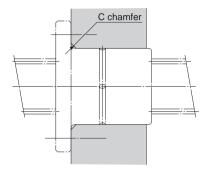


Fig.1

[Recommended Mounting Orientation]

When vertically conveying a heavy object using the screw shaft, it is safe to mount the screw as shown in Fig.2 where supports are provided on the mounting holes to prevent the moving object from falling even if the lead screw nut is broken due to an overload or an impact.

Table1 Chamfer of the Housing's Mouth

Unit: mm

	Onit. min
Model No.	Chamfer of the mouth
DCM	(Min.)
12	
14	
16	2
18	
20	
22	
25	2.5
28	2.3
32	
36	
40	3
45	
50	

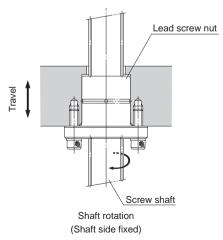


Fig.2 Recommended Mounting Orientation

[Example of Installation]

Fig.3 shows examples of mounting the lead screw nuts. When mounting a lead screw nut, secure sufficient tightening strength in the axial direction. For the housing inner-diameter tolerance, see the section concerning fitting on A-838.

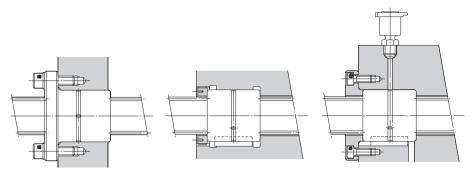


Fig.3 Examples of Installing the Lead Screw Nut

Lubrication

Select a lubrication method according to the conditions of the lead screw nut.

[Oil Lubrication]

For a lubrication of the lead screw nut, an oil lubrication is recommended. Specifically, an oil-bath lubrication or drop the lubrication is particularly effective. An oil-bath lubrication is the most appropriate method since it meets harsh conditions such as high speed, a heavy load or an external heat transmission and it cools the lead screw nut. The drop lubrication is appropriate for low to medium speed and a light to medium load. Select a lubricant according to the conditions as indicated in Table2.

Condition	Types of Lubricants
Low speed, high load, high temperature	High-viscosity sliding surface oil or turbine oil
High speed, light load, low temperature	Low-viscosity sliding surface oil or turbine oil

Table2 Selection of a Lubricant

[Grease Lubrication]

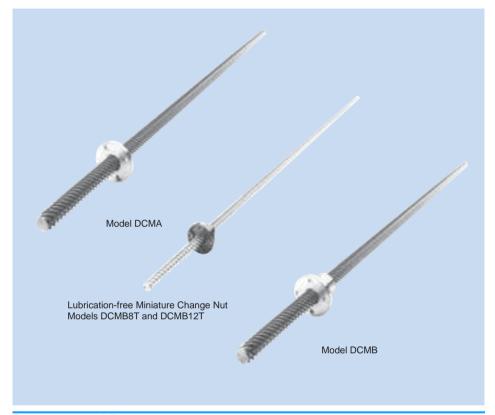
In the low-speed feed, which occurs less frequently, the user can lubricate the slide system by manually applying grease to the shaft on a regular basis or using the greasing hole on the lead screw nut. We recommend using lithium-soap group grease No. 2.

Change Nut

冗出K General Catalog

A Technical Descriptions of the Products

Features Features of the Change Nut • Structure and features • Features of the Special Rolled Shafts • High Strength Zinc Alloy	
Point of Selection	A-845 A-849
Point of Design	
Mounting Procedure and Maintenance Installation	


B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table. B-791 Models DCMA and DCMB B-792

^{*} Please see the separate "B Product Specifications".

Features Change Nut

Features of the Change Nut

Structure and Features

The Change Nut models DCMA and DCMB have a lead angle of 45°, which is difficult to achieve through machining. Each model is capable of converting a straight motion to a rotary motion, or a vise versa, at 70% efficiency. Because of the large leads, they are optimal for providing a fast feed mechanism at a low-speed rotation. The multi-thread screw shafts to be combined with these change nuts are formed through cold gear rolling. The surface of the teeth is hardened to over 250 HV and mirror-finished. As a result, the shafts are highly wear resistant and achieve significantly smooth motion when used in combination with these change nuts. Models DCMA40, DCMB40 or higher are designed for use in combination with the cut screw shafts.

The Miniature Change Nuts are made of an oil-impregnated plastic, and have a wear resistance and excel in lubrication especially in an oil-less operation. In addition, since the high level of their performances can be maintained for a long period, they allow long-term maintenance-free operation.

Features of the Special Rolled Shafts

Dedicated rolled shafts with the standardized lengths are available for the Change Nut.

[Increased Wear Resistance]

The shaft teeth are formed by cold gear rolling, and the tooth surface is hardened to over 250 HV and mirror-finished. As a result, the shafts are highly wear resistant and achieve significantly smooth motion when used in combination with the nuts.

[Improved Mechanical Properties]

Inside the teeth of the rolled shaft, a fiber flow occurs along the contour of the tooth surface of the shaft, making the structure around the teeth roots dense. As a result, the fatigue strength is increased.

[Additional Machining of the Shaft End Support]

Since each shaft is rolled, additional machining of the support bearing of the shaft end can easily be performed by lathing or milling.

High Strength Zinc Alloy

The high strength zinc alloy used in the change nuts is a material that is highly resistant to seizure and the wear and has a high load carrying capacity. Its composition, the mechanical properties, the physical properties and the wear resistance are given below.

[Composition]

Table1 Composition of the High Strength Zinc Alloy
Unit: %

Item	Description
Αℓ	3 to 4
Cu	3 to 4
Mg	0.03 to 0.06
Ве	0.02 to 0.06
Ti	0.04 to 0.12
Zn	Remaining portion

[Mechanical Properties]

Item	Description
Tensile strength	275 to 314 N/mm ²
Tensile yield strength (0.2%)	216 to 245 N/mm ²
Compressive strength	539 to 686 N/mm ²
Compressive yield strength (0.2%)	294 to 343 N/mm ²
Fatigue strength	132 N/mm ² × 10 ⁷ (Schenk bending test)
Charpy impact	0.098 to 0.49 N-m/mm ²
Elongation	1 to 5 %
Hardness	120 to 145 HV

[Physical Properties]

Item	Description
Specific gravity	6.8
Specific heat	460 J/(kg•K)
Melting point	390 ℃
Thermal expansion coefficient	24×10 ⁻⁶

[Wear Resistance]

Fig.1 Wear Resistance of the High Strength Zinc Alloy

[Test conditions: Amsler wear-tester]

Item	Description
Test piece rotational speed	185 min ⁻¹
Load	392 N
Lubricant	Dynamo oil

Point of Selection

Change Nut

Selecting a Change Nut

[Dynamic Permissible Torque T and Dynamic Permissible Thrust F]

The dynamic permissible torque (T) and the dynamic permissible thrust (F) are the torque and the thrust at which the contact surface pressure on the tooth surface of the bearing is 9.8 N/mm². These values are used as a measuring stick for the strength of the chang nut.

[pV Value]

With a sliding bearing, a pV value, which is the product of the contact surface pressure (p) and the sliding speed (V), is used as a measuring stick to judge whether the assumed model can be used. Use the corresponding pV value indicated in Fig.1 as a guide for selecting a change nut. The pV value varies also according to the lubrication conditions.

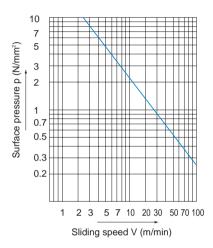


Fig.1 pV Value

Table1 Safety Factor (fs)

,	,
Type of load	Lower limit of fs
For a static load less frequently used	1 to 2
For an ordinary single-directional load	2 to 3
For a load accompanied by vibrations/impact	4 or greater

• fs: Safety Factor

To calculate a load applied to the change nut, it is necessary to accurately obtain the effect of the inertia that changes with the weight and the dynamic speed of an object. In general, with the reciprocating or the rotating machines, it is not easy to accurately obtain all the factors such as the effect of the start and stop, which are always repeated. Therefore, if the actual load cannot be obtained, it is necessary to select a bearing while taking into account the empirically obtained safety factors (fs) shown in Table1.

● f_T: Temperature Factor

If the temperature of the change nut exceeds the normal temperature range, the seizure resistance of the nut and the strength of the material will decrease. Therefore, it is necessary to multiply the dynamic permissible torque (T) and the dynamic permissible thrust (F) by the corresponding temperature factor indicated in Fig.2. Note) In the case of a miniature Change Nut, be sure to use it at 60°C or below.

Accordingly, when selecting a change nut, the following equations need to be met in terms of its strenath.

Dynamic permissible torque(T)

$$f_s \leq \frac{f_T \cdot T}{P_T}$$

Static permissible thrust(F)

$$f_s \leq \frac{f_\tau \cdot F}{P_\epsilon}$$

: Static safety factor

(see Table1 on A-845)

: Temperature factor f⊤ (see Fig.2) Т : Dynamic permissible torque (N-m) P⊤ : Applied torque (N-m) F : Dynamic permissible thrust (N) P_F : Axial load (N)

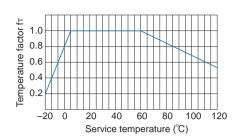


Fig.2 Temperature Factor

Hardness of the Surface and Wear Resistance

The hardness of the shaft significantly affects the wear resistance of the change nut. If the hardness is equal to or less than 250 HV, the abrasion loss increases as indicated in Fig.3. The roughness of the surface should preferably be 0.80a or less.

A special rolled shaft achieves surface hardness of 250 HV or greater, through hardening as a result of rolling, and surface roughness of 0.20a or less. Thus, the dedicated rolled shaft is highly wear resistant.

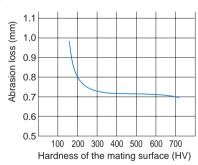


Fig.3 Hardness of the Surface and Wear Resistance

[Calculating the Contact Surface Pressure p]

The value of "p" is obtained as followed.

• If an axial load is applied:

$$p = \frac{P_F}{F} \times 9.8$$

: Contact surface pressure on the tooth from an axial load (P_F N) (N/mm²) р

F : Dynamic permissible thrust (N) P : Axial load (N)

• If a torque is applied:

$$p = \frac{P_T}{T} \times 9.8$$

: Contact surface pressure on the tooth under a load torque (P_T N-m) (N/mm²)

Т : Dynamic permissible torque (N-m) : Applied torque (N-m)

[Calculating the Sliding Speed V on the Teeth]

The value of "V" is obtained as followed.

$$V = \frac{\sqrt{2 \cdot \pi \cdot Do \cdot n}}{10^3}$$

: Sliding speed (m/min)

: Effective diameter Do

(see specification table) (mm) n : Rotation speed per minute (min-1) R : Lead (mm)

[Example of Calculation]

Assuming that Change Nut model DCMB is used, select a screw nut that travels at feed speed S = 10 m/min while receiving an axial load P_F = 1,760 N accompanied by vibrations.

Obtain the pV value.

First, tentatively select model DCMB25T (dynamic permissible thrust F = 12,700 N).

Obtain the contact surface pressure (p).

$$p = \frac{P_F}{F} \times 9.8 = \frac{1760}{12700} \times 9.8 = 1.36 \text{ N/mm}^2$$

Obtain the sliding speed (V). The revolutions per minute (n) of the screw shaft needed to move it at feed speed S = 10 m/min is calculated as follows.

$$n = \frac{S}{R \times 10^{-3}} = \frac{3}{73.3 \times 10^{-3}} = 136 \text{min}^{-1}$$

$$V = \frac{\sqrt{2} \cdot \pi \cdot Do \cdot n}{10^3} = \frac{\sqrt{2} \times \pi \times 23.1 \times 136}{10^3} \stackrel{.}{\Rightarrow} 14.0 \text{ m/min}$$

From the diagram of pV values (see Fig.1 on A-845), it is judged that there will be no abnormal wear if the sliding speed (V) is 16m/min or below against the "p" value of 1.36 N/mm².

Second, obtain the safety factor (fs) against the dynamic permissible thrust (F). Given the conditions:

Temperature factor $f_T = 1$, and

Applied load P_F= 1,760 N, the safety factor is calculated as follows.

$$f_s \le \frac{f_T \cdot F}{P_F} = \frac{1 \times 12700}{1760} = 7.2$$

Since the required strength will be met if "fs" is at least 4 because of the type of load, it is appropriate to select model DCMB25T.

Efficiency, Thrust and Torque

The efficiency (η) of the change nut in relation to the friction coefficient (μ) is indicated in Table2.

Table2 Friction Coefficient and Efficiency

Frictional coefficient (µ)	0.1	0.15	0.2
Efficiency (η)	0.82	0.74	0.67

The thrust generated when a torque is applied is obtained from the following equation.

$Fa = 2 \cdot \pi \cdot n \cdot T/R \times 10^{-3}$

Fa	: Thrust generated	(N)
Т	: Torque (input)	(N-m)
R	: Lead	(mm)

Also, the torque generated when a thrust is applied is obtained from the following equation.

$T = n \cdot Fa \cdot R \times 10^{-3}/2\pi$

: Torque generated (N-m) : Thrust (input) (N) : Lead (mm)

[Example of Calculation - 1]

Assuming that Change Nut model DCMB20T is used and the torque T is equal to 19.6 N-m, obtain the thrust to

If "μ" is 0.2, the efficiency "η" is 0.67 (see Table2), and the generated thrust (Fa) is calculated as follows.

$$Fa = 2 \cdot \pi \cdot \eta \cdot T/R \times 10^{-3} = \frac{2 \times \pi \times 0.67 \times 19.6}{60 \times 10^{-3}} = 1370 \text{ N}$$

[Example of Calculation - 2]

Assuming that Change Nut model DCMB20T is used and the thrust Fa is equal to 980 N, obtain the torque to be

If " μ " is 0.2, the efficiency " η " is 0.67 (see Table2), and the generated torque (T) is calculated as follows.

$$T = \frac{\eta \cdot Fa \cdot R \times 10^{3}}{2\pi} = \frac{0.67 \times 980 \times 60 \times 10^{3}}{2\pi} = 6.27 \text{ N} \cdot \text{m}$$

Accuracy Standards

Table3 Accuracy of the Screw Shaft of Models DCMA and DCMB

Unit: mm

Shaft symbol	Rolled shaft
Accuracy	TNote
Single pitch error (max)	±0.025
Accumulated pitch error (max)	±0.2/300

Note) Symbol T indicates the machining method for the screw shaft.

Point of Design

Change Nut

Fit

For the fitting between the change nut circumference and the housing, we recommend a loose fitting or a tight fitting.

Housing inner-diameter tolerance: H8 or J8

Mounting Procedure and Maintenance

Change Nut

Installation

[About Chamfer of the Housing's Mouth]

To increase the strength of the root of the flange of the change nut, the corner is machined to have an R shape. Therefore, it is necessary to chamfer the inner edge of the housing's mouth.

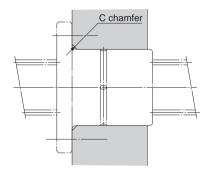


Fig.1

Table1 Chamfer of the Housing's Mouth

Unit: mm

Model No.	Chamfer of the mouth
DCMA DCMB	C (Min.)
8	1.2
12	1.5
15	
17	2
20	
25	2.5
30	2.5
35	
40	3
45	3
50	

[Recommended Mounting Orientation]

When vertically conveying a heavy object using the screw shaft, it is safe to mount the screw as shown in Fig.2 where supports are provided on the mounting holes to prevent the moving object from falling even if the change nut is broken due to an overload or an impact.

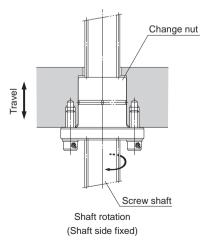


Fig.2 Recommended Mounting Orientation

Lubrication

Select a lubrication method according to the conditions of the change nut.

[Oil Lubrication]

For the lubrication of the change nut, an oil lubrication is recommended. Specifically, an oil-bath lubrication or a drop lubrication is particularly effective. An oil-bath lubrication is the most appropriate method since it meets the harsh conditions such as a high speed, a heavy load or an external heat transmission and it cools the change nut. The drop lubrication is appropriate for the low to medium speed and a light to medium load. Select a lubricant according to the conditions as indicated in Table2.

Table2 Selection of a Lubricant

Conditions	Types of Lubricants
Low speed, high load, high temperature	High-viscosity sliding surface oil or turbine oil
High speed, light load, low temperature	Low-viscosity sliding surface oil or turbine oil

[Grease Lubrication]

In a low-speed feed, which occurs less frequently, the user can lubricate the slide system by manually applying the grease to the shaft on a regular basis or using the greasing hole on the change nut. We recommend using the lithium-soap group grease No. 2.

[Initial Lubrication of the Miniature Change Nut]

Since the Miniature Change Nut is made of oil-impregnated plastics, it can be used without the lubrication during an operation. For the initial lubrication, use some oil or grease. Note that lubricants containing large amount of extreme pressure agent are not suitable.

Cross-Roller Ring

行出ば General Catalog

A Technical Descriptions of the Products

Features and Types A-854 Features of the Cross-Roller Ring..... A-854 Structure and features..... A-854 Types of the Cross-Roller Ring...... A-857 Types and Features..... A-857 Point of Selection A-859 Selecting a Cross-Roller Ring...... A-859 Nominal Life A-860 Static Safety Factor..... A-862 Static Permissible Moment..... A-864 Static Permissible Axial Load A-864 Accuracy Standards A-865 • Accuracy Standard of the USP-Grade Series . A-869 Radial Clearance..... A-870 Moment Rigidity A-871 Point of Design..... A-873 Fit A-873 Designing the Housing and the Presser Flange .. A-874 Mounting Procedure A-876 Procedure for Assembly..... A-876 Precautions on Use..... A-877

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table ... B-795
Model RU (Integrated Inner/Outer Ring Type) B-796
Model RB (Separable Outer Ring Type) B-798
Model RE (Two-piece Inner Ring Type) B-801
USP-Grade Models RB and RE B-804
Model RA (Separable Outer Ring Type) B-805
Model RA-C (Single-Split Type) B-806

Please see the separate "B Product Specifications".

Features and Types

Cross-Roller Ring

Features of the Cross-Roller Ring

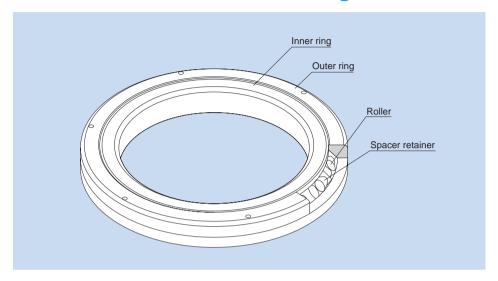


Fig.1 Structure of Cross Roller-Ring Model RB

Structure and Features

With the Cross-Roller Ring, cylindrical rollers are arranged with each roller perpendicular to the adjacent roller, in a 90° V groove, separated from each other by a spacer retainer. This design allows just one bearing to receive loads in all directions including radial, axial and moment loads.

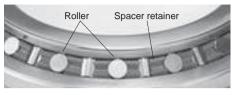
Since the Cross-Roller Ring achieves high rigidity despite the minimum possible dimensions of the inner and outer rings, it is optimal for applications such as joints and swiveling units of industrial robots, swiveling tables of machining centers, rotary units of manipulators, precision rotary tables, medical equipment, measuring instruments and IC manufacturing machines.

[High Rotation Accuracy]

The spacer retainer fitting among cross-arrayed rollers prevents rollers from skewing and the rotational torque from increasing due to friction between rollers. Unlike conventional types using steel sheet retainers, the Cross-Roller Ring does not cause unilateral contact of roller or seize. Thus, even under a preload, the Cross-Roller Ring provides stable rotation.

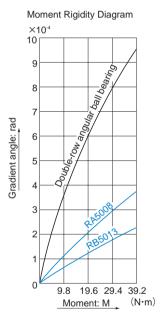
Since the inner and outer rings are designed to be separable, the bearing clearance can be adjusted. In addition, a preload can be applied. These features enable accurate rotation.

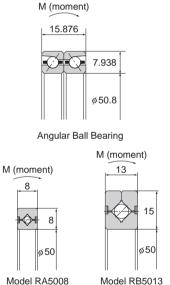
Features and Types


Features of the Cross-Roller Ring

[Easy Handling]

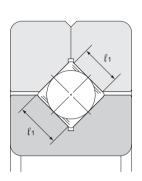
The inner and outer rings, which are separable, are secured to the Cross-Roller Ring body after being installed with rollers and spacer retainers in order to prevent the rings from separating from each other. Thus, it is easy to handle the rings when installing the Cross-Roller Ring.


[Skewing Prevention]


The spacer retainer keeps rollers in their proper position, thereby preventing them from skewing (tilted rollers). This eliminates friction between rollers, and therefore secures a stable rotational torque.

[Increased Rigidity (Three to Four Times Greater than the Conventional Type)]

Unlike the thin angular ball bearings installed in double rows, the cross array of rollers allows a single Cross-Roller Ring unit to receive loads in all directions, increasing the rigidity to three to four times greater than the conventional type.



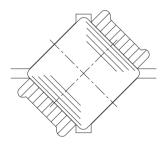
Cross Roller Ring

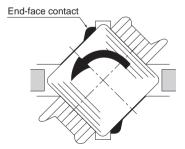
[Large Load Capacity]

(1) Compared with conventional steel sheet retainers, the spacer retainer allows a longer effective contact length of each roller, thus significantly increasing the load capacity.

The spacer retainer guides rollers by supporting them over the entire length of each roller, whereas the conventional type of retainer supports them only at a point at the center of each roller. Such one-point contact cannot sufficiently prevent skewing.

Roller contact length


P1>P2


With a spacer retainer

With a steel sheet retainer (conventional type)

(2) In conventional types, the loaded areas are asymmetrical between the outer ring and the inner ring sides around the roller longitudinal axis. The greater the applied load is, the greater the moment becomes, leading end-face contact to occur. This causes frictional resistance, which hinders smooth rotation and quickens wear.

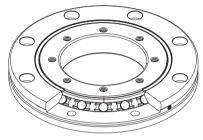
Loaded areas symmetrical With a spacer retainer

Loaded areas asymmetrical With a steel sheet retainer (conventional type)

Features and Types

Types of the Cross-Roller Ring

Types of the Cross-Roller Ring


Types and Features

Model RU (Integrated Inner/Outer Ring Type)

Specification Table⇒B-796

Since holes are drilled for mounting, the need for a presser flange and a housing is eliminated. Also, owing to the integrated inner/outer ring type stryucture with washer, there is almost no effect from installation on performance, allowing stable rotational accuracy and torque to be obtained.

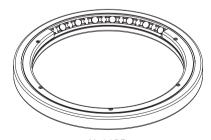
Can be used for both outer and inner ring rotation.

Model RU

Model RB (Separable Outer Ring Type for Inner Ring Rotation)

Specification Table⇒B-798

Cross-Roller Ring basic type, with a separable outer ring, and an inner ring integrated with the main body. It is used in locations where the rotational accuracy of the inner ring is required. It is used, for example, in the swivel portions of index tables of machine tools.



Model RB

Model RE (Two-piece Inner Ring Type for Outer Ring Rotation)

Specification Table⇒B-801

Main dimensions are the same as model RB. This model is used in locations where the rotational accuracy of the outer ring is required.

Model RE

USP-Grade Series of Models RB and RE

Specification Table⇒B-804

The rotation accuracy of the USP-Grade Series achieves the ultra precision grade that surpasses the world's highest accuracy standards such as JIS Class 2, ISO Class 2, DIN P2 and AFBMA ABCE9.

Model RA (Separable Outer Ring Type for Inner Ring Rotation)

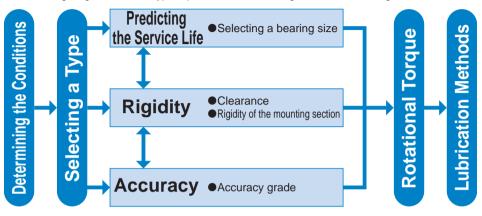
Specification Table⇒B-805

A compact type similar to model RB with the thinnest possible inner and outer rings. Optimal for locations requiring a light-weight and compact design such as the swivel portions of robots and manipulators.

Model RA

Model RA-C (Singe-Split Type)

The main dimensions are the same as that of model RA.Owing to its Single-split Outer Ring structure with a highly rigid outer ring, this model can be used for outer ring rotation.


Model RA-C

Point of Selection

Cross-Roller Ring

Selecting a Cross-Roller Ring

The following diagram shows a typical procedure for selecting a Cross-Roller Ring.

- Inner ring rotating······Model RB
- Outer ring rotating······Model RE
- Mounting space···Models RA-C and RA

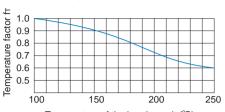
Nominal Life

The service life of the Cross-Roller Ring is obtained from the following equation.

$$L = \left(\frac{\mathbf{f}_{\mathsf{T}} \cdot \mathbf{C}}{\mathbf{f}_{\mathsf{W}} \cdot \mathbf{P}_{\mathsf{C}}}\right)^{10} \times 10^6$$

: Nominal life

fw


(The total number of revolutions that 90% of a group of identical Cross-Roller Ring units independently operating under the same conditions can achieve without showing flaking from rolling fatigue)

[Dynamic Equivalent Radial Load Pc]

The dynamic equivalent radial load of the Cross-Roller Ring is obtained from the following equation.

$$P_c = X \cdot \left(F_r + \frac{2M}{dp}\right) + Y \cdot F_a$$

Pc	: Dynamic equivalent ra	idial load	(N)
Fr	: Radial load		(N)
Fa	: Axial load		(N)
М	: Moment	(N-	mm)
Χ	: Dynamic radial facto	(see Tal	ole2
Υ	: Dynamic axial factor	(see Tal	ole2)
dp	: Roller pitch circle dian	neter (mm)

Temperature of the bearing unit (°C)

Fig.1 Temperature Factor (f_T)

Note) The normal service temperature is 80 °C or below. If the product is to be used at a higher temperature, contact THK

Table1 Load Factor (fw)

Service condition	fw
Smooth motion without impact	1 to 1.2
Normal motion	1.2 to 1.5
Motion with severe impact	1.5 to 3

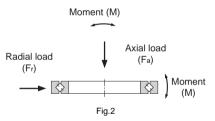


Table2 Dynamic Radial Factor and Dynamic Axial Factor

Classification	Х	Υ
$\frac{Fa}{Fr + 2M/dp} \le 1.5$	1	0.45
$\frac{Fa}{Fr + 2M/dp} > 1.5$	0.67	0.67

- If Fr = 0N and M = 0 N-mm, perform calculation while assuming that X = 0.67 and Y = 0.67.
- For service life calculation with a preload taken into account, contact THK.

The basic dynamic load rating (C) of the Cross-Roller Ring shows the radial load with interlocked direction and magnitude, under which the nominal life (L) is 1 million revolutions when a group of identical Cross-Roller Ring units independently operate under the same conditions. The basic dynamic load rating (C) is indicated in the specification tables

Point of Selection

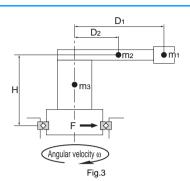
[Example of Calculating the Nominal Life]

Assuming that model RB25025 is used under the following conditions, calculate its nominal life (L).

 $m_1 = 100 \text{ kg}$ m₂ =200 kg

m₃ =300 kg

D₁ =300 mm


D₂ =150 mm H = 200 mm

C = 69.3 kN

 $C_0 = 150 \text{ kN}$ $dp = 277.5 \, mm$

F = 100 N

 $\omega = 2 \text{ rad/s}(\omega)$: angular velocity)

Radial load : Fr =F+ $m_1 \cdot D_1 \times 10^{-3} \cdot \omega^2 + m_2 \cdot D_2 \times 10^{-3} \cdot \omega^2$

= $100+100\cdot300\times10^{-3}\cdot2^{-2}+200\cdot150\times10^{-3}\cdot2^{-2}$

=340 N

Axial load : Fa = $(m_1+m_2+m_3)\times g$

 $=(100+200+300) \times 9.807$

=5884.2 N

 $= m_1 \boldsymbol{\cdot} g \times D_1 + m_2 \boldsymbol{\cdot} g \times D_2 + (m_1 \boldsymbol{\cdot} D_1 \times 10^{-3} \boldsymbol{\cdot} \omega^2 + m_2 \boldsymbol{\cdot} D_2 \times 10^{-3} \boldsymbol{\cdot} \omega^2) \times H$ Moment :M

 $=100 \cdot 9.807 \times 300 + 200 \cdot 9.807 \times 150 +$

 $(100 \cdot 300 \times 10^{-3} \cdot 2^{2} + 200 \cdot 150 \times 10^{-3} \cdot 2^{2}) \times 200$

=636420 N·mm

$$\frac{\text{Fa}}{\text{Fr} + 2\text{M/dp}} = \frac{5884.2}{340 + 2 \times 636420/277.5} = 1.19 \le 1.5$$

∴X =1, Y =0.45

Therefore, the dynamic equivalent radial load (Pc) is obtained as follows.

$$P_C = X \left(F_r + \frac{2M}{dp} \right) + Y \cdot F_a = 1 \times \left(340 + \frac{2 \cdot 636420}{277.5} \right) + 0.45 \times 5884.2 = 7574.7 \text{ N}$$

If $f_W = 1.2$, the nominal life is calculated as follows. Thus, the nominal life (L) is 8.7×10^8 revolutions.

$$L = \left(\frac{f \cdot C}{f_w \cdot P_C}\right)^{\frac{10}{3}} = \left(\frac{1 \times 69.3 \times 10^3}{1.2 \times 7574.7}\right)^{\frac{10}{3}} \times 10^6 = 8.7 \times 10^8 \text{ Rotation}$$

Static Safety Factor

The basic static load rating C_0 refers to the static load with constant direction and magnitude, under which the calculated contact stress in the center of the contact area between the roller and the raceway under the maximum load is 4000 MPa. (If the contact stress exceeds this level, it will affect the rotation.) This value is indicated as " C_0 " in the specification tables. When a load is statically or dynamically applied, it is necessary to consider the static safety factor as shown below.

