Аксессуары для ВИМ Quick Vision

Следящий автофокус

Следящий автофокус TTL (через линзу) *

Для Quick Vision-APEX, Quick Vision-HYPER, Quick Vision-STREAM PLUS, Quick Vision-ULTRA Следящий автофокус (ТАF) обеспечивает стабильные и быстрые измерения по оси Z, благодаря методу ножа Фуко, применяемому в измерительной системе.

TAF отслеживает волнистость и криволинейность поверхности детали в направлении оси Z и повышает производительность по сравнению с обычным режимом измерения.

Когда TAF используется на BИM Quick Vision Stream Plus, открывается возможность проводить полностью непрерывные измерения.

Коаксиальный следящий автофокус (ТАF)

Пример измерения : высота пиков на QFP-корпусе

ТАГ (1) (Следящий автофокус)*

(1 1	1 - 1 - 1 - 1					
Nº	Объектив	Диапазон слежения [мм]	Диаметр лазерного пятна [мкм]			
TAF-HR2,5X	QV-HR2,5X	±0,5	2,1			
TAF-SL2,5X	QV-SL2,5X	±0,5	3,1			
TAF-5X	QV-5X	±0,125	1,5			
TAF-HR1X	QV-HR1X	±3,15	5,2			
TAF-SL1X	QV-SL1X	±3,15	8			

^{*} Заводская опция

Поворотная головка для QV

Использование индексной головки для QV позволяет поворачивать заготовку и производить автоматические измерения множества поверхностей без необходимости снятия/переустановки детали.

Спецификация

Спецификация	
Индексная головка QV	При использовании дополнительного многопозиционного поворотного стола возможно проведение автоматических измерений в нескольких плоскостях
Мин. угол вращения	0,1 °
Макс. скорость вращения	10 об/мин
Погрешность позиционирования	±0,5°
Макс. диаметр детали [мм]	140

Дополнительные технические характеристики

Примечания

- Увеличение на мониторе является приблизительным.
- QV-10X, QV-25X: В зависимости от детали подсветки может быть недостаточно при использовании револьверной головки с линзами 2X и 6X для моделей QV.
- QV-25X : применение PRL освещения ограничено.

Калибровочный стеклянный шаблон и компенсационный стеклянный шаблон с

Калибровочные или компенсационные шаблоны используются для калибровки или компенсации размера пикселя ССD-сенсора, точности автофокуса и смещения оптической оси для каждого увеличения программируемой моторизованной револьверной головки (РРТ) или зума.

Объективы и шаблоны для калибровки

Объективы и калибровочные шаблоны

Nº	Модель				
02ALT630	QV WLI A-10X				
02ALT670	QV WLI A-25X				
02ALY400	QV WLI A-5X				

1: Объективы для QV - HR (высокого разрешения) и SL (с большим рабочим расстоянием)

1. ООВЕКТИВЫ ДЛЯ QV		,	- pp		
Nº	Увеличение	ки QV		Увеличение монитора	Рабочее рас- стояние [мм]
02AKT199	0,5X	QV-SL0,5X	1X 2X 6X	16X 32X 96X	30,5
02ALA150	1X	QV-SL1X	1X 2X 6X	32X 64X 192X	52,5
02ALA170	2,5X	QV-SL2,5X	1X 2X 6X	80X 160X 480X	60
02ALA420	5X	QV-5X	1X 2X 6X	160X 320X 960X	33,5
02ALG010	10X	QV-SL10X	1X 2X 6X	320X 640X 1920X	30,5
02ALG020	25X	QV-25X	1X 2X 6X	800X 1600X 4800X	13
02AKT250	1X	QV-HR1X	1X 2X 6X	32X 64X 192X	40,6
02AKT300	2,5X	QV-HR2,5X	1X 2X 6X	80X 160X 480X	40,6
02AKT650	10X	QV-HR10X	1X 2X 6X	320X 640X 1920X	20

2. Другие принадлежности

Nº	<u>№</u> Модель					
02ATN695	Калибровочный шаблон с держателем					
02ATN697	Шаблон компенсации с держателем					

Модульная оснастка OPTI-FIX

Модульная система фиксации для видеоизмерительных систем

Эта гибкая модульная система крепления идеально подходит для использования с видеоизмерительными машинами, а также профильными проекторами, измерительными микроскопами и другими оптическими системами.