Co	_	f.
D.	-	15

fs	: Static safety factor (see	Table3)
C_0	: Basic static load rating	(N)
D.	· Static equivalent radial load	(NI)

Table3 Static Safety Factor (fs)

Load conditions	Lower limit of fs
Normal load	1 to 2
Impact load	2 to 3

[Static Equivalent Radial Load Po]

The static equivalent radial load of the Cross-Roller Ring is obtained from the following equation.

$$P_0 = X_0 \cdot \left(Fr + \frac{2M}{dp} \right) + Y_0 \cdot Fa$$

P_0	: Static equivalent radial load	(N)
Fr	: Radial load	(N)
Fa	: Axial load	(N)
M	: Moment	(N-mm)
X_0	: Static radial factor	(X ₀ =1)
Y_0	: Static axial factor	$(Y_0=0.44)$
dp	: Roller pitch circle diameter	(mm)

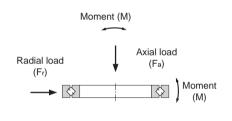


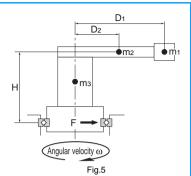
Fig.4

Point of Selection

Static Safety Factor

[Example of Calculating a Static Safety Factor]

Assuming that model RB25025 is used under the following conditions, calculate its static safety factor (fs).


 $m_1 = 100 \text{ kg}$ m₂ =200 kg

m₃ =300 kg D₁ =300 mm

D₂ =150 mm H = 200 mm

C = 69.3 kN $C_0 = 150 \text{ kN}$ $dp = 277.5 \, mm$

F = 100 N $\omega = 2 \text{ rad/s}(\omega)$: angular velocity)

Radial load : Fr =F+ $m_1 \cdot D_1 \times 10^{-3} \cdot \omega^2 + m_2 \cdot D_2 \times 10^{-3} \cdot \omega^2$

= $100+100\cdot300\times10^{-3}\cdot2^{-2}+200\cdot150\times10^{-3}\cdot2^{-2}$

=340 N

Axial load : Fa = $(m_1+m_2+m_3)\times g$

 $= (100+200+300) \times 9.807$

=5884.2 N

 $= m_1 \boldsymbol{\cdot} g \times D_1 + m_2 \boldsymbol{\cdot} g \times D_2 + (m_1 \boldsymbol{\cdot} D_1 \times 10^{-3} \boldsymbol{\cdot} \omega^2 + m_2 \boldsymbol{\cdot} D_2 \times 10^{-3} \boldsymbol{\cdot} \omega^2) \times H$ Moment $= 100 \cdot 9.807 \times 300 + 200 \cdot 9.807 \times 150 +$

 $(100 \cdot 300 \times 10^{-3} \cdot 2^{2} + 200 \cdot 150 \times 10^{-3} \cdot 2^{2}) \times 200$

=636420 N·mm

Therefore, the static equivalent radial load (Po) is obtained as follows.

$$P_0 = X \left(Fr + \frac{2M}{dp} \right) + Y \cdot Fa = 1 \times \left(340 + \frac{2 \cdot 636420}{277.5} \right) + 0.44 \times 5884.2 = 7515.8 \ N_0 + 1.00 \times 10^{-1} \ N_0 + 1.$$

∴fs =
$$\frac{150 \times 10^3}{7515.8}$$
 = 20

Thus, the static safety factor (f_s) is 20.

Static Permissible Moment

The static permissible moment (M₀) of the Cross-Roller Ring is obtained from the following equation.

$$M_0 = C_0 \cdot \frac{dp}{2} \times 10^{-3}$$

Mο : Static permissible moment (kN-m) Co : Basic static load rating (kN) : Roller pitch circle diameter (mm)

[Example of Calculating a Static Permissible Moment]

Model No. RB25025

C = 69.3 kNCo =150 kN

 $dp = 277.5 \, mm$

The static permissible moment is calculated as follows.

$$M_0 = C_0 \cdot \frac{dp}{2} \times 10^{\circ} = 150 \cdot \frac{277.5}{2} \times 10^{\circ} = 20.8 \text{ kN} \cdot \text{m}$$

Static Permissible Axial Load

The static permissible axial load (Fa₀) of the Cross-Roller Ring is obtained from the following equation.

$$F_{a_0} = \frac{C_0}{Y_0}$$

Fa₀: Static permissible axial load : Static axial factor $(Y_0=0.44)$

[Example of Calculating a Static Permissible Axial Load]

Model No. RB25025

C = 69.3 kN

Co = 150 kN

The static permissible axial load (Fao) is calculated as follows.

$$Fa_0 = \frac{C_0}{Y_0} = \frac{150}{0.44} = 340.9 \text{ kN}$$

Point of Selection

Accuracy Standards

Accuracy Standards

The Cross-Roller Ring is manufactured with the accuracy and the dimensional tolerance according to Table4 to Table13.

Table4 Rotational Accuracy of the Inner Ring of Model RU

Unit: $\mu \, m$

Model No.	Radial runo	ut tolerance of th	ne inner ring	Axial runout tolerance of the inner ring			
	Grade P5	Grade P4	Grade P2	Grade P5	Grade P4	Grade P2	
RU42	4	3	2.5	4	3	2.5	
RU66	5	4	2.5	5	4	2.5	
RU85	5	4	2.5	5	4	2.5	
RU124	5	4	2.5	5	4	2.5	
RU148	6	5	2.5	6	5	2.5	
RU178	6	5	2.5	6	5	2.5	
RU228	8	6	5	8	6	5	
RU297	10	8	5	10	8	5	
RU445	15	12	7	15	12	7	

Note) For model RU, grade P5 is standard rotational accuracy.(Not indicated in model number.)

Table5 Rotational Accuracy of the Outer Ring of Model RU

Unit: $\mu \, m$

Model No.	Radial runo	ut tolerance of th	ne outer ring	Axial runout tolerance of the outer ring			
Model No.	Grade P5	Grade P4	Grade P2	Grade P5	Grade P4	Grade P2	
RU42	8	5	4	8	5	4	
RU66	10	6	5	10	6	5	
RU85	10	6	5	10	6	5	
RU124	13	8	5	13	8	5	
RU148	15	10	7	15	10	7	
RU178	15	10	7	15	10	7	
RU228	18	11	7	18	11	7	
RU297	20	13	8	20	13	8	
RU445	25	16	10	25	16	10	

Note) For model RU, grade P5 is standard rotational accuracy.(Not indicated in model number.)

Table6 Rotational Accuracy of the Inner Ring of Model RB

Nominal of	Nominal dimension Radial runout tolerance of the inner ring					Axial	runout to	lerance o	f the inne	er ring	
of the bea	ring inner (d) (mm)	Grade	Grade PE6	Grade PE5	Grade PE4	Grade PE2	Grade	Grade PE6	Grade PE5	Grade PE4	Grade PE2
Above	Or less	0	Grade P6	Grade P5	Grade P4	Grade P2	0	Grade P6	Grade P5	Grade P4	Grade P2
18	30	13	8	4	3	2.5	13	8	4	3	2.5
30	50	15	10	5	4	2.5	15	10	5	4	2.5
50	80	20	10	5	4	2.5	20	10	5	4	2.5
80	120	25	13	6	5	2.5	25	13	6	5	2.5
120	150	30	18	8	6	2.5	30	18	8	6	2.5
150	180	30	18	8	6	5	30	18	8	6	5
180	250	40	20	10	8	5	40	20	10	8	5
250	315	50	25	13	10	_	50	25	13	10	_
315	400	60	30	15	12	_	60	30	15	12	_
400	500	65	35	18	14	ı	65	35	18	14	-
500	630	70	40	20	16	-	70	40	20	16	-
630	800	80	_	-	_	_	80	-	_	-	_
800	1000	90	_	_	_	_	90	_	_	_	_
1000	1250	100	_	_	_	_	100	_	_	_	_

Table7 Rotational Accuracy of the Outer Ring of Model RE

Unit: µm

Unit: µm

	and the analysis and a second of the second										
Nominal of	dimension	Radial	Radial runout tolerance of the outer ring				Axial	runout to	lerance o	f the oute	er ring
of the bea	ring outer (D) (mm)	Grade	Grade PE6	Grade PE5	Grade PE4	Grade PE2	Grade	Grade PE6	Grade PE5	Grade PE4	Grade PE2
Above	Or less	0	Grade P6	Grade P5	Grade P4	Grade P2	0	Grade P6	Grade P5	Grade P4	Grade P2
30	50	20	10	7	5	2.5	20	10	7	5	2.5
50	80	25	13	8	5	4	25	13	8	5	4
80	120	35	18	10	6	5	35	18	10	6	5
120	150	40	20	11	7	5	40	20	11	7	5
150	180	45	23	13	8	5	45	23	13	8	5
180	250	50	25	15	10	7	50	25	15	10	7
250	315	60	30	18	11	7	60	30	18	11	7
315	400	70	35	20	13	8	70	35	20	13	8
400	500	80	40	23	15	_	80	40	23	15	_
500	630	100	50	25	16	-	100	50	25	16	_
630	800	120	60	30	20	_	120	60	30	20	_
800	1000	120	75	-	_	-	120	75	-	-	_
1000	1250	120	-	-	_	-	120	-	-	-	_
1250	1600	120	_	_	_	_	120	_	_	_	_

Table8 Rotational Accuracy of the Inner Ring of Model RA and RA-C Unit: μm

Table9 Rotational Accuracy of the Outer Ring of Model RA-C
Unit: µm

Nominal dimensi inner diame	Tolerance in radial runout	
Above	Or less	and axial runout
40	65	13
65	80	15
80	100	15
100	120	20
120	140	25
140	180	25
180	200	30

Note) If higher accuracy than the above values is required for the inner ring in rotational accuracy for models RA and RA-C, contact THK.

Nominal dimensi outer diame	Tolerance in radial runout	
Above	Or less	and axial runout
65	80	13
80	100	15
100	120	15
120	140	20
140	180	25
180	200	25
200	250	30

Note) The rotational accuracy of the outer ring for model RAC indicates the value before separation.

Point of Selection

Accuracy Standards

Unit: u m Tolerance of dm(note 2) Nominal dimension of the bearing inner Grades 0, P6, P5, P4 Grade PE6 Grade PE5 Grade PE4 and PE2 diameter (d) (mm) and P2 Above Or less Upper Upper Upper Lower Lower Lower Upper Lower 18 30 0 -10 0 -8 0 -6 0 -5 30 50 0 -12 0 -10 0 -8 0 -6 50 80 0 -15 0 -12 0 -9 0 -7 120 80 0 -20 0 -15 0 -10 0 -8 120 150 0 -25 0 -18 0 -13 0 -10 150 180 0 -25 0 -18 0 -13 n -10 250 0 -30 0 -22 0 -15 0 -12 180 0 0 0 250 315 -35 -25 -18 315 400 0 -40 0 -30 0 -23 400 0 500 -45 0 -35 _ _ 500 630 0 -50 O -40 800 0 -75 630 1000 0 800 -100 1000 1250 0 -125

Note1) Standard inner diameter accuracy of models RA, RA-C and RU is 0. For higher accuracy than 0, contact THK. Note2) "dm" represents the arithmetic average of the maximum and minimum diameters obtained in measuring the bearing inner diameter at two points.

Note3) For accuracy grades in bearing inner diameter with no values indicated in the table, the highest value among low accuracy grades applies.

Table11 Dimensional Tolerance of the Bearing Outer Diameter

Unit: µm

	dimension		Tolerance of Dm ^(note 2)							
of the bearing outer diameter (D) (mm)			Grades 0, P6, P5, P4 and P2		Grade PE6		ade PE5	Grade F	PE4 and PE2	
Above	Or less	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	
30	50	0	-11	0	-9	0	-7	0	-6	
50	80	0	-13	0	-11	0	-9	0	-7	
80	120	0	-15	0	-13	0	-10	0	-8	
120	150	0	-18	0	-15	0	-11	0	-9	
150	180	0	-25	0	-18	0	-13	0	-10	
180	250	0	-30	0	-20	0	-15	0	-11	
250	315	0	-35	0	-25	0	-18	0	-13	
315	400	0	-40	0	-28	0	-20	0	-15	
400	500	0	-45	0	-33	0	-23	_	_	
500	630	0	-50	0	-38	0	-28	_	_	
630	800	0	-75	0	-45	0	-35	_	_	
800	1000	0	-100	_	_	_	_	_	_	
1000	1250	0	-125	_	_	_	_	_	_	
1250	1600	0	-160	-	I	_	-	_	_	

Note1) Standard outer diameter accuracy of models RA, RA-C and RU is 0. For higher accuracy than 0, contact THK. Note2) "Dm" represents the arithmetic average of the maximum and minimum diameters obtained in measuring the bearing outer diameter at two points.

Note3) For accuracy grades in bearing outer diameter with no values indicated in the table, the highest value among low accuracy grades applies.

Table12 Tolerance in the Width of the Inner and Outer Rings for Models RU

Unit: µm

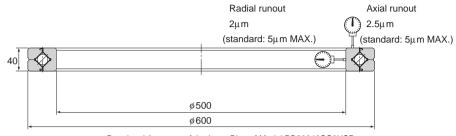
Model No.	Tolerrance of B			
Wodel No.	Upper	Lower		
RU42	0	-75		
RU66	0	-75		
RU85	0	-75		
RU124	0	-75		
RU148	0	-75		
RU178	0	-100		
RU228	0	-100		
RU297	0	-100		
RU445	0	-100		

Table13 Tolerance in the Width of the Inner and Outer Rings (Common to All Grades) for Models RB and RE

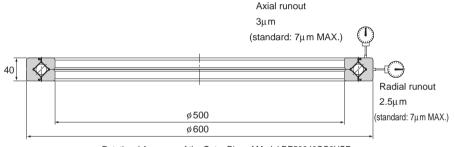
Unit: µm

·							
Nominal dimensi	on of the bearing	Tolerra	ance of B	Tolerra	nce of B1		
	ter (d) (mm)		inner ring of RB ter ring of RE	Applied to the outer ring of RB and the inner ring of RE			
Above	Or less	Upper	Lower	Upper	Lower		
18	30	0	-75	0	-100		
30	50	0	-75	0	-100		
50	80	0	-75	0	-100		
80	120	0	-75	0	-100		
120	150	0	-100	0	-120		
150	180	0	-100	0	-120		
180	250	0	-100	0	-120		
250	315	0	-120	0	-150		
315	400	0	-150	0	-200		
400	500	0	-150	0	-200		
500	630	0	-150	0	-200		
630	800	0	-150	0	-200		
800	1000	0	-300	0	-400		
1000	1250	0	-300	0	-400		

Note) All B and B1 types of models RA and RA-C are manufactured with tolerance between -0.120 and 0.


Point of Selection

Accuracy Standards


Accuracy Standard of the USP-Grade Series

[Examples of Rotational Accuracy of the USP-Grade Series Cross-Roller Rings]

The rotation accuracy of the USP-Grade Series achieves the ultra precision grade that surpasses the world's highest accuracy standards such as JIS Class 2, ISO Class 2, DIN P2 and AFBMA ABEC9.

Rotational Accuracy of the Inner Ring of Model RB50040CC0USP

Rotational Accuracy of the Outer Ring of Model RE50040CC0USP

[Accuracy Standards]

The USP-grade series of models RB and RE are manufactured with runout accuracies according to Table14.

Table14 Runout Accuracies of the USP-grade Series Unit: µm

diame and outer	al inner eter (d) r diameter (mm)	Runout a of the in of mod		Runout accuracy of the outer ring of model RE		
Above	Or less	Radial Axial runout tolerance tolerance tolerance		Radial runout tolerance	Axial runout tolerance	
80	180	2.5	2.5	3	3	
180	250	3	3	4	4	
250	315	4	4	4	4	
315	400	4	4	5	5	
400	500	5	5	5	5	
500	630	6 6		7	7	
630	800	_	_	8	8	

Radial Clearance

Table15 shows the radial clearance of model RU, Table16 that of the standard type of models RB and RE, Table17 that of the USP-grade series of models RB and RE, and Table18 that of the thin type of models RA and RA-C.

Table15 Radial clearance for model RU

Unit: µm

Model	C	C0	C0		
No.	Starting to	Starting torque (N·m)		rance (μm)	
	Min.	Max.	Min.	Max.	
RU42	0.1	0.5	0	25	
RU66	0.3	2.2	0	30	
RU85	0.4	3	0	40	
RU124	1	6	0	40	
RU148	1	10	0	40	
RU178	3	15	0	50	
RU228	5	20	0	60	
RU297	10	35	0	70	
RU445	20	55	0	100	

Note) Model RU clearance CC0 is controlled by starting torque.Starting torque for clearance CC0 does not include seal resistance value.

Table16 Radial Clearances of Models RB and RE
Unit: μm

Pitch circle diameter of the roller (dp) (mm)		CC	00	C	0	С	:1
Above	Or less	Min.	Max.	Min.	Мах.	Min.	Мах.
18	30	-8	0	0	15	15	35
30	50	-8	0	0	25	25	50
50	80	-10	0	0	30	30	60
80	120	-10	0	0	40	40	70
120	140	-10	0	0	40	40	80
140	160	-10	0	0	40	40	90
160	180	-10	0	0	50	50	100
180	200	-10	0	0	50	50	110
200	225	-10	0	0	60	60	120
225	250	-10	0	0	60	60	130
250	280	-15	0	0	80	80	150
280	315	-15	0	30	100	100	170
315	355	-15	0	30	110	110	190
355	400	-15	0	30	120	120	210
400	450	-20	0	30	130	130	230
450	500	-20	0	30	130	130	250
500	560	-20	0	30	150	150	280
560	630	-20	0	40	170	170	310
630	710	-20	0	40	190	190	350
710	800	-30	0	40	210	210	390
800	900	-30	0	40	230	230	430
900	1000	-30	0	50	260	260	480
1000	1120	-30	0	60	290	290	530
1120	1250	-30	0	60	320	320	580
1250	1400	-30	0	70	350	350	630

Table17 Radial Clearances of USP-grade Series of Models RB and RE Unit: μm

•							
e diameter r (dp) (mm)	C	CC0 C0		CC0 C0		0	
Or less	Min.	Max.	Min.	Max.			
160	-10	0	0	40			
200	-10	0	0	50			
250	-10	0	0	60			
280	-15	0	0	80			
315	-15	0	0	100			
355	-15	0	0	110			
400	-15	0	0	120			
500	-20	0	0	130			
560	-20	0	0	150			
630	-20	0	0	170			
710	-20	0	0	190			
	Or less 160 200 250 280 315 355 400 500 560 630	Open	Open	Or less Min. Max. Min.			

Table18 Radial Clearances of Models RA and RA-C
Unit: μm

Pitch circle diameter of the roller (dp) (mm)		C	C0	С	0
Above	Or less	Min.	Max.	Min.	Max.
50	80	-8	0	0	15
80	120	-8	0	0	15
120	140	-8	0	0	15
140	160	-8	0	0	15
160	180	-10	0	0	20
180	200	-10	0	0	20
200	225	-10	0	0	20

Moment Rigidity

Fig.6 to Fig.9 show moment rigidity diagrams for the Cross-Roller Ring as a separate unit. Rigidity is affected by the deformation of the housing, presser flange and bolts. Therefore, the strength of these parts must be taken into account.

(Radial clearance: 0)

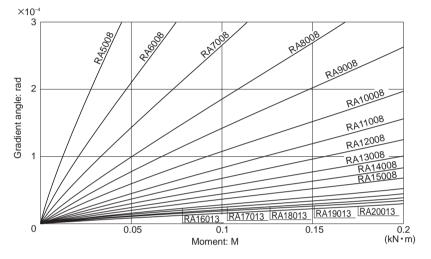


Fig.6

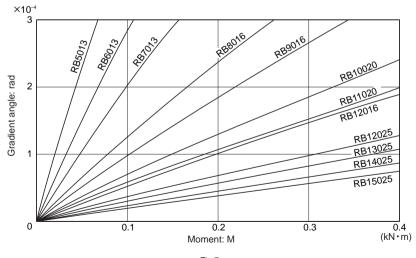
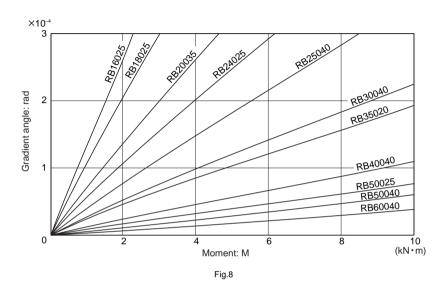
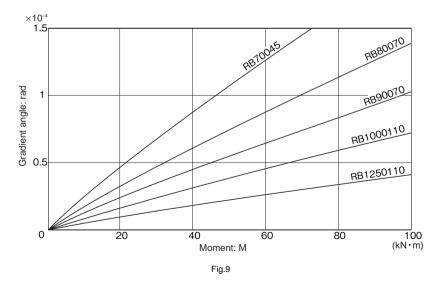




Fig.7

dammy

Point of Design

Cross-Roller Ring

Fit

[Fitting of Models RU]

Fitting for model RU is basically not required. However, for fitting requiring positioning accuracy, h7 and H7 are recommended.

www.technobearing.ru

[Fitting of Models RB, RE and RA]

For the fitting of models RB, RE and RA, we recommend using the combinations indicated in Table1.

Table1 Fitting of Models RB, RE and RA

Radial clearance	Service condition		Shaft	Housing
CO	Inner ring rotational load	Normal load	h5	H7
		Large impact and moment	h5	H7
	Outer ring rotational load	Normal load	g5	Js7
		Large impact and moment	g5	Js7
C1	Inner ring rotational load	Normal load	j5	H7
		Large impact and moment	k5	Js7
	Outer ring rotational load	Normal load	g6	Js7
		Large impact and moment	h5	K7

Note) For the fitting for clearance CC0, avoid interference because it will cause an excessive preload. As for the fitting when you have selected clearance CC0 for the joints or swiveling unit of a robot, the combination of g5 and H7 is recommended.

[Fitting of the USP-grade]

For the fitting of the USP-grade series of models RB and RE, we recommend using the combinations indicated in Table2.

Table2 Fitting of the USP-grade

Radial clearance	Condition	Shaft	Housing
CC0	Inner ring rotational load	h5	J7
000	Outer ring rotational load	g5	Js7
C0	Inner ring rotational load	j5	J7
Cu	Outer ring rotational load	g5	K7

[Fitting for Model RA-C]

For the fitting of model RA-C, we recommend using the combinations indicated in Table3.

Table3 Fitting for Model RA-C

<u> </u>							
Radial clearance	Condition	Shaft	Housing				
CC0	Inner ring rotational load	h5	J7				
000	Outer ring rotational load	g5	Js7				
CO	Inner ring rotational load	j5	J7				
	Outer ring rotational load	g5	K7				

Designing the Housing and the Presser Flange

Since the Cross-Roller Ring is a compact, thin device, special consideration must be given to the rigidity of the housing and the presser flange.

With types having a separable outer ring, insufficiency in the strength of the housing, pressure flange or the presser bolt will result in the inability to evenly hold the inner or outer ring, or the deformation of the bearing when a moment load is applied. Consequently, the contact area of the rollers will become uneven, causing the bearing's performance to significantly deteriorate.

Fig.2 shows examples of installing the Cross-Roller Ring.

[Housing]

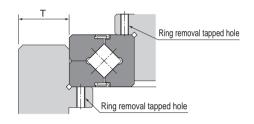
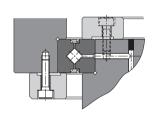
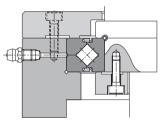
When determining the thickness of the housing, make sure it is at least 60% of the sectional height of the bearing as a guide.

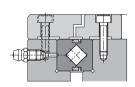
Housing thickness T=
$$\frac{D-d}{2}$$
 X 0.6 or greater

(D: outer diameter of the outer ring;

d: inner diameter of the inner ring)

If tapped holes for removing the inner or outer ring (Fig.1) are provided, the ring can be removed without causing damage to the bearing. When removing the outer ring, do not press the inner ring, or vise versa. For the dimensions of the presser on the side(s), see the shoulder dimensions indicated in the corresponding specification table.


Fig.1

a. Outer ring rotating in the swiveling unit
 A heavy body part is mounted after the inner and outer rings are secured.

 Inner ring rotating in the swiveling unit (with seals attached)

c. Inner and outer rings secured in the same direction in the swiveling unit (with seals attached)

Fig.2 Example of Installation

Designing the Housing and the Presser Flange

[Presser Flange and Presser Bolt]

When determining the thickness of the presser flange (F) or the clearance of the flange section (S), refer to the dimensions indicated below as a auide.

As for the number of the presser bolts, the greater the number of the bolts, the more stable the system becomes. As a guide, however, it is normally appropriate to use the number of bolts indicated in Table4 and equidistantly arrange them.

 $F = B \times 0.5$ to $B \times 1.2$

 $H = B_{01}^{0}$

S = 0.5 mm

Even if the shaft and the housing are made of light alloy, it is recommendable to select a steelbased material for the presser flange.

When tightening the presser bolts, firmly secure them using a torque wrench or the like so that they will not loosen. Table5 shows tightening torques for the housing and presser flanges made of typical steel materials with medium hardness.

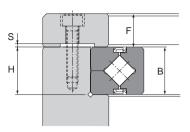


Table4 Number of Presser Bolts and Bolt Sizes

Unit: mm

Outer diam outer r		No. of bolts	Bolt size (reference value)	
Above	Or less			
_	100	8 or more	M3 to M5	
100	200	12 or more	M4 to M8	
200	500	16 or more	M5 to M12	
500	1	24 or more	M12 or thicker	

Table5 Bolt Tightening Torque

Unit: N-m

Screw model No.	Tightening torque	Screw model No.	Tightening torque
М3	2	M10	70
M4	4	M12	120
M5	9	M16	200
M6	14	M20	390
M8	30	M22	530

Mounting Procedure

Cross-Roller Ring

Procedure for Assembly

When assembling the Cross-Roller Ring, follow the steps below.

[Inspecting the Parts before Assembling Them]

Thoroughly clean the housing and other parts to be assembled, and check if there is no burr or knots.

[Installing the Cross-Roller Ring into the Housing or onto the Shaft]

Since the Cross-Roller Ring is a thin bearing, it tends to tilt as it is installed. To prevent it, gradually drive the Cross-Roller Ring into the housing or onto the shaft by gently hitting it with a plastic hammer while keeping it horizontal. Be sure to keep hammering it with much care until you hear it fully contact the reference surface.

[Attaching the Presser Flange]

- (1) Place the presser flange onto the Cross-Roller Ring. Rock the flange several times to match the bolt holes.
- (2) Insert the presser bolts into the holes. Manually turn the bolts and make sure they do not show skewing caused by misalignment of the holes.
- (3) Fasten the presser bolts in three to four steps from temporary to full fastening by repeatedly securing the bolts in the diagonal order, as shown in Fig.1. When tightening the separable inner or outer ring, slightly turning the integral outer or inner ring will correct the dislocation between the ring and the body.

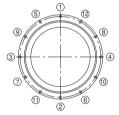


Fig.1 Tightening Sequence

Precautions on Use

Cross-Roller Ring

[Handling]

- (1) The separable inner or outer ring is fastened in place using special rivets, bolts or nuts when delivered. When installing it to the system, do not disassemble it. Also, erroneously installing the spacer retainer will significantly affect the rotational performance of the system. Do not disassemble the bearing.
- (2) The matching mark of the inner or outer ring may be slightly misaligned when delivered. In that case, loosen the bolts that secure the inner or outer ring, and correct the alignment using a plastic hammer or the like, before installing it to the housing. (Let the securing rivets follow the housing.)
- (3) When installing or removing the Cross-Roller Ring, do not apply force to the fixing rivets or the bolts.
- (4) When mounting the presser flange, take into account the dimensional tolerances of the parts so that the flange firmly holds the inner and outer ring from the side.
- (5) Dropping or hitting the Cross-Roller Ring may damage it. Giving an impact force to the bushing could also cause damage even if the product looks intact.

[Lubrication]

- (1) Since each Cross-Roller Ring unit contains high-quality lithium soap group grease No. 2, you can start using the product without replenishing grease. However, the product requires regular lubrication since it has a smaller internal space than ordinary roller bearings and because the rollers need frequent lubrication due to their rolling contact structure.
 - To replenish grease, it is necessary to secure greasing holes that lead to the oil grooves formed on the inner and outer rings. As for the lubrication interval, normally replenish grease of the same group so that it is distributed throughout the interior of the bearing at least every six to twelve months.
 - When the bearing is filled up with grease, the initial rotational torque temporarily increases. However, surplus grease will run off of the seals and the torque will return to the normal level in a short period. The thin type does not have an oil groove. Secure an oil groove inside the housing for lubrication.
- (2) Do not mix greases with different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.

[Precautions on Use]

- (1) Entrance of foreign material may cause damage to the ball circulating path or functional loss. Prevent foreign material, such as dust or cutting chips, from entering the system.
- (2) Contact THK if you desire to use the product at a temperature of 80°C or higher.
- (3) If planning to use the Cross-Roller Ring in an environment where a coolant penetrates into the product, contact THK.
- (4) If foreign material adheres to the product, replenish the lubricant after cleaning the product.
- (5) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.

Cam Follower

行出ば General Catalog

A Technical Descriptions of the Products

Features and Types A-880 Features of the Cam Follower..... A-880 Structure and features..... A-880 • Cam Follower with a Hexagon Socket . A-881 • Cam Follower Containing Thrust Balls . A-881 Types of the Cam Follower A-882 Types and Features..... A-882 • Types and Model Numbers of Cam Followers A-883 Classification Table A-884 Point of Selection..... A-885 Nominal Life A-885 Accuracy Standards A-886 Track load capacity A-887 Radial Clearance..... A-887 Point of Design A-888 Fit A-888 Installation A-888 Mounting Procedure and Maintenance... A-889 Installation A-889 Contamination Protection and Lubrication .. A-891 Accessories A-892 Accessories for the Cam Follower A-892 Precautions on Use..... A-893

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	B-807
Model CF (Popular Type (Cylindrical Outer Ring)),	
Model CF-M (Stainless Steel Type), Model CF-R(Popular Type (Spherical Outer Ring)),	
	5
Model CF-MR (Stainless Steel Type)	B-808
Model CF-A(Cam Follower with Hexagon Socket (Cylindrical Outer Ring)),	
Model CF-M-A (Stainless Steel Type),	
Model CF-R-A(Cam Follower with Hexagon Socket (Spherical Outer Ring)),	
Model CF-MR-A (Stainless Steel Type)	B-810
Model CF-B(Cam Follower with Hexagon Socket (Cylindrical Outer Ring)),	
Model CF-M-B (Made of Stainless Steel)	
Model CF-R-B(Cam Follower with Hexagon Socket (Spherical Outer Ring)),	
Model CF-MR-B (Made of Stainless Steel)	B-812
Model CFH-A(Eccentric Cam Follower with Hexagon Socket (Cylindrical Outer Ring)),	
Model CFH-M-A (Made of Stainless Steel)	
Model CFH-R-A(Eccentric Cam Follower with Hexagon Socket (Spherical Outer Ring)),	
Model CFH-MR-A (Made of Stainless Steel)	B-814
	D 017
Model CFN-R-A(Cam Follower Containing Thrust Balls)	B-816
Model CFT (Cam Follower with Tapped Greasing Hole (Cylindrical Outer Ring)),	
Model CFT-M (Made of Stainless Steel)	
${\it Model CFT-R (Cam \ Follower \ with \ Tapped \ Greasing \ Hole \ (Spherical \ Outer \ Ring))},$	
Model CFT-MR (Made of Stainless Steel).	B-818
Association	D 000
Accessories for the Com Fallour	B-820
Accessories for the Cam Follower	B-820

Please see the separate "B Product Specifications".

Features and Types

Cam Follower

Features of the Cam Follower

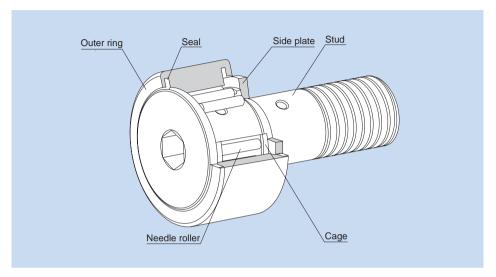


Fig.1 Structure of Cam Follower Model CF...UU-A

Structure and Features

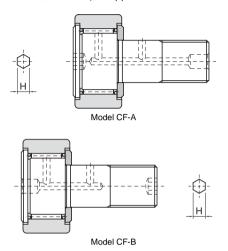
The Cam Follower is a compact and highly rigid bearing with a shaft. It contains needle bearings and is used as a guide roller for cam mechanisms or straight motion.

Since its outer ring rotates while keeping direct contact with the mating surface, this product is thickwalled and designed to bear an impact load.

Inside the outer ring, needle rollers and a precision cage are incorporated. This prevents the product from skewing and achieves a superb rotation performance. And, as a result, the product is capable of easily withstanding high-speed rotation.

There are two types of the outer ring in shape: spherical and cylindrical. The spherical outer ring easily absorbs a distortion of the shaft center when the cam follower is installed and helps lighten a biased load.

The Cam Follower is used in a wide range of applications such as cam mechanisms of automatic machines, dedicated machines as well as carrier systems, conveyors, bookbinding machines, tool changers of machining centers, pallet changers, automatic coating machines, and sliding forks of automatic warehouses.


Cam Follower

Features and Types

Features of the Cam Follower

Cam Follower with a Hexagon Socket

For Cam Follower model CF, Cam Follower Containing Thrust Balls model CFN and Eccentric Cam Follower model CFH, hexagon socket studs that allow easy eccentricity adjustment are available. If desiring a hexagon socket on the stud head, add "A" to the end of the model number. If desiring a hexagon socket on the stud thread, add "B". ("B" applies to model CF12 or higher.)

The Same Dimension of the Hexagonal Width Across Flats (H Dimension) Applies to Both Type A and Type B.

Cam Follower Containing Thrust Balls

Even a slight mounting error in a high speed cam mechanism operating in a harsh environment could cause abnormal wear to the thrust unit of the cam follower. In such a case, using Cam Follower Containing Thrust Balls model CFN will bring about a significant effect in increasing the durability.

Models CFN5 to 12 are standard-stock items. If desiring a size other than the standard items, contact THK.

Model CFN is capable of receiving a thrust load caused by a slight mounting error. However, it is necessary to minimize a component of thrust force, or prevent it from occurring, when designing the cam mechanism and installing the Cam Follower.

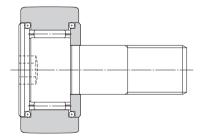


Fig.2

Types of the Cam Follower

Types and Features

Popular Type Cam Follower Model CF

It is a popular type of Cam Follower provided with a driver groove on the head of the stud. A highly corrosion resistant stainless steel type (symbol M) is also available.

Specification Table⇒B-808

Model CF

Cam Follower with a Hexagon Socket Model CF-A

Specification Table⇒B-810 Since the stud head has a hexagon socket, this

model can easily be installed using a hexagon wrench.

A type whose stud screw has a hexagon socket (CF-B) is also available. (applicable to stud diameter of 12 or greater)

Model CF-A

Eccentric Cam Follower with a Hexagon Socket Model CFH-A Specification Table⇒B-814

This model can be installed in the same mounting hole as that of model CF. Since the mounting shaft of the stud and the stud head are eccentric by 0.25 mm to 1.0 mm, the position of this model can easily be adjusted simply by turning the stud. Thus, it is a compact, highly accurate eccentric cam follower with an integral structure. As a result, the man-hours for machining and assembly can significantly be reduced because it is unnecessary to align the cam follower with the cam groove and machine the mounting-hole area with precision.

Model CFH-A

Cam Follower Containing Thrust Balls Model CFN

Based on the popular type Cam Follower, this model is incorporated with thrust load balls.

Features and Types

Types of the Cam Follower

Cam Follower with a Tapped Hole for Greasing Model CFT Specification Table⇒B-818

Basically the same as the popular type Cam Follower, this model is provided with tapped holes for piping on the stud head and the thread. It is optimal for locations where an integrated piping for greasing is required.

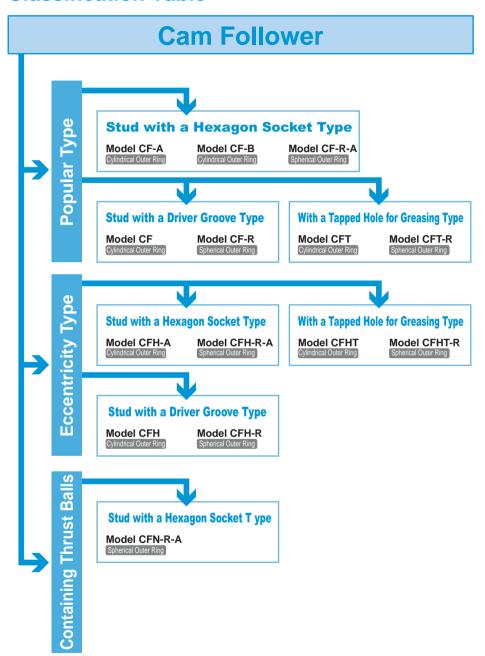
Types and Model Numbers of Cam Followers

The Cam Follower is divided into several types as indicated in Table 1.

Table 1 Types and Model Numbers of Cam Followers

Table E Types and Model Numbers of Carri Pollowers							
	Туре	Po	pular Type	Eccentri	c Cam Follower	Containing Thrust Balls	
	Shape						
r ring	Stud with a hexagon socket	CF-A	(CF···UU-A)	CFH-A	(CFH···UU-A)		
Cylindrical outer ring	Stud with a driver groove	CF	(CF···UU)	CFH	(CFH····UU)		
ndrica	With a tapped hole for greasing	CFT	(CFT···UU)	CFHT	(CFHT···UU)		
Š	Made of stainless steel	CF-M	(CF···MUU)	CFH-M	(CFH···MUU)		
r ring	Stud with a hexagon socket	CF-R-A	(CF···UUR-A)	CFH-R-A	(CFH···UUR-A)	CFN-R-A	
Spherical outer ring	Stud with a driver groove	CF-R	(CF···UUR)	CFH-R	(CFH····UUR)		
herica	With a tapped hole for greasing	CFT-R	(CFT···UUR)	CFHT-R	(CFHT···UUR)		
Sp	Made of stainless steel	CF-MR	(CF···MUUR)	CFH-MR	(CFH···MUUR)		

Note1) The symbols in the parentheses indicate model numbers of types with seals.


Note2) THK also manufactures low-speed full-roller types with long service lives. For these full-roller types, symbol "V" is indi-

Note3) Symbol M indicates stainless steel type.

Example: CF 12 V UUR

- Full-roller type

Classification Table

Point of Selection

Cam Follower

Nominal Life

[Static Safety Factor]

The basic static load rating C₀ refers to the static load with constant direction and magnitude, under which the calculated contact stress in the center of the contact area between the roller and the raceway under the maximum load is 4000 MPa. (If the contact stress exceeds this level, it will affect the rotation.) This value is indicated as "C₀" in the dimensional tables. When a load is statically or dynamically applied, it is necessary to consider the static safety factor as shown below.

$$\frac{\mathbf{C}_0}{\mathbf{P}_0} = \mathbf{f}_S$$

fs : Static safety factor in relation to Co

(see Table1)

C₀: Basic static load rating (kN)

P₀: Radial load (kN)

The permissible load (F_0) indicates the permissible value of the applied load determined by the strength of the stud section of the Cam Follower. Therefore, it is necessary to consider the static safety factor f_M against F_0 as well as f_S .

 $\frac{\mathbf{F}_0}{\mathbf{P}_0} = \mathbf{f}_{\mathsf{M}}$

f_M: Static safety factor in relation to F₀

(see Table1) (kN)

P₀ : Radial load (kN)

Table1 Static Safety Factor (fs, fm)

Load conditions	Lower limit of fs and f _M
Normal load	1 to 2
Impact load	2 to 3

[Nominal Life]

F₀

The service life of the Cam Follower is obtained from the following equation.

$$L = \left(\frac{f_{\text{T}} \cdot C}{f_{\text{W}} \cdot P_{\text{c}}}\right)^{\frac{10}{3}} \times 10^{6}$$

: Permissible load

L : Nominal life

(The total number of revolutions that 90% of a group of identical Cam Follower units independently operating under the same conditions can achieve without showing flaking from rolling fatigue)

C : Basic dynamic load rating (kN)
Pc : Radial load (kN)

f_⊤ : Temperature factor

(see Fig.1 on A-886)

fw : Load factor (see Table2 on A-886)

* The basic dynamic load rating (C) of the Cam Follower shows the load with interlocked direction and magnitude, under which the nominal life (L) is 1 million revolutions when a group of identical Cam Follower units independently operate. The basic dynamic load rating (C) is indicated in the corresponding specification table.

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, the service life time (L_h) is obtained from the following equation.

For Linear Motion

$$L_h = \frac{D \cdot \pi \cdot L}{2 \times \ell_s \cdot n_1 \times 60}$$

_h : Service life time (h)

: Nominal life

D : Bearing outer diameter (mm)

 ℓ_{S} : Stroke length (mm)

n₁: Number of reciprocations per minute (min⁻¹)

Fig.1 Temperature Factor (f_T)

Note) The normal service temperature is 80 °C or below. If the product is to be used at a higher temperature, contact THK.

For Rotary Motion

$$L_h = \frac{D \cdot L}{D_1 \cdot n \times 60}$$

D₁ : Outer ring contact average diameter of the cam (mm)

n : Revolutions per minute of the cam

(min⁻¹)

Table2 Load Factor (fw)

Condition	fw
Smooth motion without impact	1 to 1.2
Normal motion	1.2 to 1.5
Motion with severe impact	1.5 to 3

Accuracy Standards

Cam Followers are manufactured with accuracies according to Table3.

- (1) Dimensional tolerance of the cylindrical outer ring in outer diameter D: Table3
- (2) Dimensional tolerance of the spherical outer ring in outer diameter D: $_{-0.05}^{0}$
- (3) Dimensional tolerance of the Cam Follower in stud diameter d: h7
- (4) Dimensional tolerance of the outer ring in width B: 012

Table3 Accuracy of the Outer Ring (JIS Class 0)

Unit: µm

	mension of ing outer (D) (mm)	Tolerance of in outer diam	Tolerance of the outer ring in radial	
Above	Or less	Upper	runout (max)	
6	18	0	-8	15
18	30	0	-9	15
30	50	0	-11	20
50	80	0	-13	25
80	120	0	-15	35

Note) "Dm" represents the arithmetic average of the maximum and minimum diameters obtained in measuring the bearing outer diameter at two points.

Track Load Capacity

The track load capacity means the permissible load at which the outer ring of a bearing and the mating surface are capable of withstanding repeated use over a long period.

The track load capacity provided in the specification table indicates the value when using a steel material with tensile strength of 1.24 kN/mm² as the mating material. Therefore, it is possible to increase the track load capacity by increasing the hardness of the material. Fig.2 shows the hardness of the mating material and the track capacity factor in relation to tensile strength. To obtain the track load capacity of each mating material, multiply the track load capacity shown in the corresponding specification table by the respective track load factor.

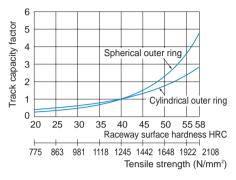


Fig.2 Track Capacity Factor

Note) For the mating material, we recommend using those materials with the raceway hardness of 20 HRC or higher and the tensile strength of 775 N/mm² or higher.

[Example of Calculating a Track Load Capacity]

Obtain the track load capacity when heat-treating the mating material, which a bearing whose outer ring has a track load capacity of 5.29 kN contacts, to hardness of 50 HRC.

The track capacity factor when the hardness is 50 HRC is 2.32, as indicated in Fig.2. Therefore, the desired track load capacity is calculated as follows.

The track load capacity=5.29kN×2.32=12.3kN

Radial Clearance

The radial clearances of Cam Followers meet clearance C2 (see Table4). (Normal clearance applies to full-roller types.)

Table4 Radial Clearance

Unit: µm

Model No.	Clear C (with	2	Normal clearance (full rollers)	
CF, CFN, CFH, CFT and CFHT	Min.	Max.	Min.	Max.
3 to 4	3	17	10	25
5 to 8	5	20	15	30
10 to 12–1	5	25	15	35
16 to 20–1	10	30	20	40
24 to 30-2	10	40	25	55

Point of Design

Cam Follower

Fit

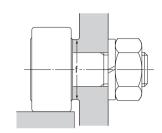
For the dimensional tolerance of the Cam Follower in stud-mounting hole, we recommend the following fitting.

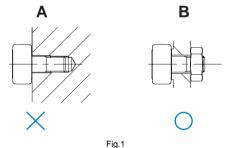
The dimensional tolerance of the stud-mounting hole: H7

Installation

[Mounting Section]

Establish perpendicularity between the studmounting hole and the mounting surface, and chamfer the mouth of the hole to the smallest possible radius, preferably C0.5. Also, the diameter of the mounting surface should preferably be at least equal to the dimension "f" indicated in the specification table.


If the outer ring unilaterally or unevenly contacts the mating raceway, we recommend using model CF-R, whose outer ring circumference is spherically ground.


[Mating Raceway]

For the material of the mating raceway, see Track Load Capacity on A-887.

[About the Mounting Method]

Do not tap the bracket and directly tighten the product without using a nut as shown in Fig.1. Doing so may result in an insufficient tightening torque, or cause the bending stress to concentrate in the male thread and damage the stud if the thread is loosened.

Mounting Procedure and Maintenance Cam Follower

Installation

[Installing the Cam Follower]

If the Cam Follower is to be used under a heavy load, it is necessary to install the product so that the greasing hole on the stud is out of the loaded area. To help identify the position of the greasing hole, the THK logo is marked on the side face of the stud collar. (See Fig.1.)

The vertical hole in the middle of the stud is used as a whirl stop or a greasing hole.

Make sure that the outer ring is evenly in contact with the mating surface. When installing the Cam Follower, also make sure its axis is perpendicular to the traveling direction.

Tightening Torque for the Stud

Since the stud of the Cam Follower receives bending stress and tensile stress caused by a bearing load, it is necessary to keep the tightening torque of the screw from exceeding the values indicated in Table 1.

If the mounting screw may be loosened due to vibrations or impact, use a spring washer, thin nuts of JIS B 1811 Class 3 as double-nuts or a special nut capable of preventing itself from loosening.

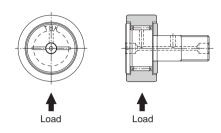


Fig.1 Positions of the THK Logo and the Greasing Holes

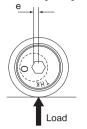
Table1 Maximum Tightening Torque of the Screw

Table I Maximum Tightening Torque of the Screw					
Model No	Maximum tightening				
CF, CFN, CFH, CFT	torque N-m				
3	0.392				
4	0.98				
5	1.96				
6	2.94				
8	7.84				
10 10-1	16.7				
12 12-1	29.4				
16	70.6				
18	98				
20 20-1	137				
24 24-1	245				
30 30-1 30-2	480				


Note) 1 N-m equals to 0.102 kgf-m.

[Installing the Eccentric Cam Follower]

The eccentricity is adjusted in the following steps.


- (1) Insert the stud into the mounting hole, and lightly tighten the nut until the nut starts turning. In doing so, position the THK logo in relation to the load direction as shown in Fig.2.
- (2) Use the hexagon socket on the stud head to turn the stud and adjust the clearance between the stud and the mating contact surface.
- (3) After adjusting the clearance, tighten the nut while keeping the stud from turning. Be sure the maximum tightening torque in Table 1 on A-889 is not exceeded.

The surface of the Cam Follower stud is hardened. Take this into account when machining the stud. For model CFH12 or higher with a greasing hole

The figure shows the position of the THK logo in relation to the eccentricity direction for model CFH12 or higher with a greasing hole.

For model CFH10-1 or lower without a greasing hole

For model CFH10-1 or lower without a greasing hole, the "O" mark indicates the eccentricity direction. There is no relationship between the THK logo and the eccentricity direction.

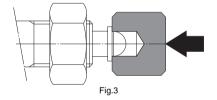
Fig.2

Mounting Procedure and Maintenance

Contamination Protection and Lubrication

Contamination Protection and Lubrication

The Cam Follower models include seal types (model numbers: "...UU"), which are incorporated with special synthetic rubber seals that are highly resistant to wear in order to prevent foreign material from entering the interior of the cam follower and the lubricant from leaking.


Since each Cam Follower unit with seals contains high-quality lithium soap group grease No. 2, you can start using the product without replenishing grease. Exceptionally, model CFN contains AFC Grease.

If your Cam Follower does not have seals, fill grease from the greasing hole on the stud or the inner ring. However, some of the model numbers with stud diameters of 10 mm or less do not have a greasing hole and are provided with initial lubrication only, and therefore do not allow replenishment of grease.

The appropriate fill quantity is a half to one third of the space inside the bearing. The lubrication interval varies depending on the operating conditions. As a guide, however, replenish grease of the same group every six months to two years for types with a cage, or every one to 6 months for full-roller types.

Even with types equipped with seals ("...UU"), surplus grease may seep during the initial operation period or immediately after resumption of grease replenishment. If desiring to avoid contamination of the surrounding area of the machine by grease, first perform seasoning or the like in advance, and then wipe the seeping surplus grease.

When driving the dedicated grease nipple onto the Cam Follower, use a jig like the one shown in Fig.3 to provide pressure to the flange of the nipple.

Accessories

Cam Follower

Accessories for the Cam Follower

Table1 shows accessories for standard types of Cam Followers. The dedicated grease nipple is attached at your request. If desiring the dedicated grease nipple, add symbol "N" to the end of the model number.

Example: CF 12 UUR -N

- Dedicated grease nipple

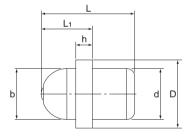


Table1 Accessories

Model No.		Plug ^{note 1}	Plug ^{note 1} Plug ^{note 2}		Grease ^{note 3}
CF	Without seal	Included in package	Included in package	Included in package	Not contained
CFH	With seal	Included in package	Included in package	Included in package	Filled with grease
CFN		Included in package	Included in package	Included in package	Filled with grease
CFT	Without seal	_	_	Included in package	Not con- tained
011	With seal	_	_	Included in package	Filled with grease

Note1) The plug is used to prevent grease from leaking. However, it is not included in the packages of model CF5, and hexagon socket types of models CFN10 (R)-A and CF (CFH) 10-1 (R)-A or lower.

Note2) The plug is used to close an unused greasing hole. However, it is not attached to model CF (CFH) 10-1 or lower.

Note3) All models without a greasing hole are filled with grease when assembled regardless of whether a seal is attached or not.

Table2 Specification Table for Grease Nipples

Supported models		Nipple dimensions					Nipple model No.
CF, CFN, CFH	d	b	D	h	L	L₁	model No.
5	3.1	6	7.5	1.5	9	5.5	NP3.2×3.5
6 to 10	4	6	7.5	1.5	10	5.5	PB1021B
12 to 18	6	6	8	2	11	6	NP6×5
20 to 30	8	6	10	3	16	7	NP8×9

Note) The grease nipple is not attached to models CFN10 (R)-A and CF (CFH) 10-1 (R)-A or lower.

Precautions on Use

Cam Follower

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Dropping or hitting the Cam Follower may damage it. Giving an impact to it could also cause damage to its function even if the product looks intact.

[Lubrication]

- (1) Some types of the Cam Follower do not contain grease depending on the size and on whether seals are attached. Carefully refer to Table1 on A-892, and if the desired model does not contain grease, apply grease to the product as necessary before using it. Lithium soap-based grease No. 2 is available as standard. (Use THK AFC Grease for model CFN.)
- (2) Do not mix lubricants of different physical properties. In addition, replenish a lubricant also during operation as necessary.
- (3) We recommend applying a lubricant to the mating surface where the Cam Follower travels.

[Precautions on Use]

- (1) When securing the Cam Follower, use a torque wrench or the like to tighten the product at a torque equivalent to the corresponding value in Table1 on A-889.
- (2) When using the product in locations exposed to vibrations or an impact load or in a special environment such as a clean room, vacuum and low/high temperature, contact THK in advance.
- (3) Entrance of foreign material such as dust may cause damage or functional loss. Prevent foreign material, such as dust and cutting chips, from entering the product.
- (4) Cam Followers are designed for use under a radial load. Do not use the product under a thrust load.

[Storage]

When storing the Cam Follower, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

Roller Follower

行出ば General Catalog

A Technical Descriptions of the Products

Features and Types A-896 Features of the Roller Follower A-896 Structure and features..... A-896 Types of the Roller Follower A-898 Types and Features..... A-898 Types of the Roller Follower A-900 Point of Selection...... A-901 Types and Model Numbers of the Roller Follower..... A-901 Nominal Life A-902 Accuracy Standards A-903 Track load capacity A-904 Radial Clearance A-904 Point of Design A-905 Fit A-905 Mounting Section A-905 Mounting Procedure and Maintenance... A-906 Installation A-906 Contamination Protection and Lubrication .. A-906 Precautions on Use...... A-907

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table Models NAST (Separable Type with a Cylindrical Outer Ring), NAST-R (Separable Type	B-821
with a Spherical Outer Ring)	B-822
Models NAST-ZZ (Separable Type with a Cylindrical Outer Ring and Side Plates), NAST-ZZR (Separable Type with a Spherical Outer Ring and Side Plates)	B-823
Models RNAST (Separable Type with a Cylindrical Outer Ring and No Inner Ring), RNAST-R (Separable Type with a Spherical Outer Ring and No Inner Ring)	B-824
3,	D-024
Models NART-R (Non-separable Type with a Spherical Outer Ring), NART-VR (Non-separable Type with a	D 005
Spherical Outer Ring and Full Balls)	B-825

^{*} Please see the separate "B Product Specifications".

Features of the Roller Follower

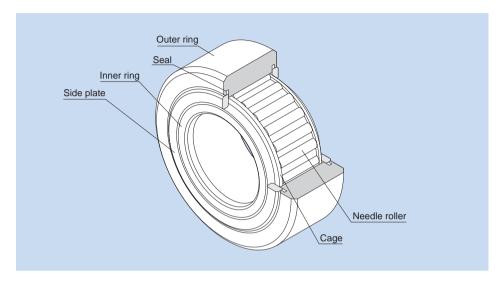


Fig.1 Structure of Roller Follower Model NAST-ZZUU

Structure and Features

The Roller Follower is a compact and highly rigid bearing system. It contains needle bearings and is used as a guide roller for cam discs and straight motion.

Since its outer ring rotates while keeping direct contact with the mating surface, this product is thickwalled and designed to bear an impact load.

Inside the outer ring, needle rollers and a precision cage are incorporated. This prevents the product from skewing and achieves a superb rotation performance. And, as a result, the product is capable of easily withstanding high-speed rotation.

Roller Followers are divided into two types: separable type whose inner ring can be separated, and non-separable type whose inner ring cannot be separated.

There are two types of the outer ring in shape: spherical and cylindrical. The spherical outer ring easily absorbs a distortion of the shaft center when the cam follower is installed and helps lighten a biased load.

The Roller Follower is used in a wide range of applications such as cam mechanisms of automatic machines, dedicated machines as well as carrier systems, conveyors, bookbinding machines, tool changers of machining centers, pallet changers, automatic coating machines, and sliding forks of automatic warehouses.

Features and Types
Features of the Roller Follower

Types of the Roller Follower

Types and Features

Model NAST (Separable Type)

Model NAST is a separable type of bearing system that combines a thick-wall outer ring, an inner ring and needle rollers equipped with a precision cage.

Specification Table⇒B-822

Model NAST

Model NAST-R (Separable Type)

This model is a spherical outer ring type of model NAST.

Since the circumference of the outer ring is spherically ground, it helps lighten a biased load (symbol R).