OPTI-FIX обладает следующими преимуществами:

- Система имеет очень компактные компоненты, которые фиксируют детали в нужном положении во время измерений.
- OPTI-FIX является надежным инструментом, обеспечивающим повторяемость измерений партии деталей, или измерений, например, заданных положений в пространстве.
- Элементы системы монтируются в разъем "ласточкин хвост".
- Доступны несколько типов комплектов.

Nº	Модель	Описание					
K551056	Комплект Opti-Set Start	- Состоит из 16 элементов - Прямоугольная рамка размером 250x100мм					
K551057	57 Комплект Орti-Set - Состоит из 26 элементов Ваsic - Прямоугольная рама размером 200х100мм						
K551059	Комплект Opti-Set Advanced	- Состоит из 51 элементов - Прямоугольная рама размером 400x250мм - Позволяет подвесное позиционирование деталей					
K551060	Комплект Opti-Set Professional	- IIDAMOVEOREUSA DSMS DSSMSDOM /IJIIV /5/IMM					
K551058	Комплект Opti-Set Rotation	- Состоит из 23 элементов - Прямоугольная рама размером 250х200мм - Включает принадлежности для крепления цилиндрических деталей					
K550298	Комплект Opti-Set Round	- Состоит из 18 элементов и позволяет пространственное позиционирование деталей сложных форм - Этот набор поставляется в футляре (см. фото внизу)					
K550989	Регулируемый магнитный фиксатор	Для удержания системы фиксации OPTI-FIX на обрабатываемой поверхности требует- ся только 3 зажима					

Комплект Opti-Set Round

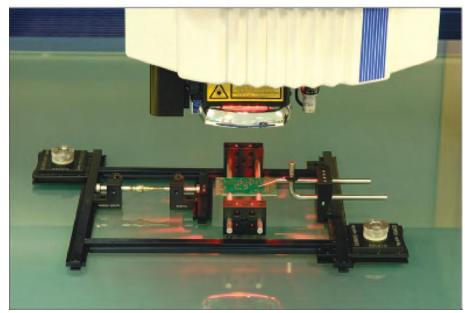
Удерживает цилиндрическую деталь между крепежными наконечниками.

Зубчатая линейка позволяет проходить свету. Пружинный фланец фиксирует деталь в позиции, необходимой для измерения.

Измерение партии идентичных деталей, помещенных в прямоугольной раме.

Подробности см. в документации на OPTI-FIX

Модульная оснастка OPTI-FIX


Система фиксации "OPTI-FIX"

Мини-зажим (внутренний-внешний)

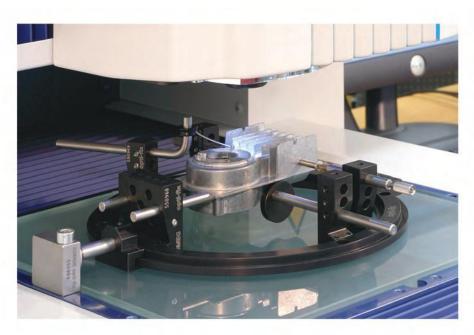
Трёхкулачковый быстрозажимной патрон

Электронная плата поднята для доступа к компонентам на ее нижней стороне. Размещение прямо на стеклянной платформе машины без OPTI-FIX, электронная плата не будет лежать ровно. Установка производится на поверхности стекла с помощью 2 присосок.