Specification Table⇒B-822

Model NAST-R

Model NAST-ZZ (Separable Type)

This separable type of bearing system has a labyrinth seal consisting of a pair of side plates formed on both sides of the inner ring of model NAST. (Model number of the type attached with seals is NAST-ZZUU.)

Specification Table⇒B-823

Model NAST-ZZ

Model NAST-ZZR (Separable Type)

This model is a spherical outer ring type of model NAST-ZZ.

It easily corrects a distortion of the shaft center when the roller follower is installed.

Since the circumference of the outer ring is spherically ground, it helps lighten a biased load (symbol R). (Model number of the type attached with seals is NAST-ZZUUR.)

Specification Table⇒B-823

Model NAST-ZZR

Specification Table⇒B-824

Model RNAST (Separable Type)

This model is basically the same as model NAST, but does not have an inner ring.

Model RNAST

Model RNAST-R (Separable Type)

This model is basically the same as model NAST-R, but does not have an inner ring. Since the circumference of the outer ring is spherically ground, it helps lighten a biased load (symbol R).

Model RNAST-R

Model NART-R(Non-separable Type)

This model is a non-separable type of bearing system whose inner ring is fixed to the side plates.

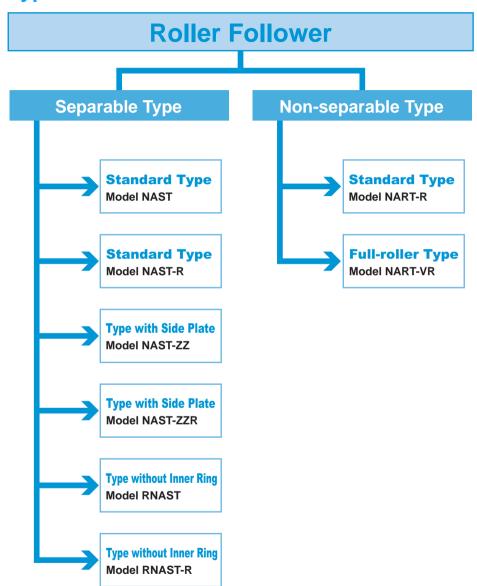
Since the circumference of the outer ring is spherically ground, it helps lighten a biased load (symbol R). (Model number of the type attached with seals is NART-UUR.)

Specification Table⇒B-825

Model NART-R

Model NART-VR (Non-separable Type)

Based on model NART-R, this model is a fullroller bearing suitable for locations where a heavy load is applied in low speed operation. Since the circumference of the outer ring is spherically ground, it helps lighten a biased load (symbol R). (Model number of the type attached with seals is NART-VUUR.)



Model NART-VR

Stainless steel types are available for all the above models. (symbol M)

Types of the Roller Follower

Point of Selection

Types and Model Numbers of the Roller Follower

The Roller Follower is divided into several types as indicated in Table1.

Table1 Types of Roller Follower

Classification			Non-separable type		
		Standard type	Type with side plate	Type without inner ring	Standard type Full-roller type
Main n	nodel No.	NAST	NAST-ZZ	RNAST	NART
Shape					
Cylindrical	Without seal	NAST NAST-M	NAST-ZZ NAST-ZZM	RNAST RNAST-M	-
outer ring	With seal	-	NAST-ZZUU NAST-ZZMUU	_	_
Spherical	Without seal	NAST-R NAST-MR	NAST-ZZR NAST-ZZMR	RNAST-R RNAST-MR	NART-R NART-MR
outer ring	With seal	_	NAST-ZZUUR NAST-ZZMUUR	_	NART-UUR NART-MUUR
Full rollers	Without seal	-	-	-	NART-VR NART-VMR
Full rollers	With seal	-	-	_	NART-VUUR NART-VMUUR

Symbol M indicates stainless steel type.

Nominal Life

[Static Safety Factor]

The basic static load rating C₀ refers to the static load with constant direction and magnitude, under which the calculated contact stress in the center of the contact area between the roller and the raceway under the maximum load is 4000 MPa. (If the contact stress exceeds this level, it will affect the rotation.) This value is indicated as "C₀" in the specification tables. When a load is statically or dynamically applied, it is necessary to consider the static safety factor as shown below.

Co	_	ŧ.
Po	ī	

Table2 Static Safety Factor (fs)

fs	: Static safety factor	(see Table2)
C_0	: Basic static load rating	(kN)
P₀	: Radial load	(kN)

Load conditions	Lower limit of fs
Normal load	1 to 3
Impact load	3 to 5

[Nominal Life]

The service life of the Roller Follower is obtained from the following equation.

$$L = \left(\frac{f_{\tau} \cdot C}{f_{w} \cdot P_{c}}\right)^{\frac{10}{3}} \times 10^{6}$$

L : Nominal life

(The total number of revolutions that 90% of a group of identical Roller Follower units independently operating under the same conditions can achieve without showing flaking from rolling fatigue)

C : Basic dynamic load rating* (kN)
P₀ : Radial load (kN)

f_⊤ : Temperature factor

(see Fig.1 on A-903)

fw : Load factor (see Table3 on A-903)

*The basic dynamic load rating (C) of the Roller Follower shows the load with interlocked direction and magnitude, under which the nominal life (L) is 1 million revolutions when a group of identical Roller Follower units independently operate. The basic dynamic load rating (C) is indicated in the corresponding specification table.

Point of Selection

Accuracy Standards

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, the service life time (L_h) is obtained from the following equation.

For Linear Motion

$$\mathbf{L}_{h} = \frac{\mathbf{D} \cdot \pi \cdot \mathbf{L}}{\mathbf{2} \times \boldsymbol{\ell}_{s} \cdot \mathbf{n}_{1} \times \mathbf{60}}$$

L_h : Service life time (h)

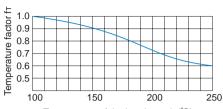
L : Nominal life

D : Bearing outer diameter (mm)

 ℓ_{S} : Stroke length (mm)

n₁ : Number of reciprocations

per minute (min⁻¹)


For Rotary Motion

$$L_h = \frac{D \cdot L}{D_1 \cdot n \times 60}$$

D₁ : Outer ring contact average diameter of the cam

n : Rotation speed per minute

of the cam (min-1)

Temperature of the bearing unit (°C) Fig.1 Temperature Factor (f_T)

Note) The normal service temperature is 80 $^{\circ}$ C or below. If the product is to be used at a higher temperature, contact THK.

Table3 Load Factor (fw)

Service condition	fw
Smooth motion without impact	1 to 1.2
Normal motion	1.2 to 1.5
Motion with severe impact	1.5 to 3

Accuracy Standards

Roller Followers are manufactured with accuracies in accordance with the following.

- (1) Dimensional tolerance of the spherical outer ring in outer diameter D: $_{-0.05}^{0}$
- (2) Dimensional tolerance of model RNAST in inscribed bore diameter dr: F6
- (3) Dimensional tolerance of model NART in bearing width B₁: Table4
- (4) Accuracy of the inner ring and accuracy of the outer ring in width: Table5
- (5) Accuracy of the outer ring: Table6

Table5 Accuracy of the Inner Ring and Accuracy of the Outer Ring in Width (JIS Class 0)

Unit: µm

(mm)

of the bea	he bearing inner bea				ce of the (or outer width	Tolerance of the inner ring in radial runout
Above	Or less	Upper	Lower	Upper	Lower	(max)
2.5	10	0	-8	0	-120	10
10	18	0	-8	0	-120	10
18	30	0	-10	0	-120	13
30	50	0	-12	0	-120	15

Note) "dm" represents the arithmetic average of the maximum and minimum diameters obtained in measuring the bearing inner diameter at two points.

Table4 Dimensional tolerance of model NART in bearing width B₁

Model No.	Dimensional tolerance (h12)			
NART	Upper limit	Lower limit		
5 to 12	0	-0.18		
15 to 35	0	-0.21		
40 to 50	0	-0.25		

Table6 Accuracy of the Outer Ring (JIS Class 0)
Unit: u.m.

				Orne. prin
Nominal dimension of the bearing outer diameter (D) (mm)		Tolerance of the bearing in outer diameter (Dm) (note)		Tolerance of the outer ring in radial
Above	Or less	Upper	Lower	runout (max)
6	18	0	-9	15
18	30	0	-9	15
30	50	0	-11	20
50	80	0	-13	25
80	120	Λ	_15	35

Note) "Dm" represents the arithmetic average of the maximum and minimum diameters obtained in measuring the bearing outer diameter at two points.

Track Load Capacity

The track load capacity means the permissible load at which the outer ring of a Roller Follower and the mating surface are capable of withstanding repeated use over a long period.

The track load capacity provided in the specification table, indicates the value when using a steel material with tensile strength of 1.2 kN/mm² as the mating material. Therefore, it is possible to increase the track load capacity by increasing the hardness of the material. Fig.2 shows the hardness of the mating material and the track capacity factor in relation to tensile strength. To obtain the track load capacity of each mating material, multiply the track load capacity shown in the corresponding specification table by the respective track load factor.

Note) For the mating material, we recommend using those materials with the raceway hardness of 20 HRC or higher and the tensile strength of 775 N/mm² or higher.

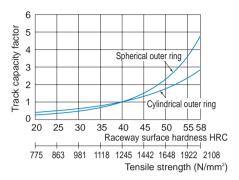


Fig.2 Track Capacity Factor

[Example of Calculating a Track Load Capacity]

Obtain the track load capacity when heat-treating the mating material, which a bearing whose outer ring has a track load capacity of 5.29 kN contacts, to hardness of 50 HRC.

The track capacity factor when the hardness is 50 HRC is 2.32, as indicated in Fig.2. Therefore, the desired track load capacity is calculated as follows.

The track load capacity=5.29kN $\times 2.32$ =12.3kN

Radial Clearance

The radial clearances of Roller Followers meet the clearance indicated in the table below. (Normal clearance applies to full-roller types.)

Model NAST, NAST-ZZ

Unit: µm	ì
----------	---

	L
1	
_	Г

Model NART

Unit: µm

Model No.	Clearance C2 (with cage)		
Woder No.	Min.	Max.	
6	5	20	
8 to 12	5	25	
15 to 25	10	30	
30 to 40	10	40	
45 to 50	15	50	

Model RNAST

Unit: µm

Model No.	Clearance C2 (with cage)			
Woder No.	Min.	Max.		
5 to 6	5	20		
8 to 12	5	25		
15 to 25	10	30		
30 to 40	10	40		
45 to 50	15	50		

Clearance C2 Normal clearance Model No. (with cage) (full rollers) Min. Max. Min. Max. 5 to 6 5 20 15 30 8 to 12 25 15 35 15 to 20 30 20 40 25 to 40 40 25 45 to 50 15 50 30 65

Point of Design

Roller Follower

Fit

For the fitting of the Roller Follower with the shaft, we recommend the combinations indicated in Table1.

Table1 Fitting with the Shaft

No Inner Ring	Inner Ring
k5, k6	g6, h6

Mounting Section

- To protect the side plate of models NART and NAST-ZZ, the height of the mounting section must be equal to or greater than the "a" dimension indicated in the specification table
- The surface hardness of the shaft to be used with a Roller Follower without inner ring must be between 54 and 64 HRC. For the surface roughness, we recommend 0.2 μm Ra or below.
- For the mating raceway, see "Track Load Capacity" on A-904.
- If the outer ring unilaterally or unevenly contacts the mating raceway, we recommend using a type whose outer ring circumference is spherically ground.
- The side plate of model NART is press-fit onto the inner ring. If the plate is pressed under an external force, it may cause abnormal rotation. Do not use the product in the manner that the side plate is pressed.
- The structure of the Roller Follower is designed to receive a radial load. If it receives a thrust load, the side plates or the outer ring may be damaged. Therefore, it is necessary to design the system and install the product so that the generation of a component of the thrust is limited to a minimum.

Mounting Procedure and Maintenance Roller Follower

Installation

Fig.1 shows examples of installing the Roller Follower.

• If the Roller Follower is to be used under a heavy load, it is necessary to install the product so that the greasing hole of the inner ring is out of the loaded area.

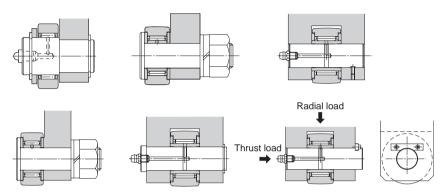


Fig.1 Examples of Installing the Roller Follower

Contamination Protection and Lubrication

The Roller Follower models include seal types (model numbers: "···UU"), which are incorporated with special synthetic rubber seals that are highly resistant to wear in order to prevent foreign material from entering the interior of the roller follower and the lubricant from leaking.

Some models are not filled with grease when assembled. When using a model not filled with grease, apply and fill grease to the interior first (lithium-based grease with consistency of No. 2).

Model No.		Grease	
NAST(R)	No seal setting	Not filled with	
RNAST(R)	No seal setting	grease	
NAST-ZZ(R)	Without seal	Filled with grease	
NART-(V)R	With seal		

The lubrication interval varies depending on the operating conditions. As a guide, however, replenish grease of the same group every six months to two years for types with a cage, or every one to six months for full-roller types.

Even with types equipped with seals ("···UU"), surplus grease may seep during the initial operation period or immediately after resumption of grease replenishment. If desiring to avoid contamination of the surrounding area of the machine by grease, first perform seasoning or the like in advance, and then wipe the seeping surplus grease.

Precautions on Use

Roller Follower

[Handling]

- Disassembling components may cause dust to enter the system or degrade mounting accuracy
 of parts. Do not disassemble the product.
- (2) Dropping or hitting the Roller Follower may damage it. Giving an impact to it could also cause damage to its function even if the product looks intact.

[Lubrication]

- (1) Some types of the Roller Follower do not contain grease depending on the model number. Carefully refer to A-906, and if the desired model does not contain grease, apply grease to the product as necessary before using it. Lithium soap-based grease No. 2 is available as standard.
- (2) Do not mix lubricants of different physical properties. In addition, replenish a lubricant also during operation as necessary.
- (3) We recommend applying a lubricant to the mating surface where the Roller Follower travels.

[Precautions on Use]

- (1) When using the product in locations exposed to vibrations or an impact load or in a special environment such as a clean room, vacuum and low/high temperature, contact THK in advance.
- (2) Entrance of foreign material such as dust may cause damage or functional loss. Prevent foreign material, such as dust and cutting chips, from entering the product.
- (3) Roller Followers are designed for use under a radial load. Do not use the product under a thrust load.

[Storage]

When storing the Roller Follower, enclose it in a package designated by THK and store it while avoiding high temperature, low temperature and high humidity.

Spherical Plain Bearing

冗景版 General Catalog

A Technical Descriptions of the Products

Features and Types A-910 Features of the Spherical Plain Bearing.. A-910 Structure and features..... A-910 Types of the Spherical Plain Bearing ... A-910 Types and Features..... A-910 Point of Selection..... A-911 Selecting a Spherical Plain Bearing. A-911 Accuracy Standards A-914 Radial Clearance..... A-914 Point of Design A-916 Fit A-916 Permissible tilt angles A-917 Mounting Procedure and Maintenance... A-918 Installation A-918 Lubrication..... A-918 Contamination Protection..... A-919 Precautions on Use..... A-920

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	B-827
Model SB	
Model SA1	B-830

^{*} Please see the separate "B Product Specifications".

Features and Types

Spherical Plain Bearing

Features of the Spherical Plain Bearing

Structure and Features

Spherical Bearings models SB and SA1 are self-aligning plain bearings designed for heavy loads. The inner and outer rings of these models use high-carbon chromium bearing steel that is hardened and ground, are treated with phosphate coating, which is highly resistant to corrosion and wear, and seized with molybdenum disulfide (MoS₂).

The Spherical Plain Bearing is capable of receiving a large radial load and thrust loads in both directions. Furthermore, because of its high resistance to impact loads, the Spherical Plain Bearing is optimal for low speed, heavy load rocking components such as the cylinder clevises or hinges of construction and civil-engineering machinery and the suspensions of trucks.

Types of the Spherical Plain Bearing

Types and Features

Model SB

The most popular type of Spherical Plain Bearing in Japan, model SB has wide spherical contact areas and is used as a bearing for heavy loads. The outer ring is split at two points, enabling the inner ring to be accommodated.

Specification Table⇒B-828

Specification Table⇒B-830

Model SA1

Model SA1

This type of Spherical Plain Bearing is widely used in Europe. The outer ring is split at one point (outer rings with diameter of ϕ 100 or thicker are split at two points), and the width and thickness are smaller than model SB. Thus, this model can be used in small spaces. Types attached with highly dust-preventive dust seals on both ends (model SA1···UU) are also available.

Point of Selection

Spherical Plain Bearing

Selecting a Spherical Plain Bearing

When selecting a Spherical Plain Bearing, follow the instructions below while referring to the basic dynamic load rating (C) and the basic static load rating (C_0) indicated in the corresponding specification table, as a measuring stick.

[Spherical Plain Bearing Service Life G]

The basic dynamic load rating (C) is used to calculate the service life when the bearing oscillates under a load.

The basic dynamic load rating is calculated based on the contact surface pressure of the spherical sliding section.

The Spherical Plain Bearing service life G is expressed in the total number of rocking motions until it becomes impossible for the bearing to perform normal operation due to the increase in the radial clearance or in the temperature of the bearing as a result of wear on the spherical sliding section.

Since the bearing service life is affected by various factors such as the material of the bearing, magnitude and direction of the load, lubrication conditions and sliding speed, the calculated value can be used as an empirical, practical value.

$$G = b_1 \cdot b_2 \cdot b_3 \cdot b_4 \cdot b_5 \frac{3}{Da \cdot \beta} \cdot \frac{C}{P} \times 10^8$$

G : Bearing service life (total number of rocking motions or total number of revolutions)

 b_4 : Dimension factor (see Fig.1) (see Fig.2)

Da : Spherical diameter (mm) (see the specification table)

 β $\,$: Oscillation half angle $\,$ (degree) $\,$ (for rotary motion, $\beta \text{=}90^{\circ})$

	l able1								
	Туре		b ₁		b_2		b₃		
Ту			Load Regular rection		Temperature °C				
		Fixed	Alter-	Not pro-	Pro-	-30	+80	+150	
			nating	vided	vided	+80	+150	+180	
Sphe rical Plain	With out seal	1	5	0.08	1	1	1	0.7	
Bear- ing	With seal	1	5	80.0	1	1	-	-	

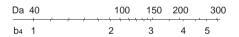


Fig.1 Dimension Factor

Fig.2 Material Factor

[Equivalent Radial Load]

The Spherical Plain Bearing is capable of receiving a radial load and a thrust load simultaneously. If the magnitude and direction of the load applied are constant, the equivalent radial load is obtained from the following equation.

P = Fr + YFa

Р	: Equivalent radial load	(N)
Fr	: Radial load	(N)
Fa	: Trust load	(N)
Υ	: Thrust load factor	(see Table2)

Table2 Thrust Load Factor						
Fa/Fr≦	0.1	0.2	0.3	0.4	0.5	
Thrust load factor (Y)	0.8	1	1.5	2.5	3	

[Static Safety Factor fs]

If the Spherical Plain Bearing is to be used under a stationary load or in slight rocking motion, select a model using the basic static load rating (C_0) as a guide. The basic static load rating refers to the stationary load that the bearing can receive without damaging the bearing and without causing permanent deformation that would prevent smooth motion.

In general, set the safety factor at three or greater taking into account the rigidity of the shaft and the housing.

$$f_s = \frac{C_0}{P} \ge 3$$

fs : Static safety factor
 Co : Basic static load rating
 P : Equivalent radial load

Point of Selection

Selecting a Spherical Plain Bearing

[pV Value]

The permissible sliding speed at which the Spherical Plain Bearing can be used varies depending on the load, lubrication conditions and cooling status. The recommended pV value for continuous motion under a load applied in a constant direction is calculated as follows.

pV ≤ 400 N/mm²·mm/sec

If the Spherical Plain Bearing performs adiabatic operation or the load direction changes, the heat produced on the sliding surface easily radiates. Therefore, it is possible to set a higher pV value.

The contact surface pressure (p) of the Spherical Plain Bearing is obtained from the following equation.

$$p = \frac{P}{Da \cdot B}$$

p : Contact surface pressure (N/mm²)
P : Equivalent radial load (N)
Da : Spherical diameter (see the specification table) (mm)
B : Outer ring width (see the specification table) (mm)

The sliding speed is calculated as follows.

$$V = \frac{\pi \cdot Da \cdot \beta \cdot f}{90 \times 60}$$

 $\begin{array}{lll} V & : Sliding \ speed & (mm/sec) \\ \beta & : Oscillation \ half \ angle & (degree) \\ f & : \ Number \ of \ rocking \ motions \ per \ minute & (min^{-1}) \end{array}$

The Spherical Plain Bearing can be used at sliding speed of up to 100 mm/sec in oscillating motion, or up to 300 mm/sec in rotary motion in favorable lubrication status.

[Example of Calculating a pV Value]

Assuming that model SB25 is used in a location where the shaft rotates 60 turns per minute at an angle of 40° (oscillation half angle : 20°) and the maximum varying load of 1,500 N is applied, determine whether the model number is appropriate and calculate the service life under these conditions. Assume that the bearing temperature is +80 °C or less and the product is regularly provided with sufficient lubrication. Calculate the pV value and examine if the bearing size is appropriate.

The contact surface pressure (p) is calculated as follows.

$$p = \frac{P}{Da \cdot B} = \frac{1500}{36 \times 18} = 2.31 \text{ N/mm}^2 \qquad \left(\begin{array}{c} \text{B: outer ring width of model SB25 = 18} \\ \text{Da: spherical diameter of model SB25 = 36} \end{array} \right)$$

The sliding speed (V) is obtained from the following equation.

$$V = \frac{\pi \cdot \text{Da} \cdot \beta \cdot f}{90 \times 60} = \frac{3.14 \times 36 \times \left(\frac{40}{2}\right) \times 60}{90 \times 60} = 25.12 \text{ mm/sec}$$

The pV value is calculated as follows.

pV=58.0N/mm² · mm/sec

. Since both the pV value and the sliding speed (V) meet the requirements, model SB25 can be used. Next, calculate the service life of the bearing (G) as follows.

$$G = b_1 \cdot b_2 \cdot b_3 \cdot b_4 \cdot b_5 \frac{3}{Da \cdot \beta} \cdot \frac{C}{P} \times 10^8$$

=
$$5 \times 1 \times 1 \times 1 \times 2.2 \times \frac{3}{36 \times 20} \times \frac{15300}{1500} \times 10^8 = 4.7 \times 10^7 \text{ (min}^{-1)}$$

Accuracy Standards

The dimensional tolerances of the Spherical Plain Bearing are defined as indicated in Table3.

Table3 Accuracy of the Spherical Plain Bearing

Unit: µm

inner diame	ension of the eter (d) and ter (D) (mm)		nner diameter m)	Tolerance in o		Tolerance of the ring in wide	
Above	Or less	Upper	Lower	Upper	Lower	Upper	Lower
10	18	0	-8	_	_	0	-120
18	30	0	-10	0	-9	0	-120
30	50	0	-12	0	-11	0	-120
50	80	0	-15	0	-13	0	-150
80	120	0	-20	0	-15	0	-200
120	150	0	-25	0	-18	0	-250
150	180	0	-25	0	-25	0	-250
180	250	0	-30	0	-30	0	-300
250	315	_	_	0	-35	0	-350
315	400	_	_	0	-40	0	-400

Note1) "dm" and "Dm" represent the arithmetic averages of the maximum and minimum diameters obtained in measuring the inner and outer diameters at two points.

Note2) The dimensional tolerances of the inner and outer diameters are the values before they are surface treated.

Note3) The dimensional tolerance of the outer ring is the value before it is split.

Radial Clearance

Table4 shows radial clearances of the Spherical Plain Bearing.

Table4 Radial Clearances of the Spherical Plain Bearing

Unit: μι

Berring inner dia	ameter (d) (mm)	Radial clearance		
Above	Or less	Min.	Max.	
_	17	70	125	
17	30	75	140	
30	50	85	150	
50	65	90	160	
65	80	95	170	
80	100	100	185	
100	120	110	200	
120	150	120	215	
150	240	130	230	

Note1) The radial clearance indicates the value before the outer ring is split.

Note2) The axial clearance is approximately twice the radial clearance.

Note4) Tolerances of the inner and outer diameters in width (B₁, B) are assumed to be equal, and obtained from the nominal dimension of the inner diameter of the inner ring.

Point of Selection Radial Clearance

sale@technobearing.ru

www.technobearing.ru

Point of Design

Spherical Plain Bearing

Fit

The fitting between the Spherical Plain Bearing and the shaft or the housing is selected according to the conditions. Table1 shows recommended values.

Table1 Recommended Fitting Values

Service (Shaft	Housing	
Inner ring rotational load	Normal load	k6	H7
	Indeterminate load	m6	H7
Outer ring	Normal load	g6	M7
rotational load	Indeterminate load	h6	N7

Note1) If the product is to be installed so that the inner ring rotates and the fitting with the shaft is to be clearance fitting, harden the surface of the shaft in advance. Note2) "N7" is recommended for light alloy housings.

[Shaft Designing]

If the inner ring is to be fit onto the shaft in loose fitting and the product is to be used under a heavy load, the shaft may slip on the inner circumference of the inner ring. To prevent the slippage, the shaft hardness must be 58 HRC or higher and the surface roughness must be 0.80 a or below.

Point of Design

Unit: degree

Permissible Tilt Angles

Permissible Tilt Angles

The permissible tilt angle of the Spherical Plain Bearing varies according to the shaft shape as indicated in Table2.

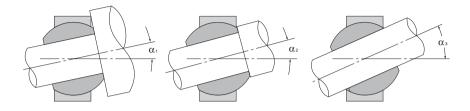


Table2 Permissible Tilt Angles Unit: degree

Model No.	Permissible tilt angles				
woder No.	α1	α2	αз		
SB 12	5	7	18		
SB 15	4	6	18		
SB 20	3	4	14		
SB 22	4	6	16		
SB 25	4	5	16		
SB 30	4	6	17		
SB 35	4	5	14		
SB 40	4	6	12		
SB 45	4	5	13		
SB 50	4	5	16		
SB 55	4	6	16		
SB 60	4	6	18		
SB 65	4	5	16		
SB 70	4	5	15		
SB 75	4	5	18		
SB 80	4	5	18		
SB 85	4	6	16		
SB 90	4	5	16		
SB 95	4	5	17		
SB 100	4	5	18		
SB 110	4	5	16		
SB 115	4	5	14		
SB 120	4	6	15		
SB 130	4	5	14		
SB 150	4	5	12		

Permissible tilt angles				
α1	C(12 ^{Note}	αз		
8	11 (6)	25		
6	8 (5)	18		
7	10 (7)	23		
6	9 (6)	21		
6	7 (4)	18		
4	6 (4)	16		
5	6 (4)	16		
5	7 (4)	16		
6	7 (4)	16		
5	6 (4)	15		
5	6 (3)	14		
5	6 (4)	14		
4	6 (4)	14		
4	5 (3)	12		
5	7 (5)	14		
5	6 (4)	15		
4	6 (4)	15		
5	7 (5)	16		
6	8 (6)	13		
5	6 (5)	16		
6	7 (6)	13		
6	8 (6)	15		
6	8 (6)	17		
	 α₁ 8 6 7 6 6 4 5 5 6 5 5 4 4 5 5 4 5 6 5 6 6 6 	α₁ α₂Note 8 11 (6) 6 8 (5) 7 10 (7) 6 9 (6) 6 7 (4) 4 6 (4) 5 6 (4) 5 6 (4) 5 6 (4) 4 6 (4) 4 6 (4) 4 5 (3) 5 7 (5) 5 6 (4) 4 6 (4) 4 6 (4) 5 7 (5) 6 8 (6) 5 6 (5) 6 7 (6) 6 8 (6)		

Note) The values in the parentheses apply to types attached with a seal.

Mounting Procedure and Maintenance Spherical Plain Bearing

Installation

- Do not use the product in the manner that the permissible tilting angle is exceeded since doing so may damage the product.
- (2) The Spherical Plain Bearing is designed for use under a radial load. Do not use the product if the trust load component or the load component in the thrust direction exceeds 50% of the resultant force consisting of the radial load and the thrust load.
- (3) When installing the Spherical Plain Bearing, pay attention to the mounting orientation so that the slit of the outer ring receives a minimum load.

[Temperature Range]

The permissible temperature range of the Spherical Plain Bearing is limited between -30°C and 80°C depending on the seal material and determined by the permissible temperature range of the grease used.

Lubrication

The spherical sliding surface of the Spherical Plain Bearing is seized with a solid lubricant film of molybdenum disulfide. This enables the Spherical Plain Bearing to be used over a relatively long period without further lubrication under a static load, in low-speed rocking motion or in intermittent rotary motion. However, it is generally necessary to replenish grease on a regular basis. If a heavy load is applied, consider using lithium soap group grease containing molybdenum disulfide. The inner and outer rings of the Spherical Plain Bearing have greasing holes as a means to facilitate the flow of the lubricant inside the bearing.

[Lubrication Interval]

Since the Spherical Plain Bearing is delivered without being applied with a lubricant, it is necessary to replenish an appropriate amount of grease after installing the Spherical Plain Bearing. We recommend filling grease also to the space surrounding the Spherical Plain Bearing. It is also recommendable to shorten the lubrication interval in the start-up period in order to lighten the initial wear and extend the service life.

The lubrication interval varies according to the magnitude of the load, frequency of the vibrations and other conditions. Provide lubrication while referring to the values in Table1 as a guide.

Table1 Lubrication Interval

Type of load	Required minimum lubrication interval
Unilateral load	G/ 40
Fluctuating load	G/ 180

G: Service life of the bearing (total number of rocking motions or total number of revolutions)

Mounting Procedure and Maintenance

Contamination Protection

Contamination Protection

Spherical Bearing model SA1 is provided with a seal designed to prevent humidity or other deleterious material from entering the bearing. This seal is effective in increasing the service life of the bearing. The seal for Spherical Bearing model SA1 is made of oil-resistant synthetic rubber and has double lips as the sealing element. These lips closely contact the spherical inner ring. The seal can be used within the temperature range between -30 °C and 80 °C , and is highly resistant to wear and capable of operating for a long period of time. If the product is used in an environment where sand or soil matter may enter the bearing, the service life of the seal is shortened. We recommend lubricating the product on a regular basis.

Precautions on Use

Spherical Plain Bearing

[Handling]

- (1) When installing model SA1 or model SB, they must not be disassembled before installation.
- (2) Dropping or hitting the Spherical Plain Bearing may damage it. Giving an impact to it could also cause damage to its function even if the product looks intact.

[Lubrication]

- (1) For details of the lubrication, see A-918.
- (2) Do not mix lubricants of different physical properties.

[Precautions on Use]

- (1) When using the product in locations exposed to vibrations or an impact load or in a special environment such as a clean room, vacuum and low/high temperature, contact THK in advance.
- (2) Entrance of foreign material such as dust between the outer and inner rings may cause damage or functional loss. Prevent foreign material, such as dust and cutting chips, from entering the product.

[Storage]

When storing the Spherical Plain Bearing, avoid high temperature, low temperature and high humidity.

Link Ball®

行当式 General Catalog

A Technical Descriptions of the Products

Features and Types A-922 Features of the Link Ball A-922 Structure and features..... A-922 • Alloy A-925 How Load Directions Are Called A-927 Pushing Load and Pulling Load A-927 Performance Tests with the Link Ball... A-928 • Tensile Strength Test with Model AL10D A-928 • Durability Tests with Link Ball Model AL . A-930 • Durability Tests with Link Ball Model BL . A-932 Types of the Link Ball..... A-934 Types and Features..... A-934 Point of Selection A-936 Selecting a Link Ball...... A-936 Point of Design A-937 Permissible tilt angles A-937 Installation A-938 Example of Installation A-938 Precautions on Use..... A-939

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table Model AL Model BL Model RBL Model RBI	B-834 B-836 B-838
Model TBS	B-842

^{*} Please see the separate "B Product Specifications".

Features and Types

Link Ball

Features of the Link Ball

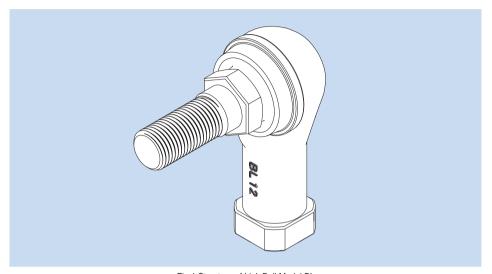


Fig.1 Structure of Link Ball Model BL

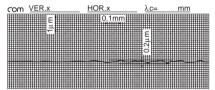
Structure and Features

With the Link Ball, a highly accurate bearing steel ball used in the spherical area is first encased in the holder by die cast molding, and then is specially welded with the shank. This unique process enables the mirror surface of the steel ball to be transferred or duplicated on the spherical surface inside the holder to ensure full contact between the ball and the holder. As a result, smooth motion is achieved with a minimum clearance.

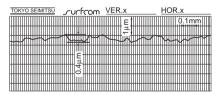
Features of the Link Ball

[Compact Design]

Model AL has an adequately firm and yet extremely compact shape because of a highly balanced design. Together with use of an A-1 alloy, a light-weight, compact design has been achieved. Thus, this model is optimal for use in an automobile height sensor or transmission control.


[Achieves Sphericity of 0.001 mm]

The spherical surface of the shank ball is transferred on the inner surface of the holder while maintaining the sphericity of the bearing steel ball. This allows smooth motion to be achieved with a minimum clearance and provides favorable operability and feel to the link motion.



Sphericity: 0.001 mm

Sphericity of the spherical surface of the ball shank

Roughness of the spherical surface of the ball shank

Roughness of the spherical surface of the holder

Cut sample of the spherical area of model BL

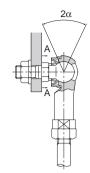
[Two Types of Holder Material]

Model AL uses the newly developed high strength aluminum alloy "A-1 Alloy" (see A-925), which is light and highly resistant to wear. Models BL, RBL and RBI use the proven, high strength zinc alloy (see A-926).

[High Lubricity]

Since models AL and BL and those models attached with boots contain grease, they have high lubricity and increased wear resistance.

[Large Hexagonal Bolt Seat]


The hexagonal bolt seat of the shank has the same dimensions as the seating surface for small hexagon head bolts in accordance with automotive specifications. This prevents the seating surface from sinking and ensures a stable link motion mechanism.

[Lightweight, High Strength]

Use of the A-1 Alloy enables the Link Ball to achieve mechanical strength approximately twice that of the commonly used aluminum die cast material ADC 12, or almost equal to the high strength zinc alloy, while maintaining aluminum alloys' advantages: lightweight and corrosion resistance.

[Equipped with a Boot for Protection against Muddy Water]

Use of a boot with high trackability in the ball shank prevents muddy water from entering the spherical area even in a muddy atmosphere. Accordingly, those types equipped with boots are used also in outdoor applications and automobile parts under the chassis. For details, see the muddy water test data (A-930 and A-931).

Model AL10 Model BL10

Model equivalent to similar product

A-A cross section

Jaw Span for Wrenching

Features of the Link Ball

Alloy

[High Strength Aluminum Alloy "A-1 Alloy"]

"A-1 Alloy," a newly developed high strength aluminum alloy, is an alloy with A ℓ -Zn-Si3 being the main components, is used in the holder of model AL.

Features of the A-1 Allov

- · Achieves one of the highest strengths among the existing aluminum die cast alloys.
- Has yield strength approximately twice that of the commonly used aluminum die cast alloy (ADC 12).
- Has hardness equal to the high strength zinc alloy and achieves high wear resistance.
- Achieves specific gravity less than a half of the high strength zinc allow to allow significant weight saving.
- · Highly corrosion resistance and can be used as an automotive part related to wheel control.

Mechanical Properties

Tensile strength : 343 to 392 N/mm2 Tensile yield strength (0.2%) : 245 to 294 N/mm² Compressive strength : 490 to 637 N/mm2 Compressive yield strength (0.2%) : 294 to 343 N/mm² : 0.098 to 0.196 N-m/mm2 Charpy impact

: 2 to 3 % Elongation : 140 to 160 HV Hardness

Physical Properties

Specific gravity : 3 Melting point : 570℃

Specific heat : 793 J/(kg·k) Linear expansion rate : 22×10⁻⁶

Wear Resistance

The result of our test has proven that the wear resistance of the A-1 alloy is equivalent to the high strength zinc alloy.

Rotation-and-rocking durability test between model AL10D (A-1 alloy) and model BL10D (high strength zinc alloy)

<Test conditions>

11 oot oorialiiorior					
Item	Descr	ription			
Environment temperature	Normal temperature				
Applied load	±1.9kN (perpendicular to the axis) (note)				
Loading frequency	0.6Hz				
Kinematic angle	Rotation ±20°	Rocking ±20°			
No. of cycles	40 times/min. 40 times/min.				
Total No. of cycles	1,000,000 cycles				

Note) For the load direction, see A-927.

<Test result: change in clearance (mm)> Unit: mm

Model No.	AL10D (A-1 alloy)	BL10D (high strength zinc alloy)
Perpendicu- lar to the axis	0.000	0.033
Axial direction	0.052	0.045

[High Strength Zinc Alloy]

The high strength zinc alloy used in the holders of models BL, RBL, RBI and TBS has been developed as a bearing alloy by mixing $A\ell$, Cu, Mg, Be and Ti as well as zinc as the base component. It is excellent in mechanical properties, seizure resistance and wear resistance.

Composition

Table1 Composition of the High Strength Zinc Alloy

Unit: %

Item	Description
Αℓ	3 to 4
Cu	3 to 4
Mg	0.03 to 0.06
Be	0.02 to 0.06
Ti	0.04 to 0.12
Zn	Remaining portion

Mechanical Properties

Tensile strength : 275 to 314 N/mm²
Tensile yield strength (0.2%) : 216 to 245 N/mm²
Compressive strength : 539 to 686 N/mm²
Compressive yield strength (0.2%) : 294 to 343 N/mm²

Fatigue strength : 132 N/mm²×10⁷ (Schenk bending test)

Charpy impact : 0.098 to 0.49 N-m/mm²

Elongation : 1 to 5% Hardness : 120 to 145 HV

Physical Properties

Wear Resistance

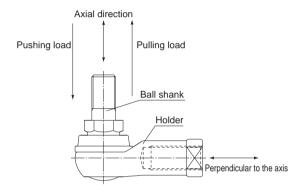
The wear resistance of the high strength zinc alloy is superior to that of class-3 brass and class-3 bronze, almost equal to that of class-2 phosphor bronze.

Amsler wear-tester

Test piece rotation speed : 185 min⁻¹
Load : 392 N
Lubricant : Dynamo oil



Fig.2 Wear Resistance of the High Strength Zinc Alloy


Features of the Link Ball

How Load Directions Are Called

Regardless of the shape, the direction of the load applied to the Link Ball is called "axial direction" if it is parallel to the axis of the ball shank, and "perpendicular-to-axis direction" if it is perpendicular to the axis.

Pushing Load and Pulling Load

Of the loads applied in the axial direction, the load in the direction of the ball shank being pressed toward the holder is called "pushing load" and the load in the direction of the ball shank being pulled from the holder is called "pulling load."

Performance Tests with the Link Ball

Tensile Strength Test with Model AL10D

[Test Method]

Place model AL10D on an Amsler universal testing machine as shown in Fig.3, then apply a load perpendicular to the axis to measure the tensile break load.

[Test Result]

All samples are broken in the shank, indicating that the holder has sufficient strength.

Sample No.	Breaking load (kN)	Broken point
1	18.82	Α
2	18.72	Α
3	18.6	Α
4	18.78	Α
5	18.45	A
6	18.95	Α
7	18.65	Α
8	18.91	Α
9	18.55	Α
10	18.5	Α
X	18.693	_
R	0.5	_

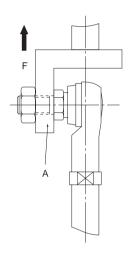


Fig.3

Performance Tests with the Link Ball

Durability Tests with Link Ball Model AL

[Purpose of the Tests]

The tests were conducted to identify the durability of Link Ball model AL while assuming that it is used for automobile suspensions.

[Tested Product]

Link Ball model AL10D

[Test Items, Test Conditions and Test Results]

	Test conditions					
Test item	Applied load	Rotation or rocking angle	Frequency	Total num- ber of rev- olutions or time	Service environ- ment	Load conditions, etc.
Rotation- and-rocking durability	1960N Load direction: Perpendic- ular to the axis (one direction)	Rotation angle: θ=±5° Rocking angle: θ=±10°	Rotation: 25 times/min. Rocking: 75 times/min.	500,000 cycles (rocking)	Normal temper- ature	Rotation θ Rocking Load
Fatigue durability test	±1960N Load direction: Perpendic- ular to the axis (both directions)	_	180 times/min.	1 million cycles (rocking)	temper-	Load N 1960 0 -1960 3 cycles/sec.
Muddy-water rotation-and- rocking dura- bility (identify sealability of the boot)	_	Rotation angle: θ=±12° Rocking angle: θ=±12°	Rotation: 25 times/min. Rocking: 75 times/min.	500,000 cycles (rocking)	Normal temper- ature	Discharge muddy water to the boot ● Discharge rate: 1 (/min.) ● Contaminates 10% of JIS Class-8 Kanto loamy layer powder
		_	_	96 hours		Left standing
Boot weath- ering test	_	Rotation angle: θ=±10°	60 times/min.	96 hours 144 hours	70℃ 40℃	Ozone concentration: 80pphm
Salt-water spray resis- tance test	-	-	_	200 hours	35℃	 Salt-water concentration: 5% Spray solution temperature: 33 to 37°C Spray pressure: 0.098MPa Following spray test, apply pushing load to measure strength

Features and Types

Performance Tests with the Link Ball

[Comprehensive Evaluation]

The results of the durability tests indicate that Link Ball model AL has sufficient strength, wear resistance, corrosion resistance and boot sealability.

This is attributable to the superb characteristics of the newly developed alloy A-1 and the effect of THK's unique manufacturing process. Thus,THK Link Ball model AL provides a high level of performance as a lightweight component.

dammy

	Test Result		Evaluation
Comple No	Change in cle	earance (mm)	
Sample No.	Perpendicular to the axis	Axial direction	Despite harsh test conditions where complex link
(1)	0.038	0.02	motion was required under an axial load, no anomaly was observed in the samples after the test, and the
(2)	0.04	0.03	abrasion loss was minimal and consistent among the samples. This indicates that the Link Ball has superb
(3)	0.042	0.04	wear resistance and stable quality.
(4)	0.038	0.03	
Appearance No anomaly was observed including fracture of the samples. Motion The ball shank was capable of smoothly oscillating after the test, without any anomaly such as heavy and jerky motion.			 No anomaly in appearance or function was observed in the sample after the fatigue durability test involving 1 million cycles of rocking. This indicates that the product is sufficiently capable of continuously operating and has superb wear resistance.
The ball shank was capable of smoothly oscillating after the test, without any anomaly such as heavy and jerky motion. • Muddy water penetration No muddy water penetration was observed in visual inspection with the boot removed. • Boot status No breakage of the boot or abnormal wear of the lip was observed.			 No anomaly in motion was observed in the sample, and no muddy water penetration into the boot or no grease deterioration was found after the test. This verifies that the boot has reliable sealability.
Boot status The boot showed no harmful ozone crack and maintained its pre-test status, including softness after the test.			 No anomaly was observed in the sample after the test The fact that no muddy water penetration into the boo or no grease deterioration was found in the sample after the above durability test verifies that the boot has reli- able weatherability.
other anomaly either. Appearance	as observed in the including break	kage was found	 No erosion-based deterioration of the sample was observed in function and performance. This demonstrates that the A-1 alloy has superb corro- sion resistance.

Durability Tests with Link Ball Model BL

[Purpose of the Tests]

The tests were conducted to identify the performance difference between THK Link Ball model BL and an equivalent product of a competitor. As a result, model BL has been used in joints for transmission control units of automobiles, trucks and buses and for steering mechanisms of agricultural tractors.

[Tested Product, Test Items, Test Conditions and Test Results]

			Test conditions						
Test item	Tested model No.	Applied load	Rotation or rocking angle	Frequency	Total num- ber of rev- olutions or time	Service environ- ment	Load conditions, etc.		
Rotation- and-rock- ing durability	Comparison of THK Link Ball model BL10D and competitor's product	direction: perpen- dicular to	Rotation angle: $\theta = \pm 20^{\circ}$ Rocking angle: $\alpha = \pm 20^{\circ}$	40 times/min.		Normal temper- ature	The loading diagram is as follows. Load: N 1 cycle 1.5 sec. +1760 -1760 The motion direction is as follows: Rotation Rocking		
Low- tempera- ture rotation durability					1,000,000 cycles	-30℃	Low-temperature retention time: 280 hours Motion in the rotational direction		
High tempera- ture rotation durability	THK Link Ball model		Rotation angle: 0=+30°		dydida	100℃	High temperature retention time: 280 hours Motion in the rotational direction		
Muddy- water rotation durability	BL10D only	±1225N (load direction: perpen- dicular to the axis)	0=±30	60 times/min.			Motion: rotational direction and oscillation on a separate basis Muddy water discharge pattern Muddy water concentration: 5 Wt% of salt and dust each in 1 liter of water Discharge direction: against the boot lip		
Muddy- water rocking durability	Comparison of THK Link Ball model BL10D and competitor's product	Roci	Rocking angle: α=±20°	ngle:				Normal temper- ature	Muddy water Dry (5Hr) (19Hr) 1 cycle ×23 cycles (24Hr) (552Hr)

Features and Types

Performance Tests with the Link Ball

[Comprehensive Evaluation]

As a result of comparing THK Link Ball model BL10D and a competitor's product in representative durability tests, it is demonstrated that model BL10D is superior in strength and wear resistance of the holder and sealability of the boot.

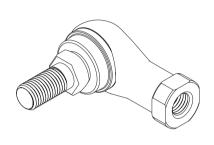
These features are achieved through THK's unique manufacturing process for the holder and the shank, the material used, the structure of upper and lower grease pockets on the spherical area and the development of a highly sealable boot.

				Test Res	ult	
		Sample No.	Change in clearance (μm) Perpendicular to the axis direction		Conditions of the holder, etc.	Evaluation
	THK	(1)	26	Silloutily lotating after the DL10D demonstrated higher du	 Even in complex link motion, THK model BL10D demonstrated higher durability and 	
	model BL10D	(2)	25	40	1-million cycle test, and capable of continuously operating.	waar raciatanaa of the holder than compati
	Com-	(1)	Broke in t neck aft cycles 154			The abrasion loss of the competitor's product immediately before the breakage of the
11	petitor's — product	(2)			spherical area in approx. 150,000-cycle operation.	holder was 6 times greater than THK mor BL10D (perpendicular to the axis).
		(1)	63	65	The boot did not show a crack or the like at low tem-	This indicates that THK model BL10D is suf- ficiently capable of operating in outdoor
		(2)	56	59	perature	applications in cold climates.
	T. 11/2	(1)	79	84	The holder did not show abnormal wear and the boot	This indicates that THK model BL10D is suf- ficiently capable of operating in hot areas of
	THK model	(2)	74	78	did not show thermal deteri- oration at high temperature.	a truck engine.
	BL10D	(1)	48	51		This indicates that THK model BL10D is sufficiently in a sufficient to the suff
		(2)	57	63	No muddy-water penetra- tion that may cause wear	ficiently capable of operating in environ- ments subject to muddy water such as
		(1)	32		was observed.	trucks, construction vehicles and agricultural machines since the sealing effect of the boot
		(2)	35	42		prevents penetration of muddy water.
	Com- petitor's	(1)	240	105	Muddy water penetrated the boot, the spherical area	chipping or the like may occur in such envi-
	product	(2)	246	107	showed chipping and the boot had cuts.	ronments. In addition, wear of the spherical area reached 0.24 mm, 7.4 times greater than THK model BL10D.

Types of the Link Ball

Types and Features

Model AL


The holder is connected in perpendicular to the shank, which comprises a male thread specially welded with a highly accurate steel ball. With a grease pocket formed on the top and bottom of the spherical area, this model achieves high lubricity and high wear resistance.

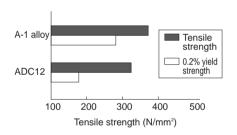
Use of the A-1 alloy in the holder significantly reduces the weight.

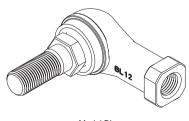
"A-1 Alloy," a high strength aluminum alloy newly developed for the Link Ball, has yield strength approximately twice that of the commonly used aluminum die cast material ADC 12, and its strength and wear resistance are equivalent to the high strength zinc alloy.

With its specific gravity less than that of the high strength zinc alloy, model AL is optimal as an automotive part that requires lightweight, high strength, high corrosion resistance and high wear resistance.

Specification Table⇒B-834

Model AL




Fig.4 Tensile Strength and Yield Strength of THK A-1 Alloy and ADC 12

Model BL

A compact type of model RBL, this model's holder made of the high strength-zinc alloy is connected in perpendicular to the shank, which is incorporated with a ball.

With a grease pocket formed on the top and bottom of the spherical area, this model achieves high lubricity and high wear resistance.

Specification Table⇒B-836

Model BL

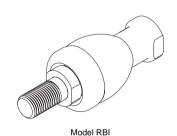

Types of the Link Ball

Model RBL

The holder made of the high strength zinc alloy is connected in perpendicular to the shank, which is incorporated with a ball.

Since grease is contained in the boot, this model achieves high lubricity and high wear resistance.

Specification Table⇒B-838


Model RBL

Model RBI

With this Link Ball model, the high strength zinc alloy is used in its holder and the mounting bolt and the holder are arranged on the same axis, allowing this model to receive both a compressive load and a pulling load.

Since grease is contained in the boot, this model achieves high lubricity and high wear resistance.

Specification Table⇒B-840

Model TBS

The rolled thread on the circumference of the outer ring allows this model to easily be mounted on the housing. Simply by tightening the screw, the user can achieve play-free, firm installation.

Since the coating area of sphere is large, the model is capable of receiving a large axial load.

Specification Table⇒B-842

Model TBS

Point of Selection

Link Ball

Selecting a Link Ball

The selected bearing must meet both the permissible load obtained from equation (1) and the dynamic load capacity obtained from equation (2).

[Permissible Load P]

The yield-point strength indicated in the specification tables refers to the mechanical strength of the bearing. With models AL, BL and RBL, the yield point strength indicates the strength when a load is applied perpendicular to the ball shank axis. With model RBI, it indicates the strength when an axial load is applied to the holder in the shank axis direction.

Table1 Safety Factor (fs)

Type of load	Lower limit of fs
Constant load in a constant direction	2 to 3
Fluctuating load in a constant direction	3 to 5
Load in varying directions	5 to 8

According to the type of the load, select a bearing that satisfies the following equation from a mechanical strength's viewpoint.

Ρ : Permissible Load (N) P_k : Yield-point strength (N) : Safety factor (see Table1)

[Dynamic Load Capacity C_d]

The dynamic load capacity (C_d) refers to the upper limit of load that the spherical area of the Link Ball can receive without showing seizure while the Link Ball is rotating or oscillating. The dynamic load capacity is obtained from the following approximation formula using the static load capacity (Cs) (note) indicated in the dimensional table.

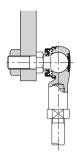
 C_{d} : Dynamic load capacity (N) : Static load capacity (N) : Rotation speed per minute (min-1)

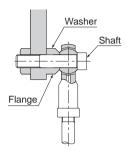
Note) Static load capacity (C_s) refers to the value obtained by multiplying the projected area on the spherical section by the permissible surface pressure, and is used to obtain the dynamic load capacity.

Point of Design

Link Ball

Permissible Tilt Angles

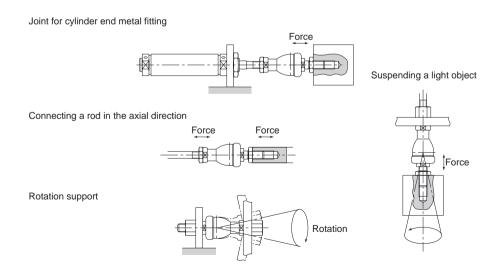

The permissible tilting angles of Link Ball models are indicated in the corresponding specification tables.


Note) If the permissible tilt angle is exceeded, it may cause serious damage to the holder or the boot. Be sure to use the Link Ball within its permissible tilt angle.

Installation **Link Ball**

Example of Installation

[Comparison of THK Link Ball and the Conventional Rod End]



THK model BL

Conventional Rod End model PHS

- Sine it has a shaft, model BL can easily be installed (especially useful for rod assembly).
- Because of the improved shape of the boot lip, the spherical area is protected from muddy water even in a muddy atmosphere.
- Since it contains grease, it can be used without further lubrication. (with the boot attached)
- Unlike the conventional type, which has a clearance between the shaft and the inner circumference of the inner ring and cannot be fixed completely, model BL has minimum distortion and high rigidity since the shank is integrated with the ball.

[Examples of Installing Model RBI]

Precautions on Use

Link Ball

[Temperature Range]

The temperature range of the Link Ball series is basically between -20°C and 80°C. If the service temperature exceeds this range, contact THK(see examples of testing the product at temperature other than the above temperature range on A-930 to A-933)

[Handling]

Dropping or hitting the Link Ball may damage it. Giving an impact to it could also cause functional damage to it even if the product looks intact.

[Lubrication]

- (1) All Link Ball models except model TBS contain lithium soap-based grease in their boots and can be used without further greasing. For model TBS and those models without boot, apply grease to the spherical section as necessary.
- (2) Do not mix lubricants of different physical properties.

[Precautions on Use]

- (1) Do not use the product in the manner that the permissible tilting angle is exceeded since doing so may damage the product.
- (2) When using the product in locations exposed to vibrations or an impact load or in a special environment such as a clean room, vacuum and low/high temperature, contact THK in advance.
- (3) Entrance of foreign material such as dust between the holder and the inner ring may cause damage or functional loss. Prevent foreign material, such as dust and cutting chips, from entering the product.
- (4) Models AL, BL and RBL are designed for use under a load in the direction perpendicular to the axis, while models RBI and TBS are designed for use under an axial load. Take this into account when selecting a model.

[Storage]

When storing the Link Ball, avoid high temperature, low temperature and high humidity.

Link Ball

Rod End

冗岩K General Catalog

A Technical Descriptions of the Products

Features and Types	A-942
Features of the Rod End	
Features	A-942
Special Bearing Alloy	A-942
Performance Test with the Rod End.	A-944
Types of the Rod End	A-945
Types and Features	A-945
Point of Selection	A-948
Selecting a Rod End	
Point of Design	A-949
Permissible tilt angles	A-949
Installation	A-950
Installation	
Precautions on Use	A-951

B Product Specifications (Separate)

B-845 B-846 B-848 B-850 B-852
B-854
B-856
B-857
B-858
B-860
B-862

^{*} Please see the separate "B Product Specifications".

Features and Types

Rod End

Features of the Rod End

Features

The Rod End is a self-aligning plain bearing that uses a spherical inner ring which has the same level of accuracy and hardness as bearing steel balls. With the combination of a spherical inner ring whose sliding surface is mirror-finished and a rationally designed holder, the Rod End ensures play-free, extremely smooth rotation and oscillation.

Special Bearing Alloy

[High Strength Zinc Alloy]

The high strength zinc alloy, developed as an alloy for bearings, is composed of $A\ell$, Cu, Mg, Be and Ti as well as zinc as the base. It is excellent in mechanical properties, seizure resistance and wear resistance.

Composition

Table1 Composition of the High Strength Zinc Alloy

Item	Description
Αℓ	3 to 4
Cu	3 to 4
Mg	0.03 to 0.06
Ве	0.02 to 0.06
Ti	0.04 to 0.12
Zn	Remaining portion

Mechanical Properties

Tensile strength : 275 to 314 N/mm²
Tensile yield strength (0.2%) : 216 to 245 N/mm²
Compressive strength : 539 to 686 N/mm²
Compressive yield strength (0.2%) : 294 to 343 N/mm²

Fatigue strength : 132 N/mm² × 10⁷ (Schenk bending test)

Charpy impact : 0.098 to 0.49 N-m/mm²

Elongation : 1 to 5%
Hardness : 120 to 145 HV

Features of the Rod End

Physical Properties

Specific gravity : 6.8 Melting point : 390℃ Specific heat : 460 J/ (kg·k) Linear expansion rate : 24×10⁻⁶

Wear Resistance

The wear resistance of the high strength zinc alloy is superior to that of class-3 brass and class-3 bronze, almost equal to that of class-2 phosphor bronze.

Amsler wear-tester

Test piece rotation speed : 185 min-1 Load : 392 N Lubricant : Dynamo oil

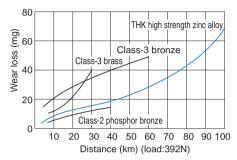
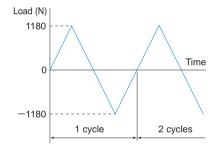


Fig.1 Wear Resistance of the High Strength Zinc Alloy

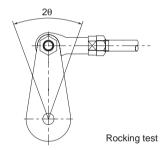

Performance Test with the Rod End

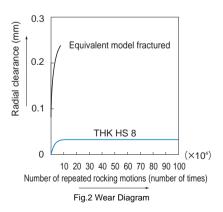
This test has been conducted to identify the difference in performance between THK Rod End model HS and an equivalent product by a competitor.