Зажимная губка

Губки для ø0-2

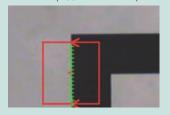
Губки для ø1-3



Губки для ø4-5

Губки с перпендикулярным креплением

Пример применения с призматическими держателями (без системы зажима OPTI-FIX деталь нельзя корректно спозиционировать). Установка производиться на стеклянной поверхности посредством магнитного зажима, прикрепленного к раме.


Краткое руководство по высокоточным измерительным приборам

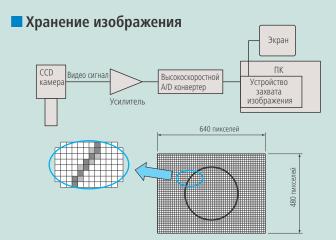
■ Видео измерение

Видео-измерительные машины в основном обеспечивают следующие возможности по обработке изображений.

■ Определение кромки

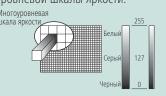
Определение/измерение кромки в плоскости ХУ

Автофокусировка


Фокусировка и измерение по оси Z

■ Распознавание шаблонов

Выравнивание, позиционирование и измерение объекта



Изображение состоит из постоянного массива пикселей. Это похоже просто на картинку на тонкой миллиметровой бумаге, на которой каждый квадратик содержит различный массив.

Шкала яркости

На ПК сохраняется изображение после внутренней конвертации его в числовые значения. Числовое значение присваивается каждому пикселю изображения. Качество изображения может варьироваться в зависимости от количества уровней шкалы яркости, определенных числовыми значениями. В ПК есть два типа шкал яркости: двухуровневая и многоуровневая. Пиксели в изображении обычно отображаются в виде 256-уровневой шкалы яркости.

Более яркие, чем установленный уровень, пиксели в изображении отображаются в виде белых точек, а все остальные — в виде черных.

Каждый пиксель отображается в виде одного из 256 уровней между черным и белым Это позволяет отображать изображения с высокой точностью.

Видео-измерительные машины

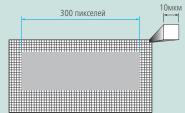
Различия в качестве изображений

Различие между изображениями в 2- и 256- уровневых шкалах яркости.

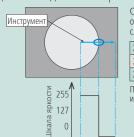


Пример изображения в 2-уровневой шкале яркости Пример изображения в 256-уровневой шкале яркости

Изменение в изображении в зависимости от величены порогового уровня



Эти 3 фотографии представляют собой одно и то же изображение в 2-уровневой шкале яркости на разных уровнях слоев (пороговых уровнях). В изображении в 2-уровневой шкале яркости различные изображения выглядят так, как показано выше, из-за различий в уровнях слоев. Поэтому 2-уровневая шкала яркости не используется для высокоточного измерения изображений, так как числовые значения изменяются в зависимости от установленного порогового уровня.


Измерение размеров

Изображение состоит из пикселей. Если количество пикселей в измеряемой секции подсчитывается и умножается на размер пикселя, тогда секцию можно конвертировать в числовое значение по длине. Например, представьте, что общее количество пикселей в поперечном размере прямоугольной рабочей детали - 300 пикселей, как показано на рисунке ниже. Если размер пикселя - 10мкм под увеличением изображения, общая длина рабочей детали будет равна 10мкм х 300 пикселей = 3000мкм = 3мм.

Определение кромки

Как в действительности определить кромку рабочей детали на изображении описано в примере использования следующей монохромной картинки. Определение кромки осуществляется в пределах данной области. Символ, который визуально определяет эту область, относится к инструменту. Для определения различной геометрии рабочей детали или данных измерения используются различные инструменты.

(2) (3)

Система определения кромки сканирует в пределах области инструментов, как показано на рисунке спева и определяет границу межлу светом и тенью

	стева, и определиет границу между светом и тенвю.									IIDIO.
						76				
	243	242	220	195	94	73	66	54	53	55
ı	244	246	220	195	94	75	64	56	51	50
ď										

Пример числовых значений, присваиваемых пикселям инструментом.

(1) Начало сканирования (2) Определение границы

(3) Окончание сканирования

Направление