[Wear Test Conditions]

Item	Description
	THK: Model HS8
Subject Rod End	Stainless steel model equivalent of the above
Type of test	Rocking test
Applied load	±1,180 N in the radial direction
Kinematic angle	Oscillation angle: 2θ=40° (±20°)
Lubrication	No lubrication
Number of cycles per minute	60opm
Total number of cycles	1 million cycles
Testing equipment	Bench testing machine (normal temperature)

The applied load diagram is shown below.


[Result of the Wear Test]


Table2 Change in the Spherical Clearance Unit: mm

P	Abrasion loss after 1-million-cycle test					
Model	Number	Rocking test				
No.	of times	Radial direction	Axial direction			
	Initial stage (at start-up)	0.008	0.01			
HS 8	1 million cycles	0.035	0.075			
	Change	0.027	0.065			
	Initial stage	0.005	0.005			
Stainless	(at start-up)					
steel	40,000	0.22	0.2			
model	cycles					
equivalent of the above	Change after 40,000 cycles	0.215	0.065			
3.2010	Note: The	holder is elongat after 76,300 cy				

(1) Although model HS8 withstood the repeated durability test with an applied load of ±1,180 N and the total number of cycles being 1 million, the holder of the stainless steel equivalent model was elongated and fractured after only 76,300 cycles.

The kinematic angle is shown below.

(2) The result shows that the increase in wear of model HS8 in the radial direction since the initial wear (approximately 100,000 cycles) was minimal.

Types of the Rod End

Types of the Rod End

Types and Features

Type Provided with a Female Threading - Model PHS

Specification Table⇒B-846

With model PHS, a special copper alloy with high conformability is inserted between the chromate treatment steel holder and the spherical inner ring in which only the circumference of the spherical area is hard chrome plated. This structure ensures high rigidity, high wear resistance and high corrosion resistance.

The grease nipple on the holder allows grease to be applied to the sliding surface as necessarv.

Model PHS

Die Cast, Low Price Type - Model RBH

Specification Table⇒B-848

This model is a high-accuracy, low cost rod end in which the spherical inner ring serves as the core and the holder is formed by die casting. The holder is made of a high strength zinc alloy (see A-942), which is superb in mechanical properties and bearing characteristics.

Model RBH

No Lubrication Type - Model NHS-T

Specification Table⇒B-850

This no lubrication rod end uses self-lubricating synthetic resin formed between the steel holder and the spherical inner ring.

Since the clearance on the sliding surface is minimized, an accurate link motion is achieved.



Model NHS-T

Male thread Type - Model POS

This model is a highly rigid rod end that is basically the same as the female threading type model PHS, but has a male thread on the holder end.

Specification Table⇒B-852

Model POS

No Lubrication, Male thread Type - Model NOS-T

Specification Table⇒B-854

This model is a no lubrication rod end that is basically the same as the female threading type model NHS-T, but has a male thread on the holder end.

Model NOS-T

Standard Type - Model PB

With model PB, a special copper alloy with high conformability is inserted between the steel outer ring and the spherical inner ring in which only the spherical area is hard chrome plated. This structure makes this model a high rigid Spherical Plain Bearing with high corrosion resistance and high wear resistance.

The oil groove and the greasing hole on the outer ring allow grease to be applied to the sliding surface as necessary.

Specification Table⇒B-856

Model PB

Die Cast Type - Model PBA

This model is a high-accuracy, low cost Spherical Plain Bearing in which the spherical inner ring serves as the core and the outer ring is formed by die casting.

The outer ring is made of a high strength zinc alloy (see A-942), which is superb in bearing characteristics.

Specification Table⇒B-857

Model PBA

No Lubrication Type - Model NB-T

This no lubrication bearing uses self-lubricating synthetic resin formed between the steel outer ring and the spherical inner ring.

Specification Table⇒B-858

Model NB-T

[Build to Order]

No Lubrication, Corrosion-resistant Type - Model HS

Specification Table⇒B-860

This no lubrication Spherical Plain Bearing uses a special fluorine sheet adhering to the holder's spherical area. The holder is made of an aluminum allov.

This product is built to order. Contact THK for details.

[Build to Order]

No Lubrication Type - Model HB

This no lubrication Spherical Plain Bearing uses a special fluorine sheet adhering to the outer ring's spherical area.

This product is built to order. Contact THK for details.

Specification Table⇒B-862

Model HB

Point of Selection

Selecting a Rod End

[Permissible Load P]

The static load capacity (Cs) indicated in the specification tables, is presented as a guide for the mechanical strength of the Rod End. Select a bearing while taking into account the safety factor (fs) indicated in Table1 according to the type of the load.

Table1 Safety Factor (fs)

Type of load	Lower limit of fs
Constant load in a constant direction	2 to 3
Fluctuating load in a constant direction	3 to 5
Load in varying directions	5 to 8

According to the type of load, select a bearing that satisfies the following equation from a mechanical strength's viewpoint.

$$P \leq \frac{C_s}{f_s} \qquad \cdots \cdots (1)$$

: Permissible Load (N) Cs : Static load capacity (N) : Safety factor (see Table1)

[Dynamic Load Capacity C_d]

The dynamic load capacity refers to the upper limit of load that the spherical area can receive without showing seizure while the Rod End is rotating or oscillating. The dynamic load capacity is obtained from the following approximation formula using the static load capacity (Cs) (note 1) indicated in the specification table.

$$\mathbf{C}_{d} = \frac{\mathbf{C}_{s}}{\sqrt[3]{\mathbf{n}}} \qquad \cdots (2)$$

C_d: Dynamic load capacity (N) : Static load capacity (N) : Rotation speed per minute (min-1)

The selected bearing must meet both the permissible load obtained from equation (1) and the dynamic load capacity obtained from equation (2).

Note1) Static load capacity (Cs) refers to the value obtained by multiplying the projected area on the spherical section by the permissible surface pressure, and is used to obtain the dynamic load capacity.

The permissible tilt angles α_1 , α_2 and α_3 of the Rod End are indicated in Table1.

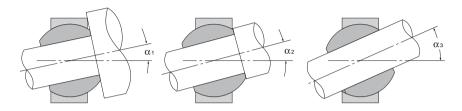


Table1 Permissible Tilt Angles

Model No.		Permissible tilt ar	
		C L2	αз
NHS 3T, NOS 3T	8	10	42
NHS 4T, NOS 4T	9	11	35
PHS 5, RBH 5, NHS 5T, POS 5, NOS 5T, PB 5, PBA 5	8	13	30
PHS 6, RBH 6, NHS 6T, POS 6, NOS 6T, PB 6, PBA 6	8	13	30
PHS 8, RBH 8, NHS 8T, POS 8, NOS 8T, PB 8, PBA 8	8	14	25
PHS 10, RBH 10, NHS 10T, POS 10, NOS 10T, PB 10, PBA 10	8	14	25
PHS 12, RBH 12, NHS 12T, POS 12, NOS 12T, PB 12, PBA 12	8	13	25
PHS 14, RBH 14, NHS 14T, POS 14, NOS 14T, PB 14, PBA 14, NB 14T	10	16	24
PHS 16, RBH 16, NHS 16T, POS 16, NOS 16T, PB 16, PBA 16, NB 16T	9	15	24
PHS 18, RBH 18, NHS 18T, POS 18, NOS 18T, PB 18, PBA 18, NB 18T	9	15	24
PHS 20, RBH 20, NHS 20T, POS 20, NOS 20T, PB 20, PBA 20, NB 20T	9	15	24
PHS 22, RBH 22, NHS 22T, POS 22, NOS 22T, PB 22, PBA 22, NB 22T	10	15	23
PHS 25, POS 25, PB 25	9	15	23
PHS 30, POS 30, PB 30	10	17	23

Installation **Rod End**

Installation

Please note that the Rod End is not capable of receiving a thrust load indicated in Fig.1.

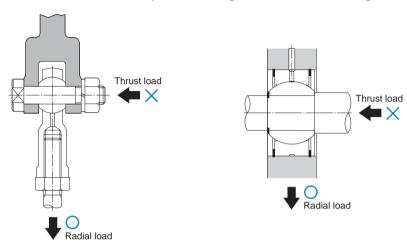


Fig.1 Examples of Installing the Rod End

Precautions on Use

Rod End

[Service Temperature]

If any of models RBH, PBA, HS and HB, all of which use the high strength zinc alloy and an aluminum alloy in the holder and the outer ring, and of models NHS-T, NOS-T and NB-T, which use synthetic-resin bushes, is to be used at temperature of 80 °C or higher, or receives an impact at low temperature, contact THK.

[Handling]

Dropping or hitting the Rod End may damage it. Giving an impact to it could also cause damage to its function even if the product looks intact.

[Lubrication]

All Rod End models except lubrication-free types must be greased before being used (lithium soapbased grease No. 2 is recommended). When greasing the Rod End before using it, do not mix lubricants of different physical properties. In addition, replenish a lubricant also during operation as necessary.

[Precautions on Use]

- (1) Do not use the product in the manner that the permissible tilting angle is exceeded since doing so may damage the product.
- (2) When using the product in locations exposed to vibrations or an impact load or in a special environment such as a clean room, vacuum and low/high temperature, contact THK in advance.
- (3) Entrance of foreign material such as dust between the holder and the inner ring may cause damage or functional loss. Prevent foreign material, such as dust and cutting chips, from entering the product.
- (4) The Rod End is designed for use under a radial load. Do not use the product under a thrust load.

[Storage]

When storing the Rod End, avoid high temperature, low temperature and high humidity.

Accessories for Lubrication

THK General Catalog

A Technical Descriptions of the Products

Lubrication	A-954
Types of Lubricants	A-954
Grease Lubrication	A-955
Oil Lubrication	A-955
Lubrication under Special Environments.	A-956
Lubrication Methods	A-957
Manual Lubrication	A-957
Forced Lubrication Method	A-957
Lubrication Accessory Series for LM Systems	A-958
THK Original Grease	A-958
AFA Grease	A-959
AFB-LF Grease	A-960
AFC Grease	A-961
AFE-CA Grease	A-963
AFF Grease	A-965
AFG Grease	A-968
Grease Gun Unit MG70	A-970
Special Plumbing Fixtures	A-970
Grease nipple	Δ_070

B Product Specifications (Separate)

Dimensional Drawing, Dimensional Table	B-863
Grease Gun Unit MG70	B-864
Special Plumbing Fixtures	B-865
Grease nipple	B-866

^{*} Please see the separate "B Product Specifications".

Lubrication

Accessories for Lubrication

When using an LM system, it is necessary to provide effective lubrication. Without lubrication, the rolling elements or the raceway may be worn faster and the service life may be shortened.

A lubricant has effects such as the following.

- (1) Minimizes friction in moving elements to prevent seizure and reduce wear.
- (2) Forms an oil film on the raceway to decrease stress acting on the surface and extend rolling fatique life.
- (3) Covers the metal surface to prevent rust formation.

To fully bring out an LM system's functions, it is necessary to provide lubrication according to the conditions.

Even with an LM system with seals, the internal lubricant gradually seeps out during operation. Therefore, the system needs to be lubricated at an appropriate interval according to the conditions.

Types of Lubricants

LM systems mainly use grease or sliding surface oil for their lubricants.

The requirements that lubricants need to satisfy generally consist of the following.

- (1) High oil film strength
- (2) Low friction
- (3) High wear resistance
- (4) High thermal stability
- (5) Non-corrosive
- (6) Highly anti-corrosive
- (7) Minimal dust/water content
- (8) Consistency of grease must not be altered to a significant extent even after it is repeatedly stirred.

For lubricants that meet these requirements, see A-955.

Accessories for Lubrication

Grease Lubrication

Greasing intervals vary depending on the conditions and environments. For normal use, we recommend greasing the system approximately every 100 km of travel distance.

Normally, replenish grease of the same group from the grease nipple or greasing hole provided on the LM system. Mixing different types of grease may deteriorate the system's performance, such as increased consistency.

Lubricant	Туре	Brand name
Grease	Lithium-based grease (JIS No. 2)	AFA Grease (THK) see A-959 AFB-LF Grease (THK) see A-960 AFC Grease (THK) see A-961 AFE-CA Grease (THK) see A-963 AFF Grease (THK) see A-965 AFG Grease (THK) see A-968 Albania Grease No.2 (Showa Shell Sekiyu) Daphne Exponex Grease No.2 (Idemitsu) or equivalent

^{*} Recommended greases vary according to the conditions and environment. See A-958 to A-969 for details.

Oil Lubrication

LM systems that require oil lubrication are shipped with only anti-rust oil applied. When placing an order, specify the required lubricant oil. If the LM system is to be mounted other than in horizontal orientation, part of the raceway may be poorly lubricated. Therefore, be sure to inform us of the mounting orientation of the LM system. (For details on mounting orientations, see A-58.)

- The amount of oil to be supplied varies with stroke length. For a long stroke, increase the lubrication frequency or the amount of oil so that an oil film reaches the stroke end of the raceway.
- In environments where a liquid coolant is spattered, the lubricant will be mixed with the coolant, and this can result in the lubricant being emulsified or washed away, causing significantly degraded lubrication performance. In such settings, apply a lubricant with high viscosity (kinematic viscosity: approx. 68 cst) and high emulsification-resistant, and adjust the lubrication frequency or the amount of the feed lubricant.

For machine tools and similar devices that are subject to heavy loads and require high rigidity and operate at high speed, it is advisable to apply oil lubrication.

 Make sure that lubrication oil normally discharges from the ends of your lubrication piping, i.e., the oiling ports that connect to your LM system.

Lubricant	Туре	Brand name
Oil	150VG32 to 68	Super Multi 32 to 68 (Idemitsu) Vactra No.2S (ExxonMobile) DT Oil (ExxonMobile) Tonner Oil (Showa Shell Sekiyu) or equivalent

Lubrication under Special Environments

For use under special conditions, such as continual vibrations, clean room, vacuum, low temperature and high temperature, normal grease may not be used in some cases. For lubricants that meet such conditions, contact THK.

Table1 Lubricants Used under Special Environments

Service environment	Lubricant characteristics	Brand name
High-speed moving parts	Grease with low torque and low heat generation	AFG Grease(THK) see A-968 AFA Grease(THK) see A-959 NBU15(NOK Kluba) Multemp (Kyodo Yushi) or equivalent
Vacuum	Fluorine based vacuum grease or oil (vapor pressure varies by brand)	Fomblin Grease (Solvay Solexis) Fomblin Oil (Solvay Solexis) Barrierta IEL/V (NOK Kluba) Isoflex(NOK Kluba) Krytox (Dupont)
Clean room	Grease with very low dust generation	AFE-CA Grease(THK) see A-963 AFF Grease(THK) see A-965
	Grease that easily forms an oil film and has high fretting resistance	AFC Grease(THK) see A-961
Environments subject to a spattering coolant such as machine tools	Highly anti-corrosive, refined mineral oil or synthetic oil that forms a strong oil film and is not easily emulsified or washed away by coolant Water-resistant grease	Super Multi 68 (Idemitsu) Vactra No.2S (ExxonMobile) or equivalent

Note1) When using a vacuum grease, be sure that some brands have starting resistances several times greater than ordinary lithium-based greases.

Note2) In an environment subject to a spattering water-soluble coolant, some brands of intermediate viscosity significantly decrease their lubricity or do not properly form an oil film. Check the compatibility between the lubricant and the coolant.

Note3) Do not mix greases with different physical properties.

Lubrication Methods

There are roughly three methods of lubricating LM systems: manual lubrication using a grease gun or manual pump; forced oiling with the aid of an automatic pump; and oil-bath lubrication.

Manual Lubrication

Generally, grease is replenished periodically, fed through a grease nipple provided on the LM system, using a grease gun. (Fig.1)

For systems that have many locations to be lubricated, establish a centralized piping system and periodically provide grease from a single point using a manual pump. (Fig.2)

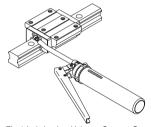


Fig.1 Lubrication Using a Grease Gun

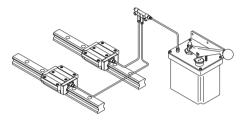


Fig.2 Lubrication through a Centralized Piping System

Note) When a centralized piping system is used, lubricant may not reach the pipe end due to the viscous resistance inside the pipe. Select the right type of grease while taking into account the consistency of the grease and the pipe diameter.

Forced Lubrication Method

In this method, a given amount of lubricant is forcibly fed at a given interval. Normally, the lubricant is not collected after use. (Fig.3)

Although a special lubrication system using a piping or the like needs to be designed, this method reduces the likelihood of forgetting to replenish lubricant.

This method is used mainly for oil lubrication. If using grease, it is necessary to examine the appropriate piping diameter and the required grease consistency.

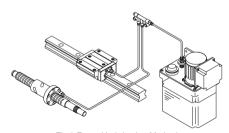


Fig.3 Forced Lubrication Method

Lubrication Accessory Series for LM Systems

THK provides a wide array of lubrication accessories such as grease, grease guns, grease nipples and plumbing fixtures available for various applications. (A-959 to A-970)

THK Original Grease

THK provides various types of THK original greaseneeded for the lubrication of LM systems. They are available for various conditions and environments.

[Table for Grease Selection]

Refer to the table below that allows you to select a type of grease according to the application of the LM system.

Also note that the color of the decorative package varies according to the type (both 70 g and 400 g).

Na	me of grease	AFA Grease	AFB-LF Grease	AFC Grease	AFE-CA Grease	AFF Grease	AFG Grease
	Features	Long service life	All-purpose grease	High-speed/ micro-vibra- tion grease	Grease for clean envi- ronment	Grease for clean envi- ronment	Grease for heat of Ball Screw
	Base oil	high-grade synthetic oil	refined min- eral oil	high-grade synthetic oil	high-grade synthetic oil	high-grade synthetic oil	high-grade synthetic oil
C	Consistency enhancer	Urea-based	Lithium-based	Urea-based	Urea-based	Lithium-based	Urea-based
	vice Tempera- e Range (℃)	-45 to 160	-15 to 100	-54 to 177	-40 to 160 (200)	-40 to 120	-45 to 160
	General industrial machinery	•	•	_	_		_
tions	Machine tool	_	•	•	_	_	•
Applications	Semiconduc- tor manufactur- ing equipment	_	•	•	•	•	_
	Special envi- ronments	1	_	•	•	•	•
acity	70g	•	•	•	•	•	•
Capacity	400g	•	•	•	•	•	•
	lor of decora- ve package	Green	Orange	Mazarine	Lime green	Light blue	Blue
Re	ference page	A-959	A-960	A-961	A-963	A-965	A-968

Model number coding

■Type of packing…bellows cartridge

AFC + 70

Cartridge capacity (70 g / 400 g)

Type of grease (AFA Grease, AFB-LF Grease, AFC Grease, AFE Grease, AFF Grease, AFG Grease)

THK Original Grease AFA Grease

- Base oil: high-grade synthetic oil
- ●Consistency enhancer: urea-based

AFA Grease is a high-grade, long-life grease developed with a urea-based consistency enhancer using a high-grade synthetic oil as the base oil.

[Features]

(1) Long service life

Unlike ordinary soap based grease for metal lubrication, AFA Grease excels in antioxidation stability and therefore can be used for a long period of time.

(2) Wide temperature range

The lubricating performance remains high over a wide range of temperatures from -45 °C to +160°C.

Even at low temperatures, AFA Grease requires only a low starting torque.

- (3) High water resistance
 - AFA Grease is less vulnerable to moisture penetration than other types of grease because of its high water resistance.
- (4) High mechanical stability

AFA Grease is not easily softened and demonstrates excellent mechanical stability even when used for a long period of time.

[Representative Physical Properties]

			_
Test item	Repre- sentative value	Test method	
Worked penetration (25°	C, 60W)	285	JIS K 2220 7
Dropping point: ℃		261	JIS K 2220 8
Copper plate corrosio (B method, 100°C, 24		Accepted	JIS K 2220 9
Evaporation amount: (99°C, 22h)	mass%	0.2	JIS K 2220 10
Oil separation rate: ma (100°C, 30h)	0.5	JIS K 2220 11	
Stability of oxidation: I (99°C, 100h)	кРа	80	JIS K 2220 12
Mixing stability (100,0	00 W)	329	JIS K 2220 15
Grease removal resistant water rinse: mass% (38°C		0.6	JIS K 2220 16
Low temperature	Start	0.17	
torque: N-m (-20°C)	(revo- lutions)	0.07	JIS K 2220 18
Anticorrosive test: (52°C	Accepted	ASTM D1743-73	
Service Temperature L	-45 to 160	_	

[Rotation Torque Testing with Ball Screw Grease]

<Test method>

Apply 1 cc of grease to the LM Guide of KR4620A+640L and 2 cc to the Ball Screw (initial lubrication only), and then measure the torque at each motor rotation speed.

In torque measurement, output values on the driver torque monitor are used.

Comparative Table of Rotation Torque of Ball Screws by Grease

Unit: N-cm

Grease	Central value of dynamic viscosity	Dynamic viscosity range		Rotation	al speed	
Grease	CST (mm²/S)(40°C)		100min ⁻¹	1000min ⁻¹	2000min ⁻¹	4000min ⁻¹
AFA Grease	25	22.5 to 27.5	11.27	11.27	12.25	14.6
Grease of manu- facturer I	130	117 to 143	14.6	23.13	31.16	43.12
Grease of manu- facturer K	15.3	13.8 to 16.8	12.64	12.05	13.03	14.41
Lubricant VG32	32	28.8 to 35.2	11.17	10.78	13.43	14.7

Note) The values of the competitors' greases are that of low-torque greases.

THK Original Grease AFB-LF Grease

- Base oil: refined mineral oil
- Consistency enhancer: lithium-based

AFB-LF Grease is a general-purpose grease developed with a lithium-based consistency enhancer using refined mineral oil as the base oil. It excels in extreme pressure resistance and mechanical stability.

[Features]

- (1) High extreme pressure resistance Compared with lithium-based greases available on the market, AFB-LF Grease has higher wear resistance and outstanding resistance to extreme pressure.
- (2) High mechanical stability AFB-LF Grease is not easily softened and demonstrates excellent mechanical stability even when used for a long period of time.
- (3) High water resistance AFB-LF Grease is a highly water resistant grease that is less vulnerable to moisture penetration and little decreases resistance to extreme pressure.

[Representative Physical Properties]

Repre- sentative value	Test method
275	JIS K 2220 7
193	JIS K 2220 8
Accepted	JIS K 2220 9
0.36	JIS K 2220 10
0.6	JIS K 2220 11
15	JIS K 2220 12
345	JIS K 2220 15
200	JIS K 2220 20
1.8	JIS K 2220 16
Accepted	ASTM D1743-73
-15 to 100	_
	sentative value 275 193 Accepted 0.36 0.6 15 345 200 1.8 Accepted -15 to

Lubrication AFC Grease

THK Original Grease AFC Grease

- ●Base oil: high-grade synthetic oil
- ●Consistency enhancer: urea-based

AFC Grease has high fretting-corrosion resistance due to a special additive and a urea-based consistency enhancer using a high-grade synthetic oil as the base oil.

[Features]

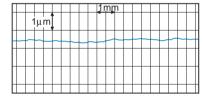
- High fretting-corrosion resistance
 AFC Grease is designed to be highly effective in preventing fretting corrosion.
- (2) Long service life Unlike ordinary soap based grease for metal lubrication, AFC Grease excels in antioxidation stability and therefore can be used for a long period of time. As a result, maintenance work is reduced.
- (3) Wide temperature range
 Since a high-grade synthetic oil is used as
 the base oil, the lubricating performance
 remains high over a wide range of temperatures from -54 °C to +177 °C.

[Representative Physical Properties]

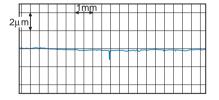
Test item	Repre- sentative value	Test method	
Worked penetration (25°	C, 60W)	288	JIS K 2220 7
Dropping point: ℃		269	JIS K 2220 8
Copper plate corrosio (B method, 100°C, 24	n h)	Accepted	JIS K 2220 9
Evaporation amount: (177°C, 22h)	mass%	7.9	JIS K 2220 10
Oil separation rate: ma (177°C, 30h)	2	JIS K 2220 11	
Stability of oxidation: I (99℃, 100h)	МРа	0.065	JIS K 2220 12
cm ³ 25 to	No. of contaminants: pieces/ cm³ 25 to 75 μm 75μm or more		
Mixing stability (100,0	00 W)	341	JIS K 2220 15
Grease removal resistant water rinse: mass% (38°C		0.6	JIS K 2220 16
Low temperature	Start	0.63	
torque: N-m (-54°C)	(revo- lutions)	0.068	JIS K 2220 18
Anticorrosive test: (52°C	Accepted	ASTM D1743-73	
Vibration test (200h)	Accepted	_	
Service Temperature L	-54 to 177	_	

[Test Data on Fretting-corrosion Resistance]

• Test Data on AFC Grease (Comparison of Raceway Conditions)

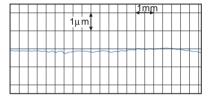

The test data in the figure shows the result of comparing AFC Grease with an ordinary bearing grease.

٦-		conditions>
< 1	esi	COHUILIOHS>

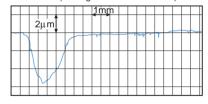

Item	Description
Stroke	3mm
Number of strokes per minute	200min ⁻¹
Total number of strokes	2.88×10⁵ (24 hours)
Surface pressure	1118MPa
Grease quantity	12g/1LM block (replenished every 8 hours)

AFC Grease

Before travel



After travel (no fretting corrosion observed)



General-purpose bearing grease

Before travel

After travel (fretting corrosion observed)

Lubrication

AFE-CA Grease

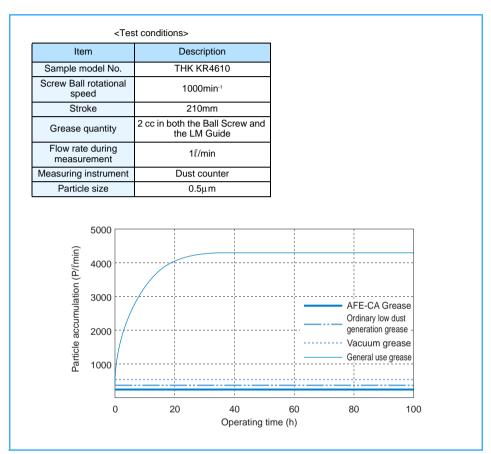
THK Original Grease AFE-CA Grease

- ●Base oil: high-grade synthetic oil
- ●Consistency enhancer: urea-based

AFE-CA Grease uses urea as a consistency enhancer and a high-grade synthetic oil as the base oil. It has low dust generative characteristics and is therefore a suitable grease for clean room environments.

[Features]

- Low dust generation
 Compared with vacuum greases in conventional use, AFE-CA Grease generates less dust and therefore is ideal for use in clean rooms.
- (2) Long service life Unlike ordinary soap based grease for metal lubrication, AFE-CA Grease excels in antioxidation stability and therefore can be used for a long period of time. As a result, maintenance work is reduced.


[Representative Physical Properties]

Test ite	em	Repre- sentative value	Test method
Worked penetration	n (25℃, 60W)	260	JIS K 2220 7
Dropping point: °C)	240<	JIS K 2220 8
Copper plate corrosio	n (100℃, 24h)	Accepted	JIS K 2220 9
Evaporation amo (99°C, 22h)	unt: mass%	0.1	JIS K 2220 10
Oil separation rat (100°C, 24h)	e: mass%	0.8	JIS K 2220 11
Stability of oxidat (99℃, 100h)	ion: kPa	20	JIS K 2220 12
No. of contami-	75μm or more	0	JIS K 2220 13
nants: pieces/cm³	125μm or more	0	JIS N 2220 13
Mixing stability (1	00,000 W)	311	JIS K 2220 15
Low tempera ture torque: N-m	Start	0.130	JIS K 2220 18
(-20℃)	(revolutions)	0.078	010 11 2220 10
Apparent viscosit (-10°C, 10S-1)	y: Pa•s	230	JIS K 2220 19
Bearing rust prev (52°C, 48h)	ention:	#1	ASTM D1743-73
Service Temperate	ure Limit (°C)	-40 to 180	_

[Test Data on Low Dust Generative Characteristics]

• Test Data on AFE-CA Grease (Comparison of Particle Accumulation)

The test data in the figure shows the result of comparing particle accumulation between AFE-CA Grease with another grease.

Lubrication AFF Grease

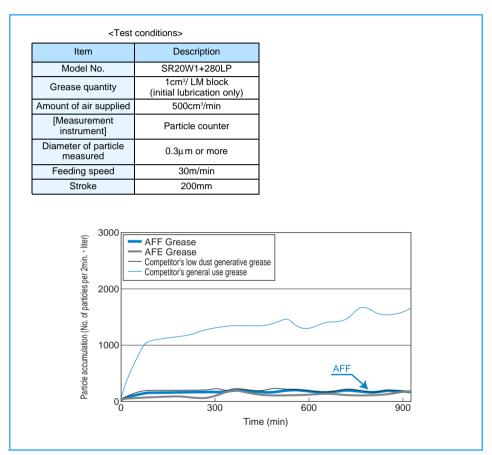
THK Original Grease AFF Grease

- ●Base oil: high-grade synthetic oil
- ●Consistency enhancer: lithium-based

AFF Grease uses a high-grade synthetic oil, lithium-based consistency enhancer and a special additive. It achieves stable rolling resistance, low dust generation and high fretting resistance, at a level that conventional vacuum greases or low dust generation greases have not reached.

[Features]

- Stable rolling resistance
 Since the viscous resistance is low, the rolling resistance fluctuation is also low. Thus, superb conformity is achieved at low speed.
- (2) Low dust generation AFF Grease generates little dust, making itself an ideal grease for use in clean rooms.
- (3) Fretting resistance Since AFF Grease is highly resistant to wear from microvibrations, it allows the greasing interval to be extended.

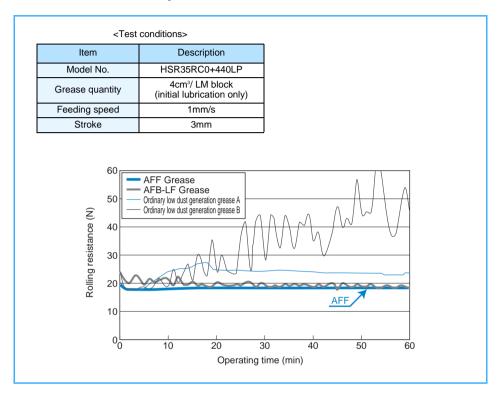

[Representative Physical Properties]

Test item		Repre- sentative value	Test method
Worked penetration (25°C	C, 60W)	315	JIS K 2220 7
Dropping point: ℃		216	JIS K 2220 8
Copper plate corrosion (100°C, 24h)	Accepted	JIS K 2220 9	
Evaporation amount: r (99°C, 22h)	mass%	0.43	JIS K 2220 10
Oil separation rate: ma (100°C, 24h)	ass%	0.57	JIS K 2220 11
Stability of oxidation: k (99°C, 100h)	(Pa	39	JIS K 2220 12
75 ['] µm	or more or more or more	0 0 0	JIS K 2220 13
Mixing stability (100,0	00 W)	329	JIS K 2220 15
Low tomporature	Start	0.22	
Low temperature torque: N-m (-20°C)	(revo- lutions)	0.04	JIS K 2220 18
Apparent viscosity: Pa (-10°C, 10S⁻¹)	ı•s	3400	JIS K 2220 19
Timken load capacity:	N	88.2	JIS K 2220 20
4-ball testing (burn-in	load): N	3089	ASTM D2596
Fretting resistance: m	g	3.8	ASTM D4170 compliant
Bearing rust prevention: (52	°C, 48h)	#1	ASTM D1743-73
Service Temperature L	imit ([°] C)	-40 to 120	_

[Test Data on Low Dust Generative Characteristics]

• Test Data on AFF Grease (Comparison of Particle Accumulation)

The test data in the figure shows the result of comparing particle accumulation between AFF Grease with another grease.


Lubrication

AFF Grease

[Rolling Resistance Characteristics at Low Speed]

Rolling Resistance at Low Speed

The data in the figure represent the test results of comparing rolling resistances at low speed between AFF Grease and other greases.

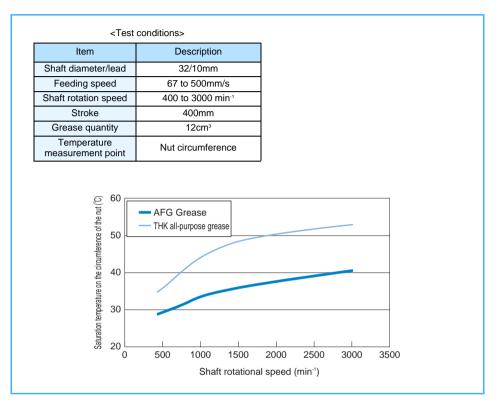
THK Original Grease AFG Grease

- OBase oil: high-grade synthetic oil
- Oconsistency enhancer: urea-based

AFG Grease is a high-grade grease for Ball Screws that uses a high-grade synthetic oil as the base oil and a urea-based consistency enhancer. It excels in low heat generation and supports a wide temperature range from low to high temperature.

[Features]

- (1) Low heat generation Since the viscous resistance is low, the grease generates only a minimal level of heat even during high-speed operation.
- (2) Low viscosity Since the viscosity is low, a stable rotational torque is achieved.
- (3) Wide temperature range Maintains a high level of lubricity in a wide temperature range of -45°C to +160°C.
- (4) Long service life AFG Grease is not easily softened and excels in antioxidation stability even after a long-term operation.
- (5) Water resistance AFG Grease is a highly water resistant grease that is less vulnerable to moisture penetration and little decreases resistance to extreme pressure.


[Representative Physical Properties]

Test item		Repre- sentative value	Test method
Worked penetration (25°	C, 60W)	285	JIS K 2220 5.3
Dropping point: °C		261	JIS K 2220 5.4
Copper plate corrosion (100	Accepted	JIS K 2220 5.5	
Evaporation amount: (99°C, 22h)	mass%	0.2	JIS K 2220 5.6
Oil separation rate: m (100°C, 24h)	ass%	0.5	JIS K 2220 5.7
Stability of oxidation: I (99℃, 100h)	МРа	0.029	JIS K 2220 5.8
Mixing stability (100,0	00 W)	329	JIS K 2220 5.11
Grease removal resistant water rinse: mass% (38°C		0.6	JIS K 2220 5.12
Low tomporature	Start	0.439	
Low temperature torque: N-m (-20°C)	(revo- lutions)	0.049	JIS K 2220 5.14
Anticorrosive test: (52°C	C, 48h)	1,1,1	ASTM D1743
Service Temperature Ra	ange (℃)	-45 to 160	_

[Test Data on Low Heat Generation Characteristics]

• Test Data on AFG Grease (Comparison of Heat Generation)

The test data in the figure represent the results of comparing heat generation between AFG Grease and other greases.

Lubrication Equipment Grease Gun Unit MG70

•For detailed dimensions, see B-864.

Grease Gun Unit MG70 is capable of lubricating small to large types of LM Guides by replacing dedicated nozzles (attached). For small LM Guides, MG70 is provided with dedicated attachments. The user can select from these attachments according to the model number and the installation space. MG70 has a slit window, allowing the user to check the remaining amount of grease.

It is equipped with a bellows cartridge that can hold 70 g of grease and is replaceable without smirching your hand. It supports a wide range of grease products, including AFA Grease, AFB-LF Grease, AFC Grease and AFE-CA Grease, to meet varied conditions. This enables you to make a selection according to the area requiring grease. (See A-959 to A-969.)

Since the grease to be used is sold separately, you must purchase it separately.

Accessories for Lubrication Special Plumbing Fixtures

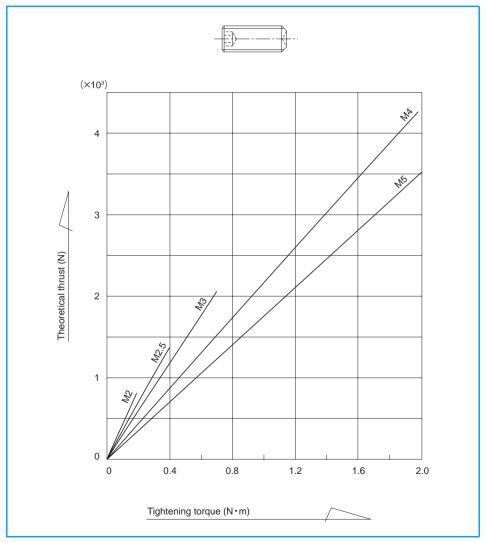
•For detailed dimensions, see B-865.

For centralized greasing and oil lubrication, special plumbing fixtures are available from THK. When ordering an LM system, specify the model number, mounting orientation and piping direction. We will ship the LM system attached with the corresponding fixture.

Accessories for Lubrication Grease Nipple

• For detailed dimensions, see B-866.

THK provides various types of grease nipples needed for the lubrication of LM systems.

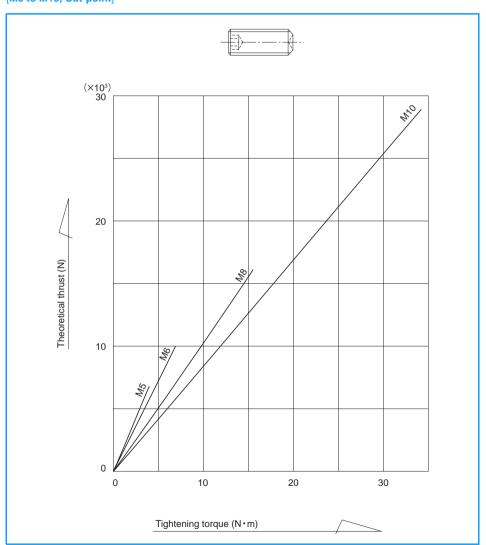

Appendix

冗岩 General Catalog

Appendix Tables

Tightening Torques and Theoretical Thrusts for Hexagonal Socket-head Setscrew

[M2 to M5, Cut-point]



Note) The theoretical thrust may vary depending on the lubrication and the conditions of the surfaces of the setscrew or the reference surface ($\mu = 0.13$).

Appendix Tables

dammy

[M5 to M10, Cut-point]

Note) The theoretical thrust may vary depending on the lubrication and the conditions of the surfaces of the setscrew or the reference surface ($\mu = 0.13$).

Dimensional Tolerances of the Shafts

	nsion ication m)	е		f	(9	h							js	
Above	Or less	е6	f5	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6	js7
3	6	-20 -28	-10 -15	-10 -18	-4 -9	-4 -12	0 -5	0 -8	0 -12	0 -18	0 -30	0 -48	±2.5	±4	±6
6	10	-25 -34	-13 -19	-13 -22	-5 -11	-5 -14	0 -6	0 -9	0 -15	0 -22	0 -36	0 -58	±3	±4.5	±7.5
10	14	-32	-16	-16	-6	-6	0	0	0	0	0	0	±4	±5.5	±9
14	18	-43	-24	-27	-14	-17	-8	-11	-18	-27	-43	-70	±-7	±0.0	±3
18	24	-40	-20	-20	-7	-7	0	0	0	0	0	0	±4.5	±6.5	±10.5
24	30	-53	-29	-33	-16	-20	-9	-13	-21	-33	-52	-84	_ 1.0	_0.0	± 10.0
30	40	-50	-25	-25	-9	-9	0	0	0	0	0	0	±5.5	±8	±12.5
40	50	-66	-36	-41	-20	-25	-11	-16	-25	-39	-62	-100			
50	65	-60	-30	-30	-10	-10	0	0	0	0	0	0	±6.5	±9.5	±15
65	80	-79	-43	-49	-23	-29	-13	-19	-30	-46	-74	-120			_
100	100 120	-72 -94	-36 -51	-36 -58	-12 -27	-12 -34	0 -15	0 -22	0 -35	0 -54	0 -87	0 -140	±7.5	±11	±17.5
120	140														
140	160	-85	-43	-43	-14	-14	0	0	0	0	0	0	±9	±12.5	±20
160	180	-110	-61	-68	-32	-39	-18	-25	-40	-63	-100	-160			
180	200														
200	225	-100 -129	-50 -70	-50 -79	-15 -35	-15 -44	0 -20	0 -29	0 -46	0 -72	0 -115	0 -185	±10	±14.5	±23
225	250	- 129	-70	-79	-35	-44	-20	-29	-46	-72	-115	-100			
250	280	-110	-56	-56	-17	-17	0	0	0	0	0	0			
280	315	-142	-79	-88	-40	-49	-23	-32	-52	-81	-130	-210	±11.5	±16	±26
315	355	-125	-62	-62	-18	-18	0	0	0	0	0	0	±12.5	±18	±28.5
355	400	-161	-87	-98	-43	-54	-25	-36	-57	-89	-140	-230	±12.5	±10	±26.5
400	450	-135	-68	-68	-20	-20	0	0	0	0	0	0	±13.5	±20	±31.5
450	500	-175	-95	-108	-47	-60	-27	-40	-63	-97	-155	-250	± 10.0	±20	±01.0
500	560	-145	-76	-76	-22	-22	0	0	0	0	0	0	±15	±22	±35
560	630	-189	-106	-120	-52	-66	-30	-44	-70	-110	-175	-280			_50
630	710	-160	-80	-80	-24	-24	0	0	0	0	0	0	±17.5	±25	±40
710	800	-210	-115	-130	-59	-74	-35	-50	-80	-125	-200	-320			
800	900	-170	-86	-86	-26	-26	0	0	0	0	0	0	±20	±28	±45
900	1000	-226	-126	-142	-66	-82	-40	-56	-90	-140	-230	-360			_
1000	1120	-195	-98 -144	-98 -164	-28 -74	-28 -94	0 -46	0 -66	0 -105	0 -165	0 -260	0 -420	±23	±33	±52.5
1120	1250	-261										_			
1250	1400	-220 -298	-110 -164	-110 -188	-30 -84	-30 -108	0 -54	0 -78	0 -125	0 -195	0 -310	0 -500	±27	±39	±62.5
1400	1600	-230	- 104	- 100	-04	. 100	-54	-10	- 123	. 190	-510	-300			

dommy

Unit: um=0.001mm

Appendix Tables

										Uni	it: μm=0.	
j	į		k		r	n	1	า	Ī)	Dime classifi (m	cation
j5	j6	k5	k6	k7	m5	m6	n5	n6	p5	p6	Above	Or less
+3 -2	+6 -2	+6 +1	+9 +1	+13 +1	+9 +4	+12 +4	+13 +8	+16 +8	+17 +12	+20 +12	3	6
+4 -2	+7 -2	+7 +1	+10 +1	+16 +1	+12 +6	+15 +6	+16 +10	+19 +10	+21 +15	+24 +15	6	10
+5 -3	+8 -3	+9 +1	+12 +1	+19 +1	+15 +7	+18 +7	+20 +12	+23 +12	+26 +18	+29 +18	10 14	14 18
+5 -4	+9 -4	+11 +2	+15 +2	+23 +2	+17 +8	+21 +8	+24 +15	+28 +15	+31 +22	+35 +22	18	24
+6	+11	+13	+18	+27	+20	+25	+15	+33	+37	+42	24 30	30 40
- 5	-5	+13	+2	+27	+9	+25	+17	+33	+26	+26	40	50
+6 -7	+12 -7	+15 +2	+21 +2	+32 +2	+24 +11	+30 +11	+33 +20	+39 +20	+45 +32	+51 +32	50 65	65 80
+6 -9	+13 -9	+18 +3	+25 +3	+38	+28 +13	+35 +13	+38	+45	+52	+59	80	100
-9	-9	+3	+3	+3	+13	+13	+23	+23	+37	+37	100 120	120 140
+7 -11	+14 -11	+21 +3	+28 +3	+43 +3	+33 +15	+40 +15	+45 +27	+52 +27	+61 +43	+68 +43	140	160
											160	180
+7 -13	+16 -13	+24 +4	+33 +4	+50 +4	+37 +17	+46 +17	+51 +31	+60 +31	+70 +50	+79 +50	180 200	200 225
-13	-13	+4	+4	+4	+17	+17	+31	+31	+50	+50	225	250
+7 -16	+16 -16	+27 +4	+36 +4	+56 +4	+43 +20	+52 +20	+57 +34	+66 +34	+79 +56	+88 +56	250 280	280 315
+7	+18	+29	+40	+61	+46	+57	+62	+73	+87	+98	315	355
-18	-18	+4	+4	+4	+21	+21	+37	+37	+62	+62	355	400
+7 -20	+20 -20	+32 +5	+45 +5	+68 +5	+50 +23	+63 +23	+67 +40	+80 +40	+95 +68	+108 +68	400 450	450 500
		+30	+44	+70	+56	+70	+74	+88	+108	+122	500	560
_	_	0	0	0	+26	+26	+44	+44	+78	+78	560	630
_	_	+35 0	+50 0	+80 0	+65 +30	+80 +30	+85 +50	+100 +50	+123 +88	+138 +88	630 710	710 800
_	_	+40	+56	+90	+74	+90	+96	+112	+140	+156	800	900
		0	0	0	+34	+34	+56	+56	+100	+100	900	1000
_	_	+46 0	+66 0	+105 0	+86 +40	+106 +40	+112 +66	+132 +66	+166 +120	+186 +120	1000 1120	1120 1250
_	_	+54 0	+78 0	+125 0	+102 +48	+126 +48	+132 +78	+156 +78	+194 +140	+218 +140	1250 1400	1400 1600

Dimensional Tolerances of Housing Holes

Dime	nsion ication	,	=		F		(3			Н			
(m			_				Ì				•			
Above	Or less	E6	E7	F6	F7	F8	G6	G7	H5	H6	H7	H8	Н9	H10
3	6	+28 +20	+32 +20	+18 +10	+22 +10	+28 +10	+12 +4	+16 +4	+5 0	+8 0	+12 0	+18 0	+30 0	+48 0
6	10	+34 +25	+40 +25	+22 +13	+28 +13	+35 +13	+14 +5	+20 +5	+6 0	+9 0	+15 0	+22 0	+36 0	+58 0
10	14	+43	+50	+27	+34	+48	+17	+24	+8	+11	+18	+27	+43	+70
14	18	+32	+32	+16	+16	+16	+6	+6	0	0	0	0	0	0
18	24	+53	+61	+33	+41	+53	+20	+28	+9	+13	+21	+33	+52	+84
24	30	+40	+40	+20	+20	+20	+7	+7	0	0	0	0	0	0
30	40	+66	+75	+41	+50	+64	+25	+34	+11	+16	+25	+39	+62	+100
40	50	+50	+50	+25	+25	+25	+9	+9	0	0	0	0	0	0
50	65	+79	+90	+49	+60	+76	+29	+40	+13	+19	+30	+46	+74	+120
65	80	+60	+60	+30	+30	+30	+10	+10	0	0	0	0	0	0
80 100	100 120	+94 +72	+107 +72	+58 +36	+71 +36	+90 +36	+34 +12	+47 +12	+15 0	+22 0	+35 0	+54 0	+87 0	+140 0
120	140	172	112	100	100	100	112	112	0	0	0	0	-	•
140	160	+110	+125	+68	+83	+106	+39	+54	+18	+25	+40	+63	+100	+160
160	180	+85	+85	+43	+43	+43	+14	+14	0	0	0	0	0	0
180	200													
200	225	+129 +100	+146 +100	+79 +50	+96 +50	+122 +50	+44 +15	+61 +15	+20 0	+29 0	+46 0	+72 0	+115 0	+185 0
225	250	+100	+100	+50	+30	+30	+13	+13	U	U	U	0	U	U
250	280	+142	+162	+88	+108	+137	+49	+69	+23	+32	+52	+81	+130	+210
280	315	+110	+110	+56	+56	+56	+17	+17	0	0	0	0	0	0
315	355	+161	+182	+98	+119	+151	+54	+75	+25	+36	+57	+89	+140	+230
355	400	+125	+125	+62	+62	+62	+18	+18	0	0	0	0	0	0
400	450	+175	+198	+108	+131	+165	+60	+83	+27	+40	+63	+97	+155	+250
450	500	+135	+135	+68	+68	+68	+20	+20	0	0	0	0	0	0
500	560	+189	+215	+120	+146	+186	+66	+92	+30	+44	+70	+110	+175	+280
560	630	+145	+145	+76	+76	+76	+22	+22	0	0	0	0	0	0
630	710	+210	+240	+130	+160	+205	+74	+104	+35	+50	+80	+125	+200	+320
710	800	+160	+160	+80	+80	+80	+24	+24	0	0	0	0	0	0
800	900	+226	+260	+142	+176	+226	+82	+116	+40	+56	+90	+140	+230	+360
900	1000	+170	+170	+86	+86	+86	+26	+26	0	0	0	0	0	0
1000	1120	+261	+300	+164	+203	+263	+94	+133	+46	+66	+105	+165	+260	+420
1120	1250	+195	+195	+98	+98	+98	+28	+28	0	0	0	0	0	0
1250	1400	+298 +220	+345 +220	+188 +110	+235 +110	+305 +110	+108 +30	+155 +30	+54 0	+78 0	+125 0	+195 0	+310 0	+500 0
1400	1600	TZZU	T220	7110	7110	7110	+ 30	+30	U	U	U	U	U	U

Appendix Tables

dammy

Unit: µm=0.001mm

											Uni	t: μm=0.	UUTIMM
J	s	ì	J	ŀ	<	N	И	١	١	F	o	Dime classifi (m	ication
Js6	Js7	J6	J7	K6	K7	M6	M7	N6	N7	P6	P7	Above	Or less
±4	±6	+5 -3	+6 -6	+2 -6	+3 -9	-1 -9	0 -12	-5 -13	-4 -16	-9 -17	-8 -20	3	6
±4.5	±7.5	+5 -4	+8 -7	+2 -7	+5 -10	-3 -12	0 -15	-7 -16	-4 -19	-12 -21	-9 -24	6	10
±5.5	±9	+6 -5	+10 -8	+2 -9	+6 -12	-4 -15	0 -18	-9 -20	-5 -23	-15 -26	-11 -29	10 14	14
±6.5	±10.5	+8 -5	+12 -9	+2 -11	+6 -15	-4 -17	0 -21	-11 -24	-7 -28	-18 -31	-14 -35	18 24	24 30
±8	±12.5	+10	+14	+3	+7	-4	0	-12	-8	-21	-17	30	40
	- 12.0	-6	-11	-13	-18	-20	-25	-28	-33	-37	-42	40	50
±9.5	±15	+13 -6	+18 -12	+4 -15	+9 -21	-5 -24	0 -30	-14 -33	-9 -39	-26 -45	-21 -51	50 65	65 80
		+16	+22	+4	+10	-6	0	-16	-10	-30	-24	80	100
±11	±17.5	-6	-13	-18	-25	-28	-35	-38	-45	-52	-59	100	120
		.10	+26	+4	.10	0	0	20	-12	26	20	120	140
±12.5	±20	+18 -7	+26 -14	-21	+12 -28	-8 -33	-40	-20 -45	-12 -52	-36 -61	-28 -68	140	160
												160 180	180
±14.5	±23	+22	+30	+5	+13	-8	0	-22	-14	-41	-33	200	225
		-7	-16	-24	-33	-37	-46	-51	-60	-70	-79	225	250
±16	±26	+25	+36	+5	+16	-9	0	-25	-14	-47	-36	250	280
±10	-20	-7	-16	-27	-36	-41	-52	-57	-66	-79	-88	280	315
±18	±28.5	+29 -7	+39 -18	+7 -29	+17 -40	-10 -46	0 -57	-26 -62	-16 -73	-51 -87	-41 -98	315 355	355
			+43		+18	-10	0	-27	-17	-55	-45	400	400 450
±20	±31.5	+33 -7	-20	+8 -32	-45	- 10 - 50	-63	-27 -67	-80	- 95 - 95	-45 -108	450	500
. 00	. 05					-26	-26	-44	-44	-78	-78	500	560
±22	±35	_	_	_	_	-70	-96	-88	-114	-122	-148	560	630
±25	±40	1	-	_	_	-30 -80	-30 -110	-50 -100	-50 -130	-88 -138	-88 -168	630 710	710 800
1.00	1.45					-34	-34	-56	-56	-100	-100	800	900
±28	±45		-	_	_	-90	-124	-112	-146	-156	-190	900	1000
±33	±52.5	_	_	_	_	-40 -106	-40 -145	-66 -132	-66 -171	-120 -186	-120 -225	1000 1120	1120 1250
±39	±62.5	_	_	_	_	-48 -126	-48 -173	-78 -156	-78 -203	-140 -218	-140 -265	1250 1400	1400 1600
 <u> </u>	l						<u> </u>						

SI Unit Conversion Table

[Conversion to SI Units]

Amount	Name of unit	Symbol	Factor of conversion to SI	Name of SI unit	Symbol
Angle	Degree Minute Second	0	π/180 π/10800 π/648000	Radian	rad
Length	Meter Angstrom X-ray unit Nautical mile	m Å n mile	1 10 ⁻¹⁰ ≈1.00208×10 ⁻¹³ 1852	Meter	m
Area	Square meter Are Hectare	m² a ha	1 10 ² 10 ⁴	Square meter	m²
Volume	Cubic meter Liter	m³ ℓ (L)	1 10 ⁻³	Cubic meter	m³
Mass	Kilogram Ton Atomic-mass unit	kg t u	1 10 ³ ≈1.66057×10 ⁻²⁷	Kilogram	kg
Time	Second Minute Hour Day	s min h d	1 60 3600 86400	Second	S
Speed	Meter per second Knot	m/s kn	1 1852/3600	Meter per second	m/s
Frequency	cycle	S ⁻¹	1	Hertz	Hz
Rotational speed	Revolution per minute	rpm	1	Per minute	min ⁻¹
Angular velocity	Radian per minute	rad/s	1	Radian per minute	rad/s
Acceleration	Meter per second per second G	m/s² G	1 9.80665	Meter per second per second	m/s²
Force	Weight kilogram Weight ton Dyne	kgf tf dyn	9.80665 9806.65 10 ⁻⁵	Newton	N
Moment of force	Weight kilogram meter	kgf-m	9.80665	Newton meter	N-m
Stress and pressure	Weight kilogram per square meter Weight kilogram per square centimeter Weight kilogram per square millimeter	kgf/m² kgf/cm² kgf/mm²	9.80665 9.80665×10 ⁴ 9.80665×10 ⁶	Pascal	Pa
Pressure	Water column meter Mercury column meter Torr Atmosphere Bar	mH ₂ O mmHg Torr atm bar	9806.65 101325/760 101325/760 101325 10 ⁵	Pascal	Pa
Energy	Erg IT calorie Weight kilogram meter Kilowatt hour Metric Horsepower hour Electron volt	erg cal₁⊤ kgf-m kW•h PS•h eV	10 ⁻⁷ 4.1868 9.80665 3.600×10 ⁶ ≈2.64779×10 ⁶ ≈1.60219×10 ⁻¹⁹	Joule	J
Power	Watt Metric Horsepower Kilogram force-meter	W PS kgf-m/s	1 ≈735.5 9.80665	Watt	W

Amount	Name of unit	Symbol		Factor of conversion to SI	Name of SI unit	Symbol
Viscosity	Poise Centipoise Kilogram force-second per square meter	P cP kgf-s/m²		10 ⁻¹ 10 ⁻³ 9.80665	Pascal second	Pa-s
Kinematic viscosity	Stokes Centistokes	St cSt		10 ⁻¹ 10 ⁻⁶	Square meter per second	m²/s
Temperature	Degree	Č	1 [+273.15	Kelvin	K
	Curie Roentgen Rad Rem	Ci R rad rem		3.7×10 ¹⁰ 2.58×10 ⁻⁴ 10 ⁻² 10 ⁻²	Becquerel Coulomb per kilogram Gray Sievert	Bq C/kg Gy Sv
Magnetic flux	Maxwell	Mx	1	10 ⁻⁸	Weber	Wb
Magnetic flux density	Gamma Gauss	γ Gs		10 ⁻⁹ 10 ⁻⁴	Tesla	Т
Magnetic-field intensity	Oersted	Oe		10³/4π	Ampere per meter	A/m
Quantity of electricity Voltage potentialdifference Electrostatic capacity (Electric) resistance (Electric) conductance Inductance Current	bolt Farad Ohm	C V F Ω S H A		1 1 1	Coulomb bolt Farad Ohm Siemens Henry Ampere	C V F Ω S H A

[Comparative Table of SI, CGS System and Gravitational System Units]

Amount	Length	Mass	Time					
Unit system	L	М	Т	Acceleration	Force	Stress	Pressure	Energy
SI CGS system Gravitational system	m cm m	kg g kgf-s²/m	s s s	m/s² Gal m/s²	N dyn kgf	Pa dyn/cm² kgf/m²	Pa dyn/cm² kgf/m²	J erg kgf-cm

Amount				Kinematic	Magnetic	Magnetic	Magnetic field
Unit system	Power	Temperature	Viscosity	viscosity	flux	flux density	Magnetic-field intensity
SI CGS syste Gravitation system		K C C	Pa-s P kgf-s/m²	m²/s St m²/s	Wb Mx —	T Gs —	A/m Oe —

[Integer Multipliers of 10 of SI Units]

Number of	Prefix		Number of	Prefix	
digits multiplied to unit	Name	Symbol	digits multiplied to unit	Name	Symbol
10 ¹⁸ 10 ¹⁵ 10 ¹² 10 ⁹ 10 ⁶ 10 ³ 10 ²	Exa Peta Tera Giga Mega Kilo Hecto Deca	E P T G M k h	10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁶ 10 ⁻⁹ 10 ⁻¹² 10 ⁻¹⁵	Deci Centi Milli Micro Nano Pico Femto Atto	d c m µ n p f a

[Hardness Conversion Table]

Rockwell	Vickers hardness	Brinell hardness HB		Rockwell	Shore hardness	
C-scale hardness HRC (load: 1471 N)	Hardness HV	Standard ball	Tungsten carbide ball	HRA A scale Load: 588.4N Brale indenter	HRB B scale Load: 980.7N Ball with diam of 1/16 in.	Hardness HS
68	940	_	_	85.6	_	97
67	900	_	_	85.0	_	95
66	865	_	_	84.5	_	92
65	832	_	739	83.9	_	91
64	800	_	722	83.4	_	88
63	772	_	705	82.8	_	87
62	746	_	688	82.3	_	85
61	720	_	670	81.8	_	83
60	697	_	654	81.2	_	81
59	674	_	634	80.7	_	80
58	653	_	615	80.1	_	78
57	633	_	595	79.6	_	76
56	613	_	577	79.0	_	75
55	595	_	560	78.5	_	74
54	577	_	543	78.0	_	72
53	560	_	525	77.4	_	71

Appendix Tables

Rockwell	Vickers hardness	Brinell hardness HB		Rockwell	Shore hardness	
C-scale hardness HRC (load: 1471 N)	Hardness HV	Standard ball	Tungsten carbide ball	HRA A scale Load: 588.4N Brale indenter	HRB B scale Load: 980.7N Ball with diam of 1/16 in.	Hardness HS
52	544	500	512	76.8	_	69
51	528	487	496	76.3	_	68
50	513	475	481	75.9	_	67
49	498	464	469	75.2	_	66
48	484	451	455	74.7	_	64
47	471	442	443	74.1	_	63
46	458	432	432	73.6	_	62
45	446	421	421	73.1	_	60
44	434	409	409	72.5	_	58
43	423	400	400	72.0	_	57
42	412	390	390	71.5	_	56
41	402	381	381	70.9	_	55
40	392	371	371	70.4	_	54
39	382	362	362	69.9	_	52
38	372	353	353	69.4	_	51
37	363	344	344	68.9	_	50
36	354	336	336	68.4	(109.0)	49
35	345	327	327	67.9	(108.5)	48
34	336	319	319	67.4	(108.0)	47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	_	96.7	33
(16)	222	212	212	_	95.5	32
(14)	213	203	203	_	93.9	31
(12)	204	194	194	_	92.3	29
(10)	196	187	187	_	90.7	28
(8)	188	179	179	_	89.5	27
(6)	180	171	171	_	87.1	26
(4)	173	165	165	_	85.5	25
(2)	166	158	158	_	83.5	24
(0)	160	152	152	_	81.7	24

THK General Catalog

Index of Model Numbers

A	Model C-MT6×1 [Accessories for Lubrication]	. A-970
A	Model CNF [Ball Screw]	. A-790
AFA [Accessories for Lubrication] A-959	Model C-PT1/8 [Accessories for Lubrication]	. A-970
AFB-LF [Accessories for Lubrication]	Model CSR [LM Guide]	. A-244
AFC [Accessories for Lubrication]		
AFE-CA [Accessories for Lubrication] A-963	D	
AFF [Accessories for Lubrication] A-965	D	
AFG [Accessories for Lubrication]	Model D20 [Slide Rail]	. A-646
Model AL [Link Ball]	Model DC [Lead Screw Nut]	. A-830
Model A-M6F [Accessories for Lubrication] A-970	Model DCM [Lead Screw Nut]	A-830
Model A-MT6×1 [Accessories for Lubrication] A-970	Model DCMA [Change Nut]	. A-842
Model A-PT1/8 [Accessories for Lubrication] A-970	Model DCMB [Change Nut]	A-842
	Model DIK [Ball Screw]	A-764
B	Model DIR [Ball Screw]	A-772
В	Model DK [Ball Screw]	. A-764
Model BF [Ball Screw (Peripherals)] A-802	Model DKN [Ball Screw]	. A-764
Model BIF [Ball Screw (Finished Shaft Ends)] A-764	Model DP [Spline Nut]	
Model BIF [Ball Screw (Unfinished Shaft Ends)] . A-754	Model DPM [Spline Nut]	
Model BK [Ball Screw (Peripherals)] A-802		
Model BL [Link Ball]		
Model BLK [Ball Screw]	E	
Model BLK [Ball Screw (Rolled)] A-790	Model E15 [Slide Rail]	- A-646
Model BLR [Ball Screw (Precision)] A-772	Model E20 [Slide Rail]	
Model BLR [Ball Screw (Rolled)]	Model EF [Ball Screw (Peripherals)]	
Model BLW [Ball Screw]	Model EK [Ball Screw (Peripherals)]	
Model B-M6F [Accessories for Lubrication] A-970	Model EP [LM Guide (Options)]	
Model B-MT6×1 [Accessories for Lubrication] A-970	Model ER [Precision Linear Pack]	
Model BNF [Ball Screw (Finished Shaft Ends)] A-764		
Model BNF [Ball Screw (Unfinished Shaft Ends)] A-754		
Model BNFN [Ball Screw (Finished Shaft Ends)] A-764	F	
Model BNFN [Ball Screw (Unfinished Shaft Ends)]. A-754	Model FBL27D [Slide Rail]	A-646
Model BNK [Ball Screw] A-760	Model FBL27S [Slide Rail]	
Model BNS [Ball Screw] A-780	Model FBL27S-P14 [Slide Rail]	
Model BNS-A [Ball Screw]	Model FBL35B [Slide Rail]	
Model BNT [Ball Screw (Precision)] A-764	Model FBL35D [Slide Rail]	
Model BNT [Ball Screw (Rolled)]	Model FBL35E-P14 [Slide Rail]	
Model B-PT1/8 [Accessories for Lubrication] A-970	Model FBL35F [Slide Rail]	
Model BS [LM Stroke] A-562	Model FBL35G-P13 [Slide Rail]	
Model BTK [Ball Screw]	Model FBL35G-P14 [Slide Rail]	
•	Model FBL35J [Slide Rail]	A-646
	Model FBL35J-P13 [Slide Rail]	
C	Model FBL35J-P14 [Slide Rail]	
Cap C [LM Guide (Options)]	Model FBL35K [Slide Rail]	
Model CF [Cam Follower]	Model FBL35M [Slide Rail]	
Model CF-A [Cam Follower] A-880	Model FBL35S [Slide Rail]	
Model CFH-A [Cam Follower] A-880	Model FBL35T [Slide Rail]	
Model CFN [Cam Follower]	Model FBL35W [Slide Rail]	
Model CFT [Cam Follower] A-880	Model FBL48DR [Slide Rail]	
Model C-M6F [Accessories for Lubrication] A-970	Model FBL51H [Slide Rail]	

Model FBL51H-P13 [Slide Rail]	. A-646	Model LBS [Ball Spline]	A-484
Model FBL51H-P14 [Slide Rail]		Model LBST [Ball Spline]	A-484
Model FBL56F [Slide Rail]	A-646	Model LD [Accessories for Lubrication]	A-970
Model FBL56H [Slide Rail]	A-646	Model LF [Ball Spline]	A-490
Model FBL56H-P13 [Slide Rail]	A-646	Model LF-A [Accessories for Lubrication]	A-970
Model FBL56H-P14 [Slide Rail]	A-646	Model LF-B [Accessories for Lubrication]	A-970
Model FBW [Slide Pack]	. A-636	Model LF-C [Accessories for Lubrication]	A-970
Model FF [Ball Screw (Peripherals)]	. A-802	Model LF-D [Accessories for Lubrication]	A-970
Model FK [Ball Screw (Peripherals)]	. A-802	Model LF-E [Accessories for Lubrication]	A-970
Model FLM [Linear Bushing (Option)]	. A-550	LiCS [LM Guide (Options)]	A-355
Model FT [Flat Roller]	. A-622	Model LM [Linear Bushing]	A-524
Model FT-V [Flat Roller]	A-622	Model LME [Linear Bushing]	
Model FTW [Flat Roller]	A-622	Model LMF [Linear Bushing]	A-524
Model FTW-V [Flat Roller]	A-622	Model LMF-L [Linear Bushing]	A-524
		Model LMH [Linear Bushing]	A-524
G		Model LMH-L [Linear Bushing]	A-524
		Model LMK [Linear Bushing]	
Model GL [LM Actuator]		Model LMK-L [Linear Bushing]	
Model GSR [LM Guide]		Model LM-L [Linear Bushing]	
Model GSR-R [LM Guide]	. A-236	Model LR [LM Roller]	
		Model LRA [LM Roller]	
H		Model LRA-Z [LM Roller]	
		Model LRB [LM Roller]	
Model HB [Rod End]		Model LRB-Z [LM Roller]	
Model HBN [Ball Screw (Caged Ball)]		Model LRU [LM Roller]	
Model HCR [LM Guide]		Model LR-Z [LM Roller]	
Model HMG [LM Guide]		Model LSC [Linear Ball Slide]	
Model HRW [LM Guide]		Model LSC [Linear Ball Slide]	
Model HS [Bod End]		Model LT [Pall Spline]	
Model HS [Rod End] Model HSR [LM Guide]		Model LT [Ball Spline] Model LTR [Ball Spline]	
Model HSR-M1 [LM Guide]		Model LTR-A [Ball Spline]	
Model HSR-M2 [LM Guide]		Woder ETT-A [Ball Opline]	A-300
Model Field M2 [LW Guide]	. A-232	F75	
		M	
J		Model MBF [Ball Screw (Precision)]	A-754
Model JPF [Ball Screw]	. A-790	Model MC [Ball Screw (Peripherals)]	
Model JR [LM Guide]		Model MDK [Ball Screw (Finished Shaft Ends)]	
•		Model MDK [Ball Screw (Unfinished Shaft Ends)]	
IZ		MG70 [Accessories for Lubrication]	
K		Model MST [LM Stroke]	
Model KR [LM Guide] Actuator	A-386	Model MTF [Ball Screw]	
Model KS [LM Stroke]		Model MX [LM Guide]	A-248
L		N	
	A 252		A 000
LaCS [LM Guide (Options)]		Model NART-VR [Roller Follower]	
Model LBG [Ball Spline]		Model NART-VR [Roller Follower] Model NAST [Roller Follower]	
Model LBG [Ball Spline] Model LBGT [Ball Spline]		Model NAST-R [Roller Follower]	
Model LBH [Ball Spline]		Model NAST-ZZ [Roller Follower]	
Model LBP [Ball Spline]		Model NAST-77R [Roller Follower]	

Model NB-T [Rod End]	Model SBN [Ball Screw]	A-748
Model NHS-T [Rod End]	Model SC [Linear Bushing]	
Model NOS-T [Rod End] A-942	Model SCR [LM Guide]	
Model NP3.2×3.5 [Accessories for Lubrication] A-970	Model SE [LM Roller (Options)]	
Model NP6x5 [Accessories for Lubrication] A-970	Model SEB [LM Roller (Options)]	
Model NP8×9 [Accessories for Lubrication] A-970	Model SF [Linear Bushing]	
Model NR/NRS [LM Guide] A-186	Model SF-A [Accessories for Lubrication]	A-970
Model NS [Ball Screw]	Model SF-B [Accessories for Lubrication]	A-970
Model NS-A [Ball Screw]	Model SF-C [Accessories for Lubrication]	
Model NSR-TBC [LM Guide] A-268	Model SF-D [Accessories for Lubrication]	
	Model SF-E [Accessories for Lubrication]	A-970
P	Model SH [Linear Bushing]	A-524
	Model SH-L [Linear Bushing]	A-524
Model PA [LM Roller (Options)]	Model SHS [LM Guide]	A-136
Model PB [Rod End]	Model SHW [LM Guide]	A-156
Model PB1021B [Accessories for Lubrication] A-970	Model SK [Linear Bushing]	A-524
Model PB107 [Accessories for Lubrication] A-970	Model SKR [LM Guide] Actuator	A-416
Model PBA [Rod End] A-942	Model SL [Linear Bushing]	A-524
Model PHS [Rod End] A-942	Model SM [LM Roller (Options)]	A-618
Model POS [Rod End] A-942	Model SMB [LM Roller (Options)]	A-618
	Model SNR/SNS [LM Guide]	A-148
Q	Model SP [LM Guide (Options)]	
	Model SR [LM Guide]	
QZ [LM Guide (Options)]A-361	Model SRG [LM Guide]	
QZ [Ball Screw (Options)]	Model SR-M1 [LM Guide]	
	Model SRN [LM Guide]	
R	Model SRS [LM Guide]	
	Model SRW [LM Guide]	
Model RA [Cross-Roller Ring]	Model SSR [LM Guide]	
Model RA-C [Cross-Roller Ring]	Model ST [LM Stroke]	
Model RB [Cross-Roller Ring] A-854	Model ST-B [LM Stroke]	
Model RBH [Rod End]	Model STI [LM Stroke]	
Model RBI [Link Ball]	Model SV [LM Guide (Options)]	A-358
Model RBL [Link Ball]		
Model RE [Cross-Roller Ring]	T	
Model RE-USP-Grade [Cross-Roller Ring] A-854	Model TRS II ink Palli	A 000
Model RN [Ball Screw (Peripherals)]	Model TBS [Link Ball]	A-922
Model RNAST [Roller Follower]	_	
Model RNAST-R [Roller Follower]	V	
Model RSH [LM Guide]	Model VB [Cross Roller Guide/Ball Guide]	A 570
Model RSR-M1 [LM Guide]	Model VR [Cross Roller Guide/Ball Guide]	
Model RSR-Z [LM Guide]	Model VRT [Cross Roller Table]	
Models RSR/RSR-W [LM Guide]	Model VRU [Cross Roller Table]	
Model RU [Cross-Roller Ring]	Woder vive [01000 Noller Table]	A-300
	W	
S	W [Ball Screw (Options)]	A-819
Bolt S [Cross Roller Guide/Ball Guide] A-581	Model WGF [Ball Screw]	
Model SA1 [Spherical Plain Bearing]	Model WTF [Ball Screw]	
Model SB [Spherical Plain Bearing]		
Model SBK [Ball Screw] A-748		

www.technobearing.ru

THKCO., LTD.

Head Office 3-11-6 Nishi-Gotanda, Shinagawa-ku, Tokyo 141-8503 JAPAN International Sales Department Phone:+81-3-5434-0351 Fax:+81-3-5434-0353

NORTH AMERICA

THK America, Inc.

HEADOLIARTERS

200 East Commerce Drive, Schaumburg, IL. 60173, U.S.A.

Phone:+1-847-310-1111 Fax:+1-847-310-1271

CHICAGO OFFICE

200 East Commerce Drive, Schaumburg, IL. 60173, U.S.A. Phone:+1-847-310-1111 Fax:+1-847-310-1182

NEW YORK OFFICE

400 Rella BLVD, Suite 208, Montebello, NY. 10901, U.S.A. Phone:+1-845-369-4035 Fax:+1-845-369-4909

ATLANTA OFFICE

3000 Northwoods Parkway, Suite 200, Norcross, GA 30071-1525,U.S.A. Phone:+1-770-840-7990 Fax:+1-770-840-7897 LOS ANGELES OFFICE

34 Executive Park, Suite 215 Irvine, CA. 92614, U.S.A. Phone:+1-949-955-3145 Fax:+1-949-955-3149

SAN FRANCISCO OFFICE 4603-E Las Positas RD. Livermore, CA. 94551, U.S.A.

Phone:+1-925-455-8948 Fax:+1-925-455-8965

BOSTON OFFICE

480 Neponset St. #10B, Canton, MA. 02021, U.S.A. Phone:+1-781-575-1151 Fax:+1-781-575-9295

DETROIT OFFICE

2600 South Telegraph Road, Suite 190 Bloomfield Hills, MI. 48302, U.S.A. Phone:+1-248-858-9330 Fax:+1-248-858-9455

TORONTO OFFICE

3600B Laird Road, Unit #10 Mississauga, ONT Canada L5L 6A7 Phone:+1-905-820-7800 Fax:+1-905-820-7811

THK Brasil LTDA

Av. Corifeu de Azevedo Marques,4.077 Butanta-Sao Paulo-Sao Paulo Brazil 05339-002 Phone:+55-11-3767-0100 Fax:+55-11-3767-0101

THK (CHINA) CO., LTD.

HEADQUARTERS

No.41 Dalian Economic & Technical Development Zone, Liaoning Province 116600, China

Phone:+86-411-8733-7111 Fax:+86-411-8733-7000

SHANGHAI OFFICE

1002 Kirin Plaza, 666 Gubei Road, Shanghai 200336, China Phone:+86-21-6219-3000 Fax:+86-21-6219-9890 BEIJING OFFICE

2 Xin Yuan nan Road, Chaoyang District, Beijing 100004, China KUNLUN HOTEL, Room No.417, China Phone:+86-10-6590-3259 Fax:+86-10-6590-3557

CHENGDU OFFICE Room No.2002 Western Tower No.19, Sec4,

Renmin nan Rd Chengdu 610041, China Phone:+86-28-8525-2356 Fax:+86-28-8525-6357

GUANGZHOU OFFICE Room No, A625 Landmark Canton Hotel, No 8,

Qiao Guang Rd, Guangzhou 510000, China Phone:+86-20-8333-9770 Fax:+86-20-8333-9726

THK (SHANGHAI) CO., LTD. 1003-A Kirin Plaza, 666 Gubei Road, Shanghai 200336, China

Phone:+86-21-6725-5280 Fax:+86-21-6219-9890

TAIWAN

THK TAIWAN CO., LTD.

TAIPEI OFFICE

Suite A, 7FI., No.152, Sec 4, Chengde Rd., Shrlin Chiu, Taipei, Taiwan 112, R.O.C. Phone:+886-2-2888-3818 Fax:+886-2-2888-3819

TAICHUNG OFFICE

2, 35th Rd., Taichung Ind. Park, Taichung, Taiwan 40707, R.O.C. Phone:+886-4-2359-1505 Fax:+886-4-2359-1506

SOUTHERN OFFICE

6F. 2, NO.77, Sec.2, Jhonghua E.Rd., East District, Tainan city, 701 Taiwan R.O.C. Phone:+886-6-289-7668 Fax:+886-6-289-7669

SEOUL REPRESENTATIVE OFFICE

Geumgang Tower Bldg 16F.,889-13, Daechi-dong, Gangnam-gu, Seoul 135-280,

Phone:+82-2-3468-4351 Fax:+82-2-3468-4353

All rights reserved.

"LM Guide," "Caged Ball" and "QZ" are registered trademarks of THK CO., LTD.

The appearance and specifications of each product are subject to change without notice for improvement.

Although great care has been taken in the production of this catalog, THK will not take any responsibility for damage resulting from typographical errors or omissions.

www.technobearing.ru

©THK CO., LTD. 20061211 Printed in Japan

SINGAPORE

SINGAPORE REPRESENTATIVE OFFICE

BANGALORE REPRESENTATIVE OFFICE

1050, 11th main R.P.C Layout Bangalore 560040, India Phone:+91-080-2330-1524 Fax:+91-080-2330-1524

EUROPE

THK GmbH

EUROPEAN HEADQUARTERS

Hubert-Wollenberg-Strasse 13-15, D-40878 Ratingen, Germany Phone:+49-2102-7425-0 Fax:+49-2102-7425-217

DÜSSELDORF OFFICE

Hubert-Wollenberg-Strasse 13-15, D-40878 Ratingen, Germany Phone:+49-2102-7425-0 Fax:+49-2102-7425-299

STUTTGART OFFICE

Heinrich-Lanz-Strasse 3, D-70825 Korntal-Münchingen, Germany Phone:+49-7150-9199-0 Fax:+49-7150-9199-888

MÜNCHEN OFFICE Max-Planck-Strasse 13, D-85716 Unterschleissheim, Germany Phone:+49-8937-0616-0 Fax:+49-8937-0616-26

U.K. OFFICE 1 Harrison Close Knowlhill Milton Keynes MK5 8PA Phone:+44-1908-30-3050 Fax:+44-1908-30-3070

ITALY MILANO OFFICE

Via Buonarroti, 182, 20052 Monza (MI), Italy Phone:+39-039-284-2079 Fax:+39-039-284-2527

ITALY BOLOGNA OFFICE

Via Della Salute, 16/2, 40132 Bologna(BO), Italy Phone:+39-051-641-2211 Fax:+39-051-641-2230

SWEDEN OFFICE Veddestavägen 15B, S-17562 Järfälla, Sweden Phone:+46-8-445-7630 Fax:+46-8-445-7639

AUSTRIA OFFICE
Edelmüllerstrasse 2, A-4061 Pasching, Austria
Phone:+43-7229-51400 Fax:+43-7229-51400-79

SPAIN OFFICE

C/Andorra 19A, Sant Boi de Llobregat, 08830 Barcelona, Spain Phone:+34-93-652-5740 Fax:+34-93-652-5746 TURKEY OFFICE

Huseyin Colak Street Nail Ergin Business Center No:7 Ground

Floor Apartment No:2 Kozyatagi Kadikoy / Istanbul, Turkey Phone:+90-216-463-0047 Fax:+90-216-463-0042

THK France S. A. S.

Les carres du Parc 10 rue des Rosieristes Immeuble A 69410 Champagne

Mont D'or France Phone:+33-4-3749-1400 Fax:+33-4-3749-1401

AFRICA

THK GmbH

SOUTH AFRICA REPRESENTATIVE OFFICE

P.O.Box 13033 Witfield Johannesburg 1467, South Africa Phone:+27-11-821-3666 Fax:+27-11-821-3661

PRODUCTION FACILITY

THK Manufacturing of America, Inc. P.O.Box 759, 471 North High Street, Hebron, OH, 43025, U.S.A.

Phone:+1-740-928-1415 Fax:+1-740-928-1418

THK Manufacturing of Europe S. A. S.

Parc d'Activités la Passerelle, 68190 Ensisheim, France Phone:+33-3-8983-4400 Fax:+33-3-8983-4409

PGM Ballscrews Ireland Ltd.

Tallaght Business Park, Whitestown, Industrial Estate, Tallaght, Dublin24, Ireland Phone:+353-1-462-8101 Fax:+353-1-462-9080

DALIAN THK CO., LTD.

No.29 Huo Ju Road, Qi Xian Ling, Gan Jing Zi District, Dalian City,
Liao Ning Sheng, China 116023

Phone:+86-411-8479-0999 Fax:+86-411-8479-0111

THK MANUFACTURING OF CHINA (WUXI) CO., LTD. No.19, Changjiang South Road, Wuxi, Jiangsu, 214028, China Phone:+86-510-8534-4333 Fax:+86-510-8534-4666

THK MANUFACTURING OF CHINA(LIAONING) CO., LTD. No.41, Dalian Economic & Technical Development Zone. Liaoning Province. China

Phone:+86-411-8733-7333 Fax:+86-411-8733-7222

SAMICK THK CO., LTD.

1005, Weolam-dong, Dalseo-gu, Daegu, Korea Phone:+82-53-665-7000 Fax:+82-53-581-8272

This catalog uses recycled paper.

8 (800) 700-72-07 (бесплатно)

LIMITED WARRANTY

LIMITED WARRANTY AND LIMITATION OF LIABILITY: THK CO. LTD., FOR ITSELF AND ITS RELATED COMPANIES AND SUBSIDIARIES (HEREINAFTER DESCRIBED COLLECTIVELY AS "THK") WARRANTS THAT ALL THK PRODUCTS SOLD WILL BE FREE OF DEFECTS IN MATERIALS AND WORKMANSHIP FOR A PERIOD OF TWELVE (12) MONTHS FROM DATE OF DELIVERY. THE FOREGOING TWELVE (12) MONTH WARRANTY SHALL NOT BE EXTENDED OR CHANGED BY THK FURNISHING ANY REPLACEMENTS, ADDITIONS, ATTACHMENTS, ACCESSORIES OR REPAIRS TO THE PRODUCT SUBSEQUENT TO THE DATE OF DELIVERY OR ACCEPTANCE. THE FOREGOING WARRANTY IS THE SOLE AND EXCLUSIVE WARRANTY OF THK REGARDING THE PRODUCT.

DISCLAIMER OF OTHER WARRANTIES: OTHER THAN THE FOREGOING WARRANTY. THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OR ANY AFFIRMATIONS OF FACT OR PROMISES BY THK WITH RESPECT TO THE PRODUCT. THK DISCLAIMS ANY WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, NOT SPECIFICALLY SET FORTH ABOVE. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING. THK EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY. FITNESS FOR ANY PARTICULAR PURPOSE, INFRINGEMENT OR ANY REPRESENTATIONS OF FACT OR QUALITY NOT EXPRESSLY SET FORTH HEREIN.

LIMITATION OF LIABILITY AND REMEDIES: THK'S SOLE RESPONSIBILITY AND LIABILITY INCURRED AS A RESULT OF THE SALE AND/OR USE OF THE PRODUCT, AND THE PURCHASER'S EXCLUSIVE REMEDY AGAINST THK UNDER ANY WARRANTY SHALL BE LIMITED TO THE REPAIR OR REPLACEMENT, AT THK'S OPTION, OF PRODUCT COMPONENTS NOT CONFORMING TO THE WARRANTY. THE TOTAL LIABILITY OF THK SHALL IN NO EVENT EXCEED THE AMOUNT ACTUALLY PAID TO THK BY PURCHASER WITH RESPECT TO THE PRODUCT. THIS LIMITATION OF REMEDY IS INTENDED BY THE PARTIES TO SURVIVE EVEN IF THE REMEDY IS CLAIMED TO HAVE FAILED OF ITS ESSENTIAL PURPOSE. PURCHASER'S FULL AND COMPLETE PERFORMANCE OF ALL OBLIGATIONS OF PURCHASER RECITED IN THIS AGREEMENT IS A CONDITION PRECEDENT TO THK'S WARRANTY OBLIGATIONS AND LIABILITIES HEREIN.

PURCHASER'S DAMAGES AND LIMITATIONS: IN NO EVENT SHALL THK BE LIABLE TO PURCHASER, ITS ASSIGNS OR AGENTS, FOR ECONOMIC LOSS, INCIDENTAL OR CONSEQUENTIAL DAMAGES, IN CONTRACT OR IN TORT, INCLUDING BUT NOT LIMITED TO, ANY DAMAGES FOR LOST PROFITS, DOWN-TIME, LOST PRODUCTION, FAILURE TO MEET PURCHASER'S SALES CONTRACTS, OR DEFECTS IN PURCHASER'S MATERIALS OR WORKMANSHIP ARISING DIRECTLY OR INDIRECTLY FROM THE USE OF THE PRODUCT.

DISCLAIMER

This Catalog provides basic information relating to THK linear motion and related products. The Catalog, including all information, charts, formulas, factors, accuracy standards, tolerances and application recommendations contained herein, is only a starting point for the customer's selection of appropriate products, and may not apply in all intended applications. The Catalog is not a substitute for a proper application analysis conducted by an experienced, knowledgeable design engineer. Product selection should be based upon your specific application needs and conditions, which will vary greatly depending on many factors. No specific product application should be based solely on the information contained in this Catalog. All purchases of THK Products are subject to the limited warranty offered by THK Co., Ltd, for itself and on behalf of its related companies and subsidiaries. Customers should confirm independently that a contemplated application is safe, appropriate and effective.

"All trademarks used in this Catalog are registered trademarks in the Country of Japan. If there is any question as to the validity of such trademarks outside of Japan, an inquiry should be made in that particular country."

Line Up
General Description
LM Guide
LM Guide Actuator
LM Actuator
Ball Spline
Spline Nut
Linear Bushing
LM Stroke
Precision Linear Pack
Cross Roller Guide/Ball Guide
Cross Roller Table
Linear Ball Slide
LM Roller
Flat Roller
Slide Pack
Slide Rail
Ball Screw
Lead Screw Nut
Change Nut
Cross-Roller Ring
Cam Follower
Roller Follower
Spherical Plain Bearing
Link Ball
Rod End
Accessories for Lubrication
Appendix

For inqui	For inquiries, please contact :						

For the export of our products or technologies and for the sale for exports, THK in principle complies with the foreign exchange law and the Foreign Exchange and Foreign Trade Control Law as well as other relevant laws. For export of THK products as single items, contact THK in advance